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Abstract  Glutathione peroxidases in plants present one of the most interesting evolutionary enigmas due to the fact that 
aquatic members encode glutathione peroxidases with selenocysteine while land plants favour the amino acid cysteine. This 
analysis was performed to identify residue frequencies and conserved motifs in plant glutathione peroxidase sequences with 
the objective to identify possible evolutionary insights into this interesting group of stress enzymes. Phylogenetic footprinting 
was combined with parsimony analyses to identify true evolutionary signatures of the group. Following the identification of 
conserved phylogenetic signatures two essential ligands of the enzyme class-glutathione and hydrogen peroxide was used to 
study the interaction of the enzymes and the role of the conserved stretches in the interactions. Results indicate that these 
conserved stretches are important for maintenance of the structural and functional stability of these enzymes as well as 
interaction with key ligands. 
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1. Introduction 
Plants suffer from various kinds of oxidative stress as they 

are always under the influence of environmental factors [1, 
7]. These factors contribute towards aerobic reactions which 
result in free radicals which serve as deleterious molecules in 
the cytoplasm. To counter these toxic compounds, plants 
have devised enzymatic defense mechanisms in the form of 
free radical scavenging enzymes such as superoxide 
dismutases, catalases, ascorbate peroxidases and Glutathione 
Peroxidases (GPx). Glutathione peroxidase (EC 1.11.1.9 and 
EC 1.11.1.12) family of enzymes are involved in catalyzing 
of the process of reduction of H2O2 or organic 
hydroperoxides to water or their alcoholic forms where reduced 
Glutathione (GSH) acts as an electron donor [10, 19]. At the 
molecular level, plant GPx genes are closely related to 
animal PHGPx and their corresponding proteins. Three 
widely conserved Cysteine residues, which are assumed to 
be essential for the enzymatic catalysis [17]. The most 
significant difference between mammalian and land plant 
glutathione peroxidases is the absence of selenosysteine in   
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the catalytic centre of the later group [2, 3, 5, 6]. Moreover, 
the plant GPx gene family may comprise up to six members 
that are distributed in different subcellular compartments. 
Evolutionary analyses of plant GpX members have shown 
that their evolution was probably as a resultant of gene 
duplication and horizontal gene transfer events[16].  

2. Materials and Method 
2.1. Data Mining and Curation  

All glutathione peroxidase sequences which were 
available were downloaded from the NCBI Genpept resource 
and were carefully curated. Only those sequences which had 
more than 100 amino acids were selected for the study since 
protein motifs tend to occur in clusters and thus a minimum 
sequence length was required. Following this they were 
analyzed for their conserved domains to check whether all 
the sequences corresponded to the plant GpX family. No 
sequences were rejected at this step. Thus the final set of 
sequences numbered to 440 and the entire analyses was 
performed using them. It is important to mention at this point 
that distant homologues were not considered for the 
analyses. 
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2.2. Identification of Conserved Stretches 

The PERL (Practical Extraction and Reporting Language) 
script that was formulated produced a total of 175 positions 
from the multiple sequence alignment that was provided to it. 
This MSA was generated using Phylip and then validated 
using SEAVIEW. Once the positions were generated they 
were matched with the consensus sequence pattern that was 
obtained from the UGENE tool. 

2.3. Phylogenetic Footprinting 

Phylogenetic footprinting [4] has been one of the most 
trusted methods to identify transcription factor binding sites 
in the upstream region of various genes since it was first used 
by Tagle et al. (1988) [24]. However, the authors decided to 
extend the repertoire of phylogenetic footprinting to amino 
acid sequences by combining maximum parsimony based 
tree generation methods along with basic multiple sequence 
alignment [9]. The basic steps of generating the footprint 
were as follows:  

● Create a cluster of homologous sequences by applying 
homology search tools such as BLAST [18]. 

● Since the cluster was already prepared a basic multiple 
sequence alignment [23] was performed using Phylip 
and was validated using SEAVIEW program. The 
multiple sequence alignment was constructed using 
Kimura distances and maximum parsimony was used to 
generate the cladogram [25] 

● A PERL program was designed which accepted the 
sequences in aligned format and calculated the 
residue frequencies for each position of the alignment. 
A host of frequency hits were retrieved: >20-90% 

● From the multiple sequence alignment a consensus 
sequence was generated using the UGENE [22] tool and 
the conserved regions represented in the alignment 
were analyzed 

2.4. Molecular Dynamic Simulations and Docking 

Molecular dynamic simulations were performed with 
CABS FLEX server and docking was done using FLEX-X 
using an aquatic and a land plant glutathione peroxidase as 
the receptor and hydrogen peroxide and glutathione as ligand. 
Flexible docking was performed after specifying the grid for 
interaction at the catalytic centre for both enzyme structures. 
The following diagram summarizes the flowchart of the 
work (Fig. 1).  

3. Results and Discussion 
3.1. Amino Acid Content 

Amino acid content and occurrence has been reported to 
be conserved from species to species. This conservation may 
be attributed to protein stability and expressivity of the 
proteome [11, 13, 14]. In case of individual protein families 
the occurrence and content govern the formation and 
maintenance of various motifs and domains. Recent studies 
have indicated that the mutational landscape of proteins can be 
correlated to the composition of amino acids. In this study 
Valine was found to be the most frequently occurring amino 
acid in the sequences under study. It was also observed that it 
was occurring in the conserved positions more often. The next 
most frequent amino acids were found to be lysine and Serine 
(Fig. 2 and Table 1).  

 

 
Figure 1.  Flow chart of Analyses 
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Figure 2.  Amino acid frequencies in conserved positions in glutathione peroxidase sequences 

Table 1.  Amino acid frequencies in conserved positions 

Amino Acid % in total sequences Occurrence in 
conserved position 

Ser (S)     8.08      3 
Asp (D)     5.57      4 
Phe (F)     6.38       5 
Thr (T)     5.24      2 
Val (V)     13.03      10 
Lys (K)     8.43      8 
Gly (G)     7.07      9 
Leu (L)     8.07      5 
Asn (N)     5.20      5 
Cys (C)     1.50      2 
Tyr (Y)     3.50      4 
Glu (E)     5.40      2 
Ile (I)      4.60      2 
Pro (P)     5.34      5 
Gln (Q)     3.65      2 
Arg (R)     3.82        2 
Trp (W)     0.84      1 

3.2. Motif/Pattern Identification and Mapping of 
Conserved Positions 

It was found that most of the sequence positions present in 
UGENE were present in the positions that were obtained 
using the in house program (Fig 3 and 5). However, only 
those residues which had >60% frequency in their respective 
positions were found to be common in both the result sets. 
The gaps that were present between the residues (>60% 
frequency) were replaced with X (symbol for any amino 
acid) and a minimum length of 6 amino acids were selected 
as the window size. Now using this window size a sliding 
window approach was initiated which resulted in the 
generation of 3420 motif patterns. Now each of these 
patterns were searched against Prosite and eight conserved 
consensus patterns were identified which serve as 

phylogenetic signatures for plant glutathione peroxidases 
(Table 2). LYXKYK and EILAFPCNQFG patterns were 
the most dominant patterns with the largest number of hits 
(Fig. 3).  

 

Figure 3.  A portion of the consensus sequence generated indicating the 
sequence positions which correspond to phylogenetic signatures 

3.3. Phylogenetic Analyses and Comment on Evolution of 
Plant Glutathione Peroxidases 

The phylogenetic analysis reveals that GPXs in plants 
exhibit two main groups (Fig. 4)-one group which belongs to 
the aquatic members while the second group belongs to 
terrestrial land plants. A further interesting fact is two 
Cysteine residues were found to occur in the 
EILAFPCNQFG and the FXCTRFK motifs which have been 
reported to be part of the interacting residues of this enzyme 
group. We have earlier reported that these cysteine residues 
are important moieties which hydrogen bond with the 
respective ligands of glutathione peroxidases [12]. This 
divide is justified as several reports and analysis of amino 
acids sequences reveal that GPXs of aquatic members 
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contain selenocysteine while those of land plants do not [8, 
15]. Selenoproteins are absent in higher plants but green 
algae Chlamydomonas sp and Ostreococcus sp. possesses 12 
and 26-29 selenoproteins respectively [20]. The lack of 
selenoproteins in land plants is a well documented 
phenomenon [15, 21]. The most accepted explanation states 
the conversion of anaerobic earth to aerobic earth through 
oxygenation and the selection of a more stable and less easily 
oxidizable forms of glutathione peroxidases. This analyses 
further strengthens the view with the observations that the 
identified phylogenetic signatures are important protein 
landmarks and their presence ubiquitously in case of both 
land and aquatic members indicate that possibly the 
evolution of glutathione peroxidases could have occurred 
along a modular assembly line.  

 

Figure 4.  Phylogenetic tree showing two distinct clades (Clade 1-Land 
plant GpXs and Clade 2-Aquatic GpX members) 

 

Figure 5.  A portion of the alignment of glutathione peroxidase sequences with the highest levels of sequence conservation (possible phylogenetic 
signatures) 
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Table 2.  List of identified motifs from PROSITE matching with the patterns identified from the motif identification program. (‘X’ indicates any amino acid 
here) 

 

 

Figure 6.  Results of Structural and Interaction studies. A: Molecular model of glutathione peroxidase with its electron dense residues. B: Simulated 
structural alignment; C: Residue fluctuation profiles of the protein; D and E: Interactions of glutathione and hydrogen peroxide with the land plant and 
aquatic members respectively; F: Interacting residues following mutation; G: Changes in free energy of interaction of glutathione peroxidase with 
glutathione and hydrogen peroxide 
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Here the same enzyme structure was used for the analyses 
to represent the land plant lineage that was obtained from our 
phylogenetic study while the glutathione peroxidase 
structure of Chlamydomonas reinhardtii was used to 
represent the member of aquatic land plant lineage (Fig 6. 
A). 

The binding pockets of both the lineages were identified 
and in case of aquatic lineage the key binding residue was 
identified to be selenocysteine while in case of land plants 
the key binding residue was cysteine as reported earlier (Fig 
6, D, E and F). Interestingly in both the cases the 
phylogenetic signature stretches were found to be within a 
distance of 10 angstrom radii from the binding pockets. 
When these stretches were mutated with alanine then the 
interactions were severely affected as observed in the 
changes in binding energies (Fig 6. C and G) 

4. Conclusions 
Our analyses strengthens this hypotheses as the conserved 

residues identified in land plant lineages possess cysteine at 
the catalytic residue cluster, while in case of aquatic 
members it is replaced by selenocysteine. Both these 
residues are part of the conserved residues that were 
identified in the respective lineages thus showing that 
transition of selenocysteine to cysteine as a necessary 
adaptation for land plant transition. The involvement of the 
conserved residues in interactions also establishes their 
importance as functional phylogenetic signatures. 
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