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Abstract  Next-generation high throughput sequencing technologies have opened up a wide range of new genome 
research opportunities. High throughput sequencing technologies produces a massive amount of short reads data in a single 
run. The large dataset produced by short read sequencing technologies are h ighly error-p rone as compared  to tradit ional 
Sanger sequencing approaches. These errors are critical and removing them is challenging. Therefore, there are peremptory 
demands for statistical tools for bioinformat ics to analyze such large amounts of data. In this paper, we present review of and 
measuring parameters associated with genome sequence short read errors correction tools and algorithms. We further present 
comprehensive detail of datasets and results obtained with defined parameters. The reviews present the current state of the art 
and future directions in the area as well. 
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1. Introduction 
Biological sequences contain very important and useful 

informat ion. The sequences are composed of A, T, G and  C 
in a DNA structure. The compositions determine various 
traits such as personality, habits, and inheritance 
characteristics of species[1]. Next generation sequencing 
(NGS) technologies produce high throughput short read 
(HTSR) data at a lower cost[2]. High throughput platforms 
have open up a myriad of new and existing applications such 
as transcript-tome analysis, meta-genomics, single cell 
assembly and variation detection[3]. NGS technologies have 
become prominent tools in biological research[4, 5]. HTSR 
is changing the way genetic data are collected, stored and 
produced[4], and each aspect has its own challenges that 
need to be overcome. 

As compared to traditional Sanger sequencing methods, 
next generation sequences have the advantages of deep and 
cheap coverage at the shorter read and high error rate[6, 7]. 
Shotgun fragment assembler is optimized for HTSR data 
such as, Altas, ARACHNE, Celera, and PCAP[8-11]. In de 
novo genome assembly, the goal is to build contiguous and 
unambiguous sequences known as contigs[12]. Due to 
different erroneous characteristics in assembling repeat 
regions, various contig extensions have been developed[2].  
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Greedy short read algorithms and graph theory have been 
adopted and used in assembly programs such as SSAKE, 
SHARCGS, VCAKE and Taipan[13-16]. De Bruijin graphs 
approach has also actuated new quest in short read 
assembly[2, 17]. Various short read assemblers based on de 
Bru ijin  graphs have also been developed. Other visceral 
approaches for Sanger read such MisED[18-23] use 
alignment approach. Such alignments technologies are not 
feasible for millions of short reads alignment and does not 
adopt well at short reads[24, 25].  

Short read error correction of different platforms is 
complex hence making error correction is difficult task[26]. 
A common approach for error correction of sequence reads is 
to determine a threshold and correct k-mers[3,17,18, 27]. 
Selection of correct thresholds is decisive task as low 
thresholds can result in too many uncorrected errors, while 
high thresholds will result in loss of correct k-mers[3]. Some 
researchers have developed and implemented SAP based 
read correction algorithms in assembly tools[19,28], other 
consider quality value of per-base and optimize the k-mer 
counting, but k-mer counting limits the performance of 
SAP-based error correct ion tools[6, 12, 29,30]. 

The NGS technologies generate short sequences that are 
prone to high error rates[31-32]. So, assemblies of long 
repeats and duplication suffer from short read length[33]. A 
Critical analysis on whole genome assembly algorithms, 
various types of errors and requirements for short read 
assemblies has been discussed in[34-40]. Sequencing 
technologies are bringing new possibilities for genome 
sequencing by generating read data with massive 
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throughputs. These reads are shorter and more prone to 
errors. This poses challenges for de novo fragment assembly 
algorithms such as accuracy and scalability[41-45]. 

2. Short Read Error Correction Tools 
and Algorithms 

This section provides a review of short read error 
correction tools and algorithms. Due to unknown nature of 
the source genome, the reads from the same genomic 
location are inferred by relying on the assumption that they 
typically share sub-reads of fixed  length, such as k-mers. 
Other techniques use multip le sequence alignments and 
some use suffix tree method. Therefore d ifferent researchers 
use different parameters for evaluation. This may lead to 
improper interpretation and cross comparison of all availab le 
methods. We classified them on the basis of methods and 
parameters that can be correctly understood. 

2.1. K-S pectrum Based 

In[3] authors present an algorithm “Hammer” developed 
for error correction in illumina/Solexa reads without 
uniformity assumptions. Hammer is based on hamming 
graph and a simple probabilistic model to correct sequencing 
errors. Hammer makes use of a sort technique to identify the 
set k  of distinct k-mers in the reads as well as a table for 
sorting the multiplicity k-mers. It  finds the connected 
components of hamming graph. Given s1,...s 1+τ  be a 
disjoint partition of {1,…,k}. These partitions represent 
spaced seeds into k-mers and also denote the restriction of 
k-mer x to the seed sj as x(sj). Then k-mers are denoted as 
d(x,y) τ for  x  and y, there exists j such as x(sj)=y(sj). Based 
on observations it creates spaced seeds “ 1+τ ” denoted as 
sj= {j, j+ τ +1,j+2( τ +1),…}. It also makes “ 1+τ ” copies 
of set “k” k-mers with the jth copy that have the restriction of 
k  to the indices sj, and sorts each copy lexicographically. In 
the next step it linearly scans each copy and identifies 
equivalence blocks. This is then used to compute hamming 
distance for each block corresponding to a full length k-mer. 
In case of k-mer pair that is within  the hamming distanceτ
shows that their components are jo ined[50]. The algorithm 
finds connected components “cluster” that does not have 
size one and the consensus string is unique. It corrects every 
k-mer in the cluster to the consensus string. Singleton k-mer 
is trivially  the consensus. It must be either the only element 
in the generating set of k-mer or simply contain more than 
τ errors. Mult iple consensus string exists in s mall clusters of 
size two or three, which creates ambiguity. In each case 
hamming graph does not provide good information 
regarding the correctness of the k-mers. Therefore, it makes 
decision solely based on the mult iplicity o f each  k-mer x . If it 
is greater than the threshold value it keeps x in the dataset, 
otherwise it removes x from the dataset. Computation of the 
consensus of the cluster performs in )( *

knO time. 
In[6] authors present a novel approach “Reptile” to cope 

with  error correction problem of short read sequence in 

illumine/Solexa reads. Reptile performs the operation with 
k-mers spectrum and corrects errors using hamming distance. 
It also makes use of neighboring k-mers for correction 
possibilit ies for both potential as well as contextual 
informat ion. This algorithm has two phases (a) Information 
extraction: in which k-spectrum Rk of R is extracted for given 
threshold d-extract hamming  graph GH= (VH,EH) where 

i hV V∈ represents αi Rk and

ij i j h d i je = (V ,V ) E h (V ,V ) d∃ ∈ ⇔ ≤ . This is used to 
compute tile occurrences. (b) Individual read correct ion: It 
points to a tile  t at the beginning of read, identifying d-mutant 
tiles of t. The next step is to correct errors in t, wherever 
applicable. Th is is done by adjusting tile t and identifying 
d-mutant step repeatedly until t ile  placement choices are 
exhausted. This amounts to a total run time of O (nLlog(nL)) 
and space usage of O(|Rk|+|R|t||). Reptile  is faster, has low 
memory requirements, and provides high accuracy. However 
it is single threaded, and lacks the possibility to determine 
unambiguously all errors. It also does not show explicit ly 
model repeats.   

In[12] authors present an algorithm “Quake” for detection 
and correction of errors in Illumine/Solexa short read 
sequences. Quake is based on maximum likelihood paradigm 
which incorporates quality values and nucleotide specific 
miscall rates. Quake makes use of k-mers coverage for 
differentiation of trusted k-mers in genome sequence, and 
searches error correction. Let observed nucleotide be 
denoted by O=O1,O2,…,On, and actual nucleotide of 
sequence fragment be denoted by A=A1,A2,…,An. 
Conditional probability is applied using bayes’ rule to the 
observed nucleotides as given in equation 112. 
P (A=a|O=o) = ∏i=1 to N P(Oi=oi|A=ai)P(Ai=ai)/P(Oi=oi)  (1) 

The probability of nucleotide to be at position i  denoted by 
Pi= 1-10-qi/10, qi denotes quality value, and Eq(x,y) is the 
probability that the base call y of nucleotide x at  quality  value 
q given that sequence error. Then P(Oi=oi|Ai=ai) can  be 
written as P(Oi=oi|Ai=ai)=Pi if oi=ai otherwise 
(1-pi)Eqi(ai,oi). If all resulting k-mers are t rusted then the set 
of corrections are valid. However Quake shows high 
accuracy on realistically simulated reads. It however cannot 
find any cutoff on single cell data. 

In[29] authors present the “CUDA” programming model. 
It is used to correct sequencing errors in high throughput 
short read data for Roche/454 platform. It is based on 
spectral alignment method. CUDA kernel is used to denote 
the sequential processing for correction of an individual read 
ri. Kernel is invoked for each  read ri of R. Time depends on 

)( 1≥∆∆ for the correction within a weak l-tuple. CUDA 
delta mutation consists of two phases, i.e delta ( ∆ ) mutation 
voting and identifying all l-tuples. On successful completion 
of the first phase corresponding counters in voting matrix are 
incremented to point positions of mutation and errors are 
fixed, based on the highest scores in matrix. CUDA provides 
multithreading, parallelism, space efficiency and accuracy, 
but it does not support distributed memory operations. 

Research in[18, 47] presents a short read error correction 
algorithm “Eular SR” for applied Biosciences and 
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Illimina/Solexa reads based on spectral alignment method. 
This method first establishes a spectrum of trusted k-mers 
from input data set and then correct each read in  the sequence 
that it contains based on spectrum only. However this 
algorithm is faster and provides fixation of memory leak, but 
its accuracy drops significantly while choosing optimal 
parameters, it also require large memory.  

Another related research presented in[46] depicts a 
computation method to detect and correct errors in the 
genomic sequence repeats for the Pacific Biosciences 
platform. Computation method is available in the form of 
software package REDEEM (Read error detection and 
correction via expectation maximization). To correct errors 
in read r, it considers each of the nucleotide to have appeared 
at least once upto k-mers. Let’s suppose that the nucleotide at 
position 1≤ i ≤L of the read appear at position 1 ≤ t ≤ k  of 
k-mer xl. The probability that the true nucleotide at position t 
was b prior to possible misread as given in equation 2[46].  

ρit (b)=
∑ αmρe( xm,xl )

∑ αmρe( xm,xl )
               (2) 

Here it estimates Tm as substitute for the unknown αm. At 
position i mult iple overlapping k-mers provide dependent 
informat ion. Therefore, it takes average across available t to 
achieve distribution i.e, pi (b). It then declares nucleotide  
r[i:i] as misread and correct it to argmaxbpi(b), given 
argmaxbpi(b)≠ r[i:i]. This is the best approach for repeat 
rich  genomes, but suffers from large time complexity 
problem due to modeling repeats. 

2.2. Suffix Tree Based 

Authors of[48] presented short read error correction 
(SHREC) algorithm for short read error correct ion in 
Illuminia/Solexa based on generalized suffix trie method. It 
constructs trie from all reads and their complements. Trie is 
then traversed to point out and analyze the potential errors in 
associated reads. Depth first traversal of ST ( ℜ ) is 
performed for inspection of nodes from level s  to level t+q. 
The algorithm identifies all nodes with at  least two  children 
in which one of the children w  has smaller weight than the 
threshold weight. Subsequently it  finds a set of reads R (w). 
So correct ion is performed  to a sib ling of w  that fits the suffix 
and examines each read Ri that belongs to R (w). SHREC 
points error position in Ri and performs the correction of the 
associated sibling’s nucleotide edge. It  is robust, accurate 
and has the ability to  achieve sensitivity and specificity. It 
has the drawbacks of large memory usage, does not 
explicit ly model repeats, and difficult choice of optimal 
parameters.  

Research in[49] depicts a modified version of SHREC 
algorithm aiming to correct SOLEXA/Illumina reads. The 
SHREC’s statistical model is modified to put up reads of 
variable lengths. Given a set of s reads contains r reads of 
various lengths and are denoted by l1,l2,…,lr. It is assumed 
that the number of reads of length li is ki and let m be large 
enough that each sequence having length m appears once. 

Weight Wm of a node at level m is the number of suffixes 
whose path in the trie  passes through that node. Level m’s 
node weight is denoted by Wm=∑i=1 to r W(m,i), where W(m,i) 
represent the contribution of reads length li to the weight of 
node. If li<m,W(m,i)=0, otherwise each read is a Bernoulli 
trail to get the path label. There are n substrings of length m 
in the genome and a read of length li samples Ai=li-m+1, of 
them. Thus the success probability of Bernoulli trail is ai/n. 
Ki is the number of trails and W(m,i) is distributed according to 
the binomial d istribution Bin(Ki,ai/n). Therefore, expected 
value of W(m,i) is E(W(m,i)=kiai/n for li>=m, and 0 otherwise. 
Variance is as given in equation 3[49]. 

σ2 (W(m,i)=ki(ai/n-ai
2/n2) for li>m       (3) 

The linearity of expectation is applied  to get 
E(Wm)=E(∑i=0 to r W(m,i))=∑i=0 to r E(W(m,i)). For W(m,i) with 
different I, that are independent variables, the variance is 
given by equation 4[49].  

σ2(Wm)= σ2(∑i=0 to rW(m,i))=∑i=0 to rσ2(W(m,i))    (4) 
The nodes with weight less than the value of equation 5[49] 

are corrected.  
E (Wm)-α.σ( Wm)                   (5) 

Here α is the parameter of strictness. These follow by 
correction of insertion, delet ion and indeterminate bases. 
This hybrid version significantly reduces errors in mixed 
reads. It also finds out error rate of reads before and after 
correction. But its performance is not as good compared to 
substitution error-based error- correction methods. 

Research work presented in[52] described “HiTEC” for 
Illumina Genome Analyzer, ABI SOLiD and Roche/454 
platform based on suffix array constructed from reads and 
their complements. It uses three concepts such as witness, 
support and cluster. HiTEC correct ion processes consist of 
two steps (i) A comprehensive statistical analysis to 
determine thresholds (ii) Usage of suffix array to compute 
the length of every witness and its cluster for error correction. 
HiTEC also make use of libdivsufsort library of Yuta 
Mori[53]. It performs computation of LCP to get all 
witnesses that have larger length and cluster than thresholds. 
The computational time complexity is O (nlogn). It provides 
speed computation, efficiency and accuracy. But it is a serial 
program, and also shows degradation in performance while 
constructing suffix arrays for large dataset.  

Another research conducted in[30] presents an algorithm 
“PSEAC” for Illumina/  Solexa and ABI SOLiD platform 
based on partial suffix arrays for short read error correction. 
PSAEC is a scalable parallel algorithm that works on 
multi-core machines using Pthreads. The processes of 
presented algorithm consist of five phases i.e. pre-processing, 
classification, multi-key quick sorting, error correction and 
iteration. Pre-processing reads data set and complements of 
their reverse, it then store them into memory, and compute 
thresholds. Next, it pushes them into classification for 
optimization and implements ECSSORT function of 
multi-key quick sort. Following this task it identifies errors 
and records its positions for further processing. Perform 
correction of the erroneous base values and records into an 
array L. Fo llowing error correction, it perfo rms iterat ion of 
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second to forth phase to achieve high accuracy. It provides 
scalability, parallelis m and improved accuracy. However it 
does not support distributed memory parallel computation 
and thus collision of threads degrades performance.  

Similar research in[2] presents “DecGPU” a parallel and 
distributed error correction algorithm for Roche/454, 
Illumina/Solexa, Pacific Biosciences and Helicos 
Biosciences reads. DecGPU is a hybrid combination of 
CUDA and the MPI p rogramming model. DecGPU is based 
on SAP (Spectral Alignment Problem) approach and makes 
use of counting bloom filter[53]. Error correction algorithm 
consist of construction of the distributed k-mer spectrum, 
filtration of error free reads, fixation of erroneous reads, 
trimming the fixed  reads and iteration to correct more than 
one base error reads. Each processing element denoted as Pi 
consists of hybrid CPU and GPU threads, and provides 
performance maximization via overlapping. It provides 
parallel and distributed error correction, high accuracy, 
feasibility and flexibility in terms of memory. It lacks 
runtime scalability of availab le computation resources. 

Research contribution of[55] also presents a scalable tool 
“SEAL” fo r Illumina/Solexa short read pair mapping and 
duplicate removal. It is distributed alignment tool that 
combines Burrows-Wheeler A ligner (BWA)[56] and 
duplicate read detection and removal. To efficiently 
distribute input, output and computation across cluster nodes, 
SEAL harnesses the Hadoop Map-Reduce framework which 
gives guarantee of reliab ility by resisting node failure and 
transient events. SEAL specializes in the pair-end alignment 
of sequences read by Illumina sequencing machines. SEAL 
is currently structured into pairReadQseq and seqal 
applications. These applications implement a Map-Reduce 
algorithm[57] that runs on Hadoop framework. SEAL is able 
to achieve scalability rates and parallelization in alignments. 
SEAL suffer from optimal parameter selection problem and 
also has large space requirement. 

2.3. Multiple Sequence Alignment Based 

A similar work based on multip le sequence alignment is 
given in[26], called “Coral”. Coral is adjustable to reads of 
Illumina/Solexa Genome Analyzer and Roche/454. Coral 
takes reads that share common k-mers and forms multip le 
alignment correction based on alignment and corresponding 
consensus sequences. The operation begins with indexing 
that occurs in the reads or in its components. Coral ext racts 
all reads that form k-mers index sharing at least one k-mer 
with base read. Reads in k-mer neighbourhood are aligned 

and corrected several times. Indexing k-mer causes the reads 
to be aligned and also locates the probable position for 
sequence alignment. It t ries to align the read without error in 
consensus. Therefore total computation is skipped to save 
time. Gap positions are ignored in fraction computation with 
quality value that is higher than 1-e. For each alignment read 
the algorithm checks and compares it  with the consensus 
sequence in each aligned position. If not agreed upon 
comparison, correction of reads at each position is done to 
agree with consensus sequence. The consensus value is ts, 
where ( ts≤0.5 < 1.0). It performs the correction of base 
only if the quality threshold tQ (0.5 tQ<1.0) exceeds from 
value Lmmax to eLmmax. Time complexity of quality threshold 
tQ is O (L) and worst case time complexity is O (Lmmax) to 
detect potential errors. O (eL2mmax) time  is taken to correct 
them. Coral has less memory requirements compared to 
SHREC, is faster for short reads and is multithreaded. Coral 
also has some disadvantages i.e. large memory requirement 
than Reptile and Quake, and is not compatible with color 
space reads.   

In[51] authors present a mapping algorithm”SHRiMP2” 
based on original short read mapping techniques. SHRiMP2 
points to the mapping sensitivity. It also has the ability to 
achieve high rate of accuracy at significant speed with the 
use of caching heuristic over previous versions. SHRiMP2 
supports input format o f fasta and fastq, output format of 
SAM and mapping of Illumina/solexa, Roche/454, AB 
/Solid  reads. Additionally it has paired  mapping mode and 
parallel computation capability. It supports both letter space 
and color space reads, provides multithreaded and parallel 
computation and has better sensitivity. It is however slower 
and has overhead in scanning the whole genome. 

In[54] authors present a novel algorithm “ECHO” for 
correcting base-call errors in the short reads without genome 
reference for Illumina/Solexa platform. ECHO is based on a 
probabilistic model and has the ability to assign quality score 
to each corrected base. There is no need to specify 
parameters or unknown values for optimization. ECHO sets 
the parameters automatically and estimates error 
characteristics specific in each sequence run. ECHO has the 
ability to improve the accuracy of previous error correction 
methods modified for specific sequence coverage depth and 
position in the read. ECHO performs error correction as a 
pre-processing step and considerably facilitates de novo 
assembly. ECHO presents improvement towards the end of 
the reads where previous methods are less effective. But it is 
slower and has high memory requirements. 

3. Results and Discussion 
Table 1.  Data Set used for performance evaluation 

Data Set Archive Accession Number Genome Read Length Coverage Error Rate Number of Reads 
D1 SRX000429 E.Coli 36bp 160x 0.6% 20.8M 
D2 SRR001665_1 E.Coli 36bp 80x 0.6% 10.4M 
D3 SRR006332 A.sp 36bp 173x 1.5% 17.7M 
D4 NC_005966 A.sp 36bp 40x 1.5% 4.0M 
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Table 2.  Experimental Results 

Data Set Method TP FN FP TN Sensitivity Specificity Gain 

D1 

SHREC 138000 36900 6700 1050000 0.7890223 0.99365951 0.75071469 
H-SHREC 1617685 3228 13998 2231089 0.99800853 0.99376505 0.98937266 

HiTEC 140215 3575 3200 7408408 0.97513735 0.99956824 0.95288268 
PSEAC 208485 7425 298 7413763 0.96561067 0.99995981 0.96423047 

DecGPU 1620660 25300 349908 1895179 0.98462903 0.84414502 0.77204306 
SEAL 241740 10038 1 6101444 0.96013154 0.99999984 0.96012757 
Coral 169000 13700 12400 1110000 0.92501368 0.98895225 0.85714286 

SHRiMP2 418351 6238 91205 1417738 0.98530815 0.93955703 0.77050041 
ECHO 488165 12801 129881 3238521 0.97444737 0.96144136 0.71518626 

Hammer 806972 15783 29473 8749471 0.98081689 0.99664276 0.94499456 
Reptile 942457 12585 987457 3709818 0.98682257 0.78978088 -0.04711835 

QUAKE 0 0 0 0 0 0 0 
CUDA 0 0 0 0 0 0 0 

Eular-SR 2311124 61545 1298891 6785320 0.97406086 0.8393299 0.42662209 
Redeem 3443262 130905 133558 5643901 0.96337468 0.97688292 0.92600709 

D2 

SHREC 1620660 349908 253 1895179 0.82243292 0.99986652 0.82230453 
H-SHREC 1617685 13998 3228 2231089 0.99142113 0.99855526 0.9894428 

HiTEC 2575411 660533 306 629750 0.79587626 0.99951433 0.79578169 
PSEAC 2571520 31367 4197 1258916 0.98794915 0.99667726 0.98633671 

DecGPU 4053688 23 1024 5611265 0.99999433 0.99981754 0.99974172 
SEAL 4053827 4990124 885 621164 0.44823629 0.99857728 0.44813843 
Coral 6435328 3481 1621 3225570 0.99945937 0.99949771 0.99920762 

SHRiMP2 6436305 3129803 644 99248 0.67282379 0.99355304 0.67275646 
ECHO 6406078 2 5395 3254525 0.99999969 0.99834505 0.99915752 

Hammer 6411346 3185858 127 68669 0.66804311 0.99815396 0.66802988 
Reptile 8578176 1 8651 1079172 0.99999988 0.99204742 0.99899139 

QUAKE 0 0 0 0 0 0 0 
CUDA 0 0 0 0 0 0 0 

Eular-SR 324310 61545 1298891 6785320 0.84049708 0.8393299 -2.52577004 
Redeem 213213 130905 133558 5643901 0.6195927 0.97688292 0.23147583 

D3 

SHREC 8586743 1056392 84 22781 0.89045139 0.99632626 0.89044268 
H-SHREC 0 0 0 0 0 0 0 

HiTEC 262944 541584 1748 13507 0.32683014 0.88541462 0.32465744 
PSEAC 429389 611875 2333 126868 0.41237285 0.98194286 0.4101323 

DecGPU 527718 432283 1426 30010 0.54970568 0.95463799 0.54822026 
SEAL 859386 59343 3823 255939 0.9354075 0.98528268 0.93124632 
Coral 1056625 234132 2109 60386 0.81860877 0.9662533 0.81697484 

SHRiMP2 747968 25523 4113 806307 0.96700285 0.99492485 0.9616854 
ECHO 1141544 456012 4360 412008 0.71455649 0.98952849 0.71182732 

Hammer 1497762 14538 8251 1621860 0.99038683 0.99493838 0.9849309 
Reptile 2285417 32147 8826 833120 0.98612897 0.98951714 0.98232066 

QUAKE 214590 15647 1167 64010 0.93203959 0.98209491 0.9269709 
CUDA 747911 32191 4170 811739 0.95873488 0.99488914 0.95338943 

Eular-SR 264083 65412 609 15079 0.80147802 0.96118052 0.79962974 
Redeem 1141382 768120 4522 417900 0.59773805 0.98929507 0.59536989 

D4 

SHREC 339700 23 701 813320 0.9999323 0.99913884 0.99786885 
H-SHREC 578295 32 2380 573056 0.99994467 0.99586401 0.99582935 

HiTEC 746399 23 4330 403052 0.99996919 0.98937116 0.99416818 
PSEAC 0 0 0 0 0 0 0 

DecGPU 1093198 56 4552 1084129 0.99994878 0.99581879 0.99578506 
SEAL 1410950 57 8489 762526 0.9999596 0.98898984 0.99394333 
Coral 1128525 48 2376 2698039 0.99995747 0.99912014 0.99785215 

SHRiMP2 1919892 47 8068 1901030 0.99997552 0.99577392 0.9957733 
ECHO 2476109 73 15128 1337898 0.99997052 0.98881914 0.99386111 

Hammer 2733995 170 5972 6539234 0.99993782 0.99908758 0.99775361 
Reptile 4651239 321 19852 4608147 0.99993099 0.99571046 0.99566318 

QUAKE 5997457 300 37388 3244725 0.99994998 0.98860856 0.99371632 
CUDA 944906 106 3821 2480352 0.99988783 0.99846186 0.9958445 

Eular-SR 2820956 0 162698 5223249 1 0.96979213 0.94232523 
Redeem 0 0 0 0 0 0 0 
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Table 3.  Summary of comparative analysis of short reads error correction algorithms 

Weaknesses Strengths Method Algorithm 
K-Spectrum Based 

Initial sorting of k-mers 
assumptions of at most are 
correct k-mers in cluster 

Finding any cutoff with use of 
non-uniformity, support to work in multicell 

data. 

Hamming graph and 
Probabilistic model Hammer[3] 

Single threaded, impossibility 
of determining 

unambiguously all errors, do 
not explicitly model repeats 

Faster, low memory requirements, high 
accuracy, consistence for ambiguous base, 

sensitivity and gain values are slightly slower 

Hamming Distance and 
neighboring k-mers Reptile[6] 

Cannot find any cutoff on 
single cell data 

High accuracy on realistically simulated 
reads Maximum Likelihood QAUKE[12] 

Does not support distributed 
memory operations 

Multithreaded, parallelization, space 
efficiency, high accuracy. 

Spectral alignment and 
CUDA program 

CUDA Delta-Mutation 
Algorithm[29] 

Accuracy drops significantly 
choosing  optimal 

parameters, more memory 
usage 

Faster, fixation of memory leak, de Bruijn graph Eular SR[18, 47] 

Tales longer time due to 
complexity of modeling 

repeats. 
Best for repeat rich genomes Maximum Likelihood Redeem[46] 

Suffix Tree Based 
Parameters sensitivity, large 

memory usage, choosing 
optimal parameter, do not 
explicitly model repeats 

Robust, accurate, ability to achieve high 
identification sensitivity and  specificity, 

multithreading 
Generalized Suffix Trie SHERC[48] 

Performance is not as par with 
substitution error-based 
error-correction methods 

Significantly reduces errors in mixed reads. 
Ability to detect errors in reads and error rate 

of reads before and after correction 
Based on SHREC Program Hybrid Shrec[49] 

Serial program, degradation in 
performance while 

constructing suffix array for 
large data, intolerable time 
and space for large data. 

Faster, Efficient, and Accurate Suffix Array HiTEC[52] 

Does not support distributed 
memory parallel computation, 
collisions of threads degrade 

speed up 

Multithreaded, scalable parallel, improved 
accuracy. Partial Suffix Array PSAEC[30] 

 

Does not show improved 
runtime scalability as per 

computation resources 

Parallel and distributed error correction, high 
accuracy, feasible and flexible regarding 

memory for large data sets 
SAP,CUDA,MPI DecGPU[2] 

Large space complexity 

Support for distributed computation, high 
reliability and accuracy, faster, flexible, 

capability of utilizing resources efficiently, 
capability to parallelize steps in alignment 

Hybrid of BWA and 
duplicate read 

determination and removal 
SEAL[55] 

Multiple Sequence Alignment Based 
More memory than Reptile 

and Quake, distinguishing of 
run times is not easy, 

correlates quadratic ally in 
worst case for large reads, not 
compatable with color space 

reads. 

Significantly less memory than shrec, faster 
for short reads, multithreaded Multiple Alignment Coral[26] 

A bit slower, overhead in 
scanning the whole genome. 

Support both letter space and color space 
reads, multithreaded, parallel computation, 
better sensitivity for various polymorphism 

classes, non-uniformity 

Hash-based SHRiMP2[51] 

Slower, high memory 
requirements 

Quality score assignment, explicitely models 
hetrozygosity in diploid genomes, high 

accuracy, capable to cope with non uniform 
coverage, automatically chooses parameters, 

improve data quality 

Probabilistic model, 
Bayesian Framework ECHO[54] 
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Algorithms discussed in above section have been 
simulated and evaluated by sole authors in individual papers. 
We have selected benchmark datasets as shown in (Table 1) 
from all the experiments to comparatively evaluate and 
analyze the algorithms. The results of the corresponding 
dataset D1 (Accession Number: SRX000429), D2 
(Accession Number: SRR001665_1), D3 (Accession Number: 
SRR006332) and D4 (Accession Number: NC_005966) are 
shown in (Table 2). The two algorithms Quake and CUDA 
were generated errors while simulat ing on datasets D1 and 
D2 due to cutoff value and not supporting proper distribution 
respectively. Simulat ion of Hybrid-SHREC on dataset D3 
produced garbage values due to large space complexity. A lso 
PSEAC and Redeem cannot be properly run on D4 due to 
collision of threads and modeling repeats. That is why these 
were excluded in comparative analysis. The remaining 
algorithms are analyzed as follows. 

Analysis parameters are based on Time and space 
complexity  and are, True Positive (TP): is any erroneous 
base that is changed to the true base, a False Positive (FP): is 
any true base changed wrongly, a True Negative (TN): is any 
true base left unchanged, and a False Negative (FN): is any 
erroneous base left unchanged. Sensitivity =TP/ (TP+FN) 
and Specificity =TN/ (TN+FP). Gain= (TP-FP)/ (TP+ FN) 
represents the total percentage of erroneous bases removed 
from the dataset post-correction. Clearly, best methods 
generate gain that approach to 1 but in some cases its value 
may be negative that actually introduces more errors than 
they correct[2, 6, 44, 46, 48].  

Results analysis of SHREC[48] shows that its accuracy 
with low coverage is at least 80% and the accuracy rate of 
Eu lar-SR[18, 47] reduces significantly with low coverage. 
The analysis of Coral[26] shows that it has relatively  high 
error rate. That provides whole read alignment with slight 
edge over k-mers based method. On the other hand due to 
significant lower TP rates Reptile[6] fall short perceptible of 
the performance of Coral. Analysis of SEAL[55] describes 
the capability  of throughput levels comparable to single node 
operation, which min imizes the distribution overhead due to 
implementation on Hadoop framework. Despite increase in 
size of the cluster throughput consistency of each node 
remains the same. SEAL also has the ability of utilizing the 
available resources efficiently in presence of massive data 
thus achieves scalability. HiTEC[52] and ECHO[54] yield 
higher gain  value comparab le to  other methods and also have 
automated parameter selection for performance optimization. 
For dataset D1 the SHRiMP2[51] produces negative gain 
values, which increase errors instead of correcting them. The 
results of Hammer[3] are also comparable but it neither 
detects nor corrects errors in clusters without uniformity. 
The DecGPU[2] analysis shows that it is a superior method 
in terms of error correction and execution speed. In summary 
HiTEC, ECHO and DecGPU are comparat ively more 
accurate and efficient. A theoretical comparison in terms of 
strengths and weaknesses of reviewed algorithms are also 
presented in (Table 3). Further investigation is necessary to 

develop specific tools and algorithms to achieve high 
throughput. 

4. Conclusions and Future Directions  
The aim of the reviewed algorithms is to compare error 

rate in next generation sequencing technologies. The growth 
of NGS technologies present significant bioinformatics 
challenges, specifically design of bioinformat ics tools that 
handle the operation of massive amounts of data efficiently. 
In this paper, we have described genome sequence short read 
error correct ion algorithms in detail. We concluded that most 
of the illumine/ So lexa sequencer algorithms focused on 
substitution errors, while the algorithms build fo r Roche/454 
sequencers have slightly focused on error correction due to 
longer reads and low error rates. The improvement in 
sequence platforms and introduction of high throughput 
sequencing technologies such as Ion Torrent has changed the 
traditional way of reads and of insertion and deletion errors. 
Therefore the current methods are unable to achieve good 
results and hence need improvement. 

To achieve the potential of NGS, it is important to 
maximally construe and utilize these short reads. For 
successful NGS technology application it is essential to 
develop large amounts of data storage, management and 
build informat ics tools that can efficiently  analyze data. It  is 
also required to develop high performance computing and 
intensive bioinformat ics applications to achieve the benefits 
of NGS technologies. The most significant footprint of NGS 
is successful aligning and assembling short reads to the 
reference genome. Efficiently aligning short reads to 
reference genome is a challenging task, particularly in 
development of new algorithms to manage ambiguity and 
alignment errors. It is important to develop such algorithms 
that support distributed-memory parallel computation to 
speed up the processes. It is also essential to develop 
algorithms that simultaneously estimate error parameters 
from data in  regard  to fast computation and handle large 
datasets via better memory management. It is also essential 
for error correct ion algorithms to distinguish errors from 
polymorphis m. 
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