
American Journal of Bioinformatics Research 2013, 3(1): 1-9
DOI: 10.5923/j.bioinformatics.20130301.01

Review of Genome Sequence Short Read Error Correction
Algorithms

M. Tahir1,*, M. Sardaraz1, Ataul Aziz Ikram1, Hassan Bajwa2

1Department of Computing and Technology, Iqra University, Islamabad, Pakistan
2Department of Electrical Engineering, University of Bridgeport

Abstract Next-generation high throughput sequencing technologies have opened up a wide range of new genome
research opportunities. High throughput sequencing technologies produces a massive amount of short reads data in a single
run. The large dataset produced by short read sequencing technologies are h ighly error-p rone as compared to tradit ional
Sanger sequencing approaches. These errors are critical and removing them is challenging. Therefore, there are peremptory
demands for statistical tools for bioinformat ics to analyze such large amounts of data. In this paper, we present review of and
measuring parameters associated with genome sequence short read errors correction tools and algorithms. We further present
comprehensive detail of datasets and results obtained with defined parameters. The reviews present the current state of the art
and future directions in the area as well.

Keywords Algorithms, Genome Sequence, Hadoop MapReduce, High Throughput, Next-Generation Sequencing, Short
Reads Error Correction

1. Introduction
Biological sequences contain very important and useful

informat ion. The sequences are composed of A, T, G and C
in a DNA structure. The compositions determine various
traits such as personality, habits, and inheritance
characteristics of species[1]. Next generation sequencing
(NGS) technologies produce high throughput short read
(HTSR) data at a lower cost[2]. High throughput platforms
have open up a myriad of new and existing applications such
as transcript-tome analysis, meta-genomics, single cell
assembly and variation detection[3]. NGS technologies have
become prominent tools in biological research[4, 5]. HTSR
is changing the way genetic data are collected, stored and
produced[4], and each aspect has its own challenges that
need to be overcome.

As compared to traditional Sanger sequencing methods,
next generation sequences have the advantages of deep and
cheap coverage at the shorter read and high error rate[6, 7].
Shotgun fragment assembler is optimized for HTSR data
such as, Altas, ARACHNE, Celera, and PCAP[8-11]. In de
novo genome assembly, the goal is to build contiguous and
unambiguous sequences known as contigs[12]. Due to
different erroneous characteristics in assembling repeat
regions, various contig extensions have been developed[2].

* Corresponding author:
tahir591@hotmail.com (M. Tahir)
Published online at http://journal.sapub.org/bioinformatics
Copyright © 2013 Scientific & Academic Publishing. All Rights Reserved

Greedy short read algorithms and graph theory have been
adopted and used in assembly programs such as SSAKE,
SHARCGS, VCAKE and Taipan[13-16]. De Bruijin graphs
approach has also actuated new quest in short read
assembly[2, 17]. Various short read assemblers based on de
Bru ijin graphs have also been developed. Other visceral
approaches for Sanger read such MisED[18-23] use
alignment approach. Such alignments technologies are not
feasible for millions of short reads alignment and does not
adopt well at short reads[24, 25].

Short read error correction of different platforms is
complex hence making error correction is difficult task[26].
A common approach for error correction of sequence reads is
to determine a threshold and correct k-mers[3,17,18, 27].
Selection of correct thresholds is decisive task as low
thresholds can result in too many uncorrected errors, while
high thresholds will result in loss of correct k-mers[3]. Some
researchers have developed and implemented SAP based
read correction algorithms in assembly tools[19,28], other
consider quality value of per-base and optimize the k-mer
counting, but k-mer counting limits the performance of
SAP-based error correct ion tools[6, 12, 29,30].

The NGS technologies generate short sequences that are
prone to high error rates[31-32]. So, assemblies of long
repeats and duplication suffer from short read length[33]. A
Critical analysis on whole genome assembly algorithms,
various types of errors and requirements for short read
assemblies has been discussed in[34-40]. Sequencing
technologies are bringing new possibilities for genome
sequencing by generating read data with massive

2 M. Tahir et al.: Review of Genome Sequence Short Read Error Correction Algorithms

throughputs. These reads are shorter and more prone to
errors. This poses challenges for de novo fragment assembly
algorithms such as accuracy and scalability[41-45].

2. Short Read Error Correction Tools
and Algorithms

This section provides a review of short read error
correction tools and algorithms. Due to unknown nature of
the source genome, the reads from the same genomic
location are inferred by relying on the assumption that they
typically share sub-reads of fixed length, such as k-mers.
Other techniques use multip le sequence alignments and
some use suffix tree method. Therefore d ifferent researchers
use different parameters for evaluation. This may lead to
improper interpretation and cross comparison of all availab le
methods. We classified them on the basis of methods and
parameters that can be correctly understood.

2.1. K-S pectrum Based

In[3] authors present an algorithm “Hammer” developed
for error correction in illumina/Solexa reads without
uniformity assumptions. Hammer is based on hamming
graph and a simple probabilistic model to correct sequencing
errors. Hammer makes use of a sort technique to identify the
set k of distinct k-mers in the reads as well as a table for
sorting the multiplicity k-mers. It finds the connected
components of hamming graph. Given s1,...s 1+τ be a
disjoint partition of {1,…,k}. These partitions represent
spaced seeds into k-mers and also denote the restriction of
k-mer x to the seed sj as x(sj). Then k-mers are denoted as
d(x,y) τ for x and y, there exists j such as x(sj)=y(sj). Based
on observations it creates spaced seeds “ 1+τ ” denoted as
sj= {j, j+ τ +1,j+2(τ +1),…}. It also makes “ 1+τ ” copies
of set “k” k-mers with the jth copy that have the restriction of
k to the indices sj, and sorts each copy lexicographically. In
the next step it linearly scans each copy and identifies
equivalence blocks. This is then used to compute hamming
distance for each block corresponding to a full length k-mer.
In case of k-mer pair that is within the hamming distanceτ
shows that their components are jo ined[50]. The algorithm
finds connected components “cluster” that does not have
size one and the consensus string is unique. It corrects every
k-mer in the cluster to the consensus string. Singleton k-mer
is trivially the consensus. It must be either the only element
in the generating set of k-mer or simply contain more than
τ errors. Mult iple consensus string exists in s mall clusters of
size two or three, which creates ambiguity. In each case
hamming graph does not provide good information
regarding the correctness of the k-mers. Therefore, it makes
decision solely based on the mult iplicity o f each k-mer x . If it
is greater than the threshold value it keeps x in the dataset,
otherwise it removes x from the dataset. Computation of the
consensus of the cluster performs in)(*

knO time.
In[6] authors present a novel approach “Reptile” to cope

with error correction problem of short read sequence in

illumine/Solexa reads. Reptile performs the operation with
k-mers spectrum and corrects errors using hamming distance.
It also makes use of neighboring k-mers for correction
possibilit ies for both potential as well as contextual
informat ion. This algorithm has two phases (a) Information
extraction: in which k-spectrum Rk of R is extracted for given
threshold d-extract hamming graph GH= (VH,EH) where

i hV V∈ represents αi Rk and

ij i j h d i je = (V ,V) E h (V ,V) d∃ ∈ ⇔ ≤ . This is used to
compute tile occurrences. (b) Individual read correct ion: It
points to a tile t at the beginning of read, identifying d-mutant
tiles of t. The next step is to correct errors in t, wherever
applicable. Th is is done by adjusting tile t and identifying
d-mutant step repeatedly until t ile placement choices are
exhausted. This amounts to a total run time of O (nLlog(nL))
and space usage of O(|Rk|+|R|t||). Reptile is faster, has low
memory requirements, and provides high accuracy. However
it is single threaded, and lacks the possibility to determine
unambiguously all errors. It also does not show explicit ly
model repeats.

In[12] authors present an algorithm “Quake” for detection
and correction of errors in Illumine/Solexa short read
sequences. Quake is based on maximum likelihood paradigm
which incorporates quality values and nucleotide specific
miscall rates. Quake makes use of k-mers coverage for
differentiation of trusted k-mers in genome sequence, and
searches error correction. Let observed nucleotide be
denoted by O=O1,O2,…,On, and actual nucleotide of
sequence fragment be denoted by A=A1,A2,…,An.
Conditional probability is applied using bayes’ rule to the
observed nucleotides as given in equation 112.
P (A=a|O=o) = ∏i=1 to N P(Oi=oi|A=ai)P(Ai=ai)/P(Oi=oi) (1)

The probability of nucleotide to be at position i denoted by
Pi= 1-10-qi/10, qi denotes quality value, and Eq(x,y) is the
probability that the base call y of nucleotide x at quality value
q given that sequence error. Then P(Oi=oi|Ai=ai) can be
written as P(Oi=oi|Ai=ai)=Pi if oi=ai otherwise
(1-pi)Eqi(ai,oi). If all resulting k-mers are t rusted then the set
of corrections are valid. However Quake shows high
accuracy on realistically simulated reads. It however cannot
find any cutoff on single cell data.

In[29] authors present the “CUDA” programming model.
It is used to correct sequencing errors in high throughput
short read data for Roche/454 platform. It is based on
spectral alignment method. CUDA kernel is used to denote
the sequential processing for correction of an individual read
ri. Kernel is invoked for each read ri of R. Time depends on

)(1≥∆∆ for the correction within a weak l-tuple. CUDA
delta mutation consists of two phases, i.e delta (∆) mutation
voting and identifying all l-tuples. On successful completion
of the first phase corresponding counters in voting matrix are
incremented to point positions of mutation and errors are
fixed, based on the highest scores in matrix. CUDA provides
multithreading, parallelism, space efficiency and accuracy,
but it does not support distributed memory operations.

Research in[18, 47] presents a short read error correction
algorithm “Eular SR” for applied Biosciences and

 American Journal of Bioinformatics Research 2013, 3(1): 1-9 3

Illimina/Solexa reads based on spectral alignment method.
This method first establishes a spectrum of trusted k-mers
from input data set and then correct each read in the sequence
that it contains based on spectrum only. However this
algorithm is faster and provides fixation of memory leak, but
its accuracy drops significantly while choosing optimal
parameters, it also require large memory.

Another related research presented in[46] depicts a
computation method to detect and correct errors in the
genomic sequence repeats for the Pacific Biosciences
platform. Computation method is available in the form of
software package REDEEM (Read error detection and
correction via expectation maximization). To correct errors
in read r, it considers each of the nucleotide to have appeared
at least once upto k-mers. Let’s suppose that the nucleotide at
position 1≤ i ≤L of the read appear at position 1 ≤ t ≤ k of
k-mer xl. The probability that the true nucleotide at position t
was b prior to possible misread as given in equation 2[46].

ρit (b)=
∑ αmρe(xm,xl)

∑ αmρe(xm,xl)
 (2)

Here it estimates Tm as substitute for the unknown αm. At
position i mult iple overlapping k-mers provide dependent
informat ion. Therefore, it takes average across available t to
achieve distribution i.e, pi (b). It then declares nucleotide
r[i:i] as misread and correct it to argmaxbpi(b), given
argmaxbpi(b)≠ r[i:i]. This is the best approach for repeat
rich genomes, but suffers from large time complexity
problem due to modeling repeats.

2.2. Suffix Tree Based

Authors of[48] presented short read error correction
(SHREC) algorithm for short read error correct ion in
Illuminia/Solexa based on generalized suffix trie method. It
constructs trie from all reads and their complements. Trie is
then traversed to point out and analyze the potential errors in
associated reads. Depth first traversal of ST (ℜ) is
performed for inspection of nodes from level s to level t+q.
The algorithm identifies all nodes with at least two children
in which one of the children w has smaller weight than the
threshold weight. Subsequently it finds a set of reads R (w).
So correct ion is performed to a sib ling of w that fits the suffix
and examines each read Ri that belongs to R (w). SHREC
points error position in Ri and performs the correction of the
associated sibling’s nucleotide edge. It is robust, accurate
and has the ability to achieve sensitivity and specificity. It
has the drawbacks of large memory usage, does not
explicit ly model repeats, and difficult choice of optimal
parameters.

Research in[49] depicts a modified version of SHREC
algorithm aiming to correct SOLEXA/Illumina reads. The
SHREC’s statistical model is modified to put up reads of
variable lengths. Given a set of s reads contains r reads of
various lengths and are denoted by l1,l2,…,lr. It is assumed
that the number of reads of length li is ki and let m be large
enough that each sequence having length m appears once.

Weight Wm of a node at level m is the number of suffixes
whose path in the trie passes through that node. Level m’s
node weight is denoted by Wm=∑i=1 to r W(m,i), where W(m,i)
represent the contribution of reads length li to the weight of
node. If li<m,W(m,i)=0, otherwise each read is a Bernoulli
trail to get the path label. There are n substrings of length m
in the genome and a read of length li samples Ai=li-m+1, of
them. Thus the success probability of Bernoulli trail is ai/n.
Ki is the number of trails and W(m,i) is distributed according to
the binomial d istribution Bin(Ki,ai/n). Therefore, expected
value of W(m,i) is E(W(m,i)=kiai/n for li>=m, and 0 otherwise.
Variance is as given in equation 3[49].

σ2 (W(m,i)=ki(ai/n-ai
2/n2) for li>m (3)

The linearity of expectation is applied to get
E(Wm)=E(∑i=0 to r W(m,i))=∑i=0 to r E(W(m,i)). For W(m,i) with
different I, that are independent variables, the variance is
given by equation 4[49].

σ2(Wm)= σ2(∑i=0 to rW(m,i))=∑i=0 to rσ2(W(m,i)) (4)
The nodes with weight less than the value of equation 5[49]

are corrected.
E (Wm)-α.σ(Wm) (5)

Here α is the parameter of strictness. These follow by
correction of insertion, delet ion and indeterminate bases.
This hybrid version significantly reduces errors in mixed
reads. It also finds out error rate of reads before and after
correction. But its performance is not as good compared to
substitution error-based error- correction methods.

Research work presented in[52] described “HiTEC” for
Illumina Genome Analyzer, ABI SOLiD and Roche/454
platform based on suffix array constructed from reads and
their complements. It uses three concepts such as witness,
support and cluster. HiTEC correct ion processes consist of
two steps (i) A comprehensive statistical analysis to
determine thresholds (ii) Usage of suffix array to compute
the length of every witness and its cluster for error correction.
HiTEC also make use of libdivsufsort library of Yuta
Mori[53]. It performs computation of LCP to get all
witnesses that have larger length and cluster than thresholds.
The computational time complexity is O (nlogn). It provides
speed computation, efficiency and accuracy. But it is a serial
program, and also shows degradation in performance while
constructing suffix arrays for large dataset.

Another research conducted in[30] presents an algorithm
“PSEAC” for Illumina/ Solexa and ABI SOLiD platform
based on partial suffix arrays for short read error correction.
PSAEC is a scalable parallel algorithm that works on
multi-core machines using Pthreads. The processes of
presented algorithm consist of five phases i.e. pre-processing,
classification, multi-key quick sorting, error correction and
iteration. Pre-processing reads data set and complements of
their reverse, it then store them into memory, and compute
thresholds. Next, it pushes them into classification for
optimization and implements ECSSORT function of
multi-key quick sort. Following this task it identifies errors
and records its positions for further processing. Perform
correction of the erroneous base values and records into an
array L. Fo llowing error correction, it perfo rms iterat ion of

4 M. Tahir et al.: Review of Genome Sequence Short Read Error Correction Algorithms

second to forth phase to achieve high accuracy. It provides
scalability, parallelis m and improved accuracy. However it
does not support distributed memory parallel computation
and thus collision of threads degrades performance.

Similar research in[2] presents “DecGPU” a parallel and
distributed error correction algorithm for Roche/454,
Illumina/Solexa, Pacific Biosciences and Helicos
Biosciences reads. DecGPU is a hybrid combination of
CUDA and the MPI p rogramming model. DecGPU is based
on SAP (Spectral Alignment Problem) approach and makes
use of counting bloom filter[53]. Error correction algorithm
consist of construction of the distributed k-mer spectrum,
filtration of error free reads, fixation of erroneous reads,
trimming the fixed reads and iteration to correct more than
one base error reads. Each processing element denoted as Pi
consists of hybrid CPU and GPU threads, and provides
performance maximization via overlapping. It provides
parallel and distributed error correction, high accuracy,
feasibility and flexibility in terms of memory. It lacks
runtime scalability of availab le computation resources.

Research contribution of[55] also presents a scalable tool
“SEAL” fo r Illumina/Solexa short read pair mapping and
duplicate removal. It is distributed alignment tool that
combines Burrows-Wheeler A ligner (BWA)[56] and
duplicate read detection and removal. To efficiently
distribute input, output and computation across cluster nodes,
SEAL harnesses the Hadoop Map-Reduce framework which
gives guarantee of reliab ility by resisting node failure and
transient events. SEAL specializes in the pair-end alignment
of sequences read by Illumina sequencing machines. SEAL
is currently structured into pairReadQseq and seqal
applications. These applications implement a Map-Reduce
algorithm[57] that runs on Hadoop framework. SEAL is able
to achieve scalability rates and parallelization in alignments.
SEAL suffer from optimal parameter selection problem and
also has large space requirement.

2.3. Multiple Sequence Alignment Based

A similar work based on multip le sequence alignment is
given in[26], called “Coral”. Coral is adjustable to reads of
Illumina/Solexa Genome Analyzer and Roche/454. Coral
takes reads that share common k-mers and forms multip le
alignment correction based on alignment and corresponding
consensus sequences. The operation begins with indexing
that occurs in the reads or in its components. Coral ext racts
all reads that form k-mers index sharing at least one k-mer
with base read. Reads in k-mer neighbourhood are aligned

and corrected several times. Indexing k-mer causes the reads
to be aligned and also locates the probable position for
sequence alignment. It t ries to align the read without error in
consensus. Therefore total computation is skipped to save
time. Gap positions are ignored in fraction computation with
quality value that is higher than 1-e. For each alignment read
the algorithm checks and compares it with the consensus
sequence in each aligned position. If not agreed upon
comparison, correction of reads at each position is done to
agree with consensus sequence. The consensus value is ts,
where (ts≤0.5 < 1.0). It performs the correction of base
only if the quality threshold tQ (0.5 tQ<1.0) exceeds from
value Lmmax to eLmmax. Time complexity of quality threshold
tQ is O (L) and worst case time complexity is O (Lmmax) to
detect potential errors. O (eL2mmax) time is taken to correct
them. Coral has less memory requirements compared to
SHREC, is faster for short reads and is multithreaded. Coral
also has some disadvantages i.e. large memory requirement
than Reptile and Quake, and is not compatible with color
space reads.

In[51] authors present a mapping algorithm”SHRiMP2”
based on original short read mapping techniques. SHRiMP2
points to the mapping sensitivity. It also has the ability to
achieve high rate of accuracy at significant speed with the
use of caching heuristic over previous versions. SHRiMP2
supports input format o f fasta and fastq, output format of
SAM and mapping of Illumina/solexa, Roche/454, AB
/Solid reads. Additionally it has paired mapping mode and
parallel computation capability. It supports both letter space
and color space reads, provides multithreaded and parallel
computation and has better sensitivity. It is however slower
and has overhead in scanning the whole genome.

In[54] authors present a novel algorithm “ECHO” for
correcting base-call errors in the short reads without genome
reference for Illumina/Solexa platform. ECHO is based on a
probabilistic model and has the ability to assign quality score
to each corrected base. There is no need to specify
parameters or unknown values for optimization. ECHO sets
the parameters automatically and estimates error
characteristics specific in each sequence run. ECHO has the
ability to improve the accuracy of previous error correction
methods modified for specific sequence coverage depth and
position in the read. ECHO performs error correction as a
pre-processing step and considerably facilitates de novo
assembly. ECHO presents improvement towards the end of
the reads where previous methods are less effective. But it is
slower and has high memory requirements.

3. Results and Discussion
Table 1. Data Set used for performance evaluation

Data Set Archive Accession Number Genome Read Length Coverage Error Rate Number of Reads
D1 SRX000429 E.Coli 36bp 160x 0.6% 20.8M
D2 SRR001665_1 E.Coli 36bp 80x 0.6% 10.4M
D3 SRR006332 A.sp 36bp 173x 1.5% 17.7M
D4 NC_005966 A.sp 36bp 40x 1.5% 4.0M

 American Journal of Bioinformatics Research 2013, 3(1): 1-9 5

Table 2. Experimental Results

Data Set Method TP FN FP TN Sensitivity Specificity Gain

D1

SHREC 138000 36900 6700 1050000 0.7890223 0.99365951 0.75071469
H-SHREC 1617685 3228 13998 2231089 0.99800853 0.99376505 0.98937266

HiTEC 140215 3575 3200 7408408 0.97513735 0.99956824 0.95288268
PSEAC 208485 7425 298 7413763 0.96561067 0.99995981 0.96423047

DecGPU 1620660 25300 349908 1895179 0.98462903 0.84414502 0.77204306
SEAL 241740 10038 1 6101444 0.96013154 0.99999984 0.96012757
Coral 169000 13700 12400 1110000 0.92501368 0.98895225 0.85714286

SHRiMP2 418351 6238 91205 1417738 0.98530815 0.93955703 0.77050041
ECHO 488165 12801 129881 3238521 0.97444737 0.96144136 0.71518626

Hammer 806972 15783 29473 8749471 0.98081689 0.99664276 0.94499456
Reptile 942457 12585 987457 3709818 0.98682257 0.78978088 -0.04711835

QUAKE 0 0 0 0 0 0 0
CUDA 0 0 0 0 0 0 0

Eular-SR 2311124 61545 1298891 6785320 0.97406086 0.8393299 0.42662209
Redeem 3443262 130905 133558 5643901 0.96337468 0.97688292 0.92600709

D2

SHREC 1620660 349908 253 1895179 0.82243292 0.99986652 0.82230453
H-SHREC 1617685 13998 3228 2231089 0.99142113 0.99855526 0.9894428

HiTEC 2575411 660533 306 629750 0.79587626 0.99951433 0.79578169
PSEAC 2571520 31367 4197 1258916 0.98794915 0.99667726 0.98633671

DecGPU 4053688 23 1024 5611265 0.99999433 0.99981754 0.99974172
SEAL 4053827 4990124 885 621164 0.44823629 0.99857728 0.44813843
Coral 6435328 3481 1621 3225570 0.99945937 0.99949771 0.99920762

SHRiMP2 6436305 3129803 644 99248 0.67282379 0.99355304 0.67275646
ECHO 6406078 2 5395 3254525 0.99999969 0.99834505 0.99915752

Hammer 6411346 3185858 127 68669 0.66804311 0.99815396 0.66802988
Reptile 8578176 1 8651 1079172 0.99999988 0.99204742 0.99899139

QUAKE 0 0 0 0 0 0 0
CUDA 0 0 0 0 0 0 0

Eular-SR 324310 61545 1298891 6785320 0.84049708 0.8393299 -2.52577004
Redeem 213213 130905 133558 5643901 0.6195927 0.97688292 0.23147583

D3

SHREC 8586743 1056392 84 22781 0.89045139 0.99632626 0.89044268
H-SHREC 0 0 0 0 0 0 0

HiTEC 262944 541584 1748 13507 0.32683014 0.88541462 0.32465744
PSEAC 429389 611875 2333 126868 0.41237285 0.98194286 0.4101323

DecGPU 527718 432283 1426 30010 0.54970568 0.95463799 0.54822026
SEAL 859386 59343 3823 255939 0.9354075 0.98528268 0.93124632
Coral 1056625 234132 2109 60386 0.81860877 0.9662533 0.81697484

SHRiMP2 747968 25523 4113 806307 0.96700285 0.99492485 0.9616854
ECHO 1141544 456012 4360 412008 0.71455649 0.98952849 0.71182732

Hammer 1497762 14538 8251 1621860 0.99038683 0.99493838 0.9849309
Reptile 2285417 32147 8826 833120 0.98612897 0.98951714 0.98232066

QUAKE 214590 15647 1167 64010 0.93203959 0.98209491 0.9269709
CUDA 747911 32191 4170 811739 0.95873488 0.99488914 0.95338943

Eular-SR 264083 65412 609 15079 0.80147802 0.96118052 0.79962974
Redeem 1141382 768120 4522 417900 0.59773805 0.98929507 0.59536989

D4

SHREC 339700 23 701 813320 0.9999323 0.99913884 0.99786885
H-SHREC 578295 32 2380 573056 0.99994467 0.99586401 0.99582935

HiTEC 746399 23 4330 403052 0.99996919 0.98937116 0.99416818
PSEAC 0 0 0 0 0 0 0

DecGPU 1093198 56 4552 1084129 0.99994878 0.99581879 0.99578506
SEAL 1410950 57 8489 762526 0.9999596 0.98898984 0.99394333
Coral 1128525 48 2376 2698039 0.99995747 0.99912014 0.99785215

SHRiMP2 1919892 47 8068 1901030 0.99997552 0.99577392 0.9957733
ECHO 2476109 73 15128 1337898 0.99997052 0.98881914 0.99386111

Hammer 2733995 170 5972 6539234 0.99993782 0.99908758 0.99775361
Reptile 4651239 321 19852 4608147 0.99993099 0.99571046 0.99566318

QUAKE 5997457 300 37388 3244725 0.99994998 0.98860856 0.99371632
CUDA 944906 106 3821 2480352 0.99988783 0.99846186 0.9958445

Eular-SR 2820956 0 162698 5223249 1 0.96979213 0.94232523
Redeem 0 0 0 0 0 0 0

6 M. Tahir et al.: Review of Genome Sequence Short Read Error Correction Algorithms

Table 3. Summary of comparative analysis of short reads error correction algorithms

Weaknesses Strengths Method Algorithm
K-Spectrum Based

Initial sorting of k-mers
assumptions of at most are
correct k-mers in cluster

Finding any cutoff with use of
non-uniformity, support to work in multicell

data.

Hamming graph and
Probabilistic model Hammer[3]

Single threaded, impossibility
of determining

unambiguously all errors, do
not explicitly model repeats

Faster, low memory requirements, high
accuracy, consistence for ambiguous base,

sensitivity and gain values are slightly slower

Hamming Distance and
neighboring k-mers Reptile[6]

Cannot find any cutoff on
single cell data

High accuracy on realistically simulated
reads Maximum Likelihood QAUKE[12]

Does not support distributed
memory operations

Multithreaded, parallelization, space
efficiency, high accuracy.

Spectral alignment and
CUDA program

CUDA Delta-Mutation
Algorithm[29]

Accuracy drops significantly
choosing optimal

parameters, more memory
usage

Faster, fixation of memory leak, de Bruijn graph Eular SR[18, 47]

Tales longer time due to
complexity of modeling

repeats.
Best for repeat rich genomes Maximum Likelihood Redeem[46]

Suffix Tree Based
Parameters sensitivity, large

memory usage, choosing
optimal parameter, do not
explicitly model repeats

Robust, accurate, ability to achieve high
identification sensitivity and specificity,

multithreading
Generalized Suffix Trie SHERC[48]

Performance is not as par with
substitution error-based
error-correction methods

Significantly reduces errors in mixed reads.
Ability to detect errors in reads and error rate

of reads before and after correction
Based on SHREC Program Hybrid Shrec[49]

Serial program, degradation in
performance while

constructing suffix array for
large data, intolerable time
and space for large data.

Faster, Efficient, and Accurate Suffix Array HiTEC[52]

Does not support distributed
memory parallel computation,
collisions of threads degrade

speed up

Multithreaded, scalable parallel, improved
accuracy. Partial Suffix Array PSAEC[30]

Does not show improved
runtime scalability as per

computation resources

Parallel and distributed error correction, high
accuracy, feasible and flexible regarding

memory for large data sets
SAP,CUDA,MPI DecGPU[2]

Large space complexity

Support for distributed computation, high
reliability and accuracy, faster, flexible,

capability of utilizing resources efficiently,
capability to parallelize steps in alignment

Hybrid of BWA and
duplicate read

determination and removal
SEAL[55]

Multiple Sequence Alignment Based
More memory than Reptile

and Quake, distinguishing of
run times is not easy,

correlates quadratic ally in
worst case for large reads, not
compatable with color space

reads.

Significantly less memory than shrec, faster
for short reads, multithreaded Multiple Alignment Coral[26]

A bit slower, overhead in
scanning the whole genome.

Support both letter space and color space
reads, multithreaded, parallel computation,
better sensitivity for various polymorphism

classes, non-uniformity

Hash-based SHRiMP2[51]

Slower, high memory
requirements

Quality score assignment, explicitely models
hetrozygosity in diploid genomes, high

accuracy, capable to cope with non uniform
coverage, automatically chooses parameters,

improve data quality

Probabilistic model,
Bayesian Framework ECHO[54]

 American Journal of Bioinformatics Research 2013, 3(1): 1-9 7

Algorithms discussed in above section have been
simulated and evaluated by sole authors in individual papers.
We have selected benchmark datasets as shown in (Table 1)
from all the experiments to comparatively evaluate and
analyze the algorithms. The results of the corresponding
dataset D1 (Accession Number: SRX000429), D2
(Accession Number: SRR001665_1), D3 (Accession Number:
SRR006332) and D4 (Accession Number: NC_005966) are
shown in (Table 2). The two algorithms Quake and CUDA
were generated errors while simulat ing on datasets D1 and
D2 due to cutoff value and not supporting proper distribution
respectively. Simulat ion of Hybrid-SHREC on dataset D3
produced garbage values due to large space complexity. A lso
PSEAC and Redeem cannot be properly run on D4 due to
collision of threads and modeling repeats. That is why these
were excluded in comparative analysis. The remaining
algorithms are analyzed as follows.

Analysis parameters are based on Time and space
complexity and are, True Positive (TP): is any erroneous
base that is changed to the true base, a False Positive (FP): is
any true base changed wrongly, a True Negative (TN): is any
true base left unchanged, and a False Negative (FN): is any
erroneous base left unchanged. Sensitivity =TP/ (TP+FN)
and Specificity =TN/ (TN+FP). Gain= (TP-FP)/ (TP+ FN)
represents the total percentage of erroneous bases removed
from the dataset post-correction. Clearly, best methods
generate gain that approach to 1 but in some cases its value
may be negative that actually introduces more errors than
they correct[2, 6, 44, 46, 48].

Results analysis of SHREC[48] shows that its accuracy
with low coverage is at least 80% and the accuracy rate of
Eu lar-SR[18, 47] reduces significantly with low coverage.
The analysis of Coral[26] shows that it has relatively high
error rate. That provides whole read alignment with slight
edge over k-mers based method. On the other hand due to
significant lower TP rates Reptile[6] fall short perceptible of
the performance of Coral. Analysis of SEAL[55] describes
the capability of throughput levels comparable to single node
operation, which min imizes the distribution overhead due to
implementation on Hadoop framework. Despite increase in
size of the cluster throughput consistency of each node
remains the same. SEAL also has the ability of utilizing the
available resources efficiently in presence of massive data
thus achieves scalability. HiTEC[52] and ECHO[54] yield
higher gain value comparab le to other methods and also have
automated parameter selection for performance optimization.
For dataset D1 the SHRiMP2[51] produces negative gain
values, which increase errors instead of correcting them. The
results of Hammer[3] are also comparable but it neither
detects nor corrects errors in clusters without uniformity.
The DecGPU[2] analysis shows that it is a superior method
in terms of error correction and execution speed. In summary
HiTEC, ECHO and DecGPU are comparat ively more
accurate and efficient. A theoretical comparison in terms of
strengths and weaknesses of reviewed algorithms are also
presented in (Table 3). Further investigation is necessary to

develop specific tools and algorithms to achieve high
throughput.

4. Conclusions and Future Directions
The aim of the reviewed algorithms is to compare error

rate in next generation sequencing technologies. The growth
of NGS technologies present significant bioinformatics
challenges, specifically design of bioinformat ics tools that
handle the operation of massive amounts of data efficiently.
In this paper, we have described genome sequence short read
error correct ion algorithms in detail. We concluded that most
of the illumine/ So lexa sequencer algorithms focused on
substitution errors, while the algorithms build fo r Roche/454
sequencers have slightly focused on error correction due to
longer reads and low error rates. The improvement in
sequence platforms and introduction of high throughput
sequencing technologies such as Ion Torrent has changed the
traditional way of reads and of insertion and deletion errors.
Therefore the current methods are unable to achieve good
results and hence need improvement.

To achieve the potential of NGS, it is important to
maximally construe and utilize these short reads. For
successful NGS technology application it is essential to
develop large amounts of data storage, management and
build informat ics tools that can efficiently analyze data. It is
also required to develop high performance computing and
intensive bioinformat ics applications to achieve the benefits
of NGS technologies. The most significant footprint of NGS
is successful aligning and assembling short reads to the
reference genome. Efficiently aligning short reads to
reference genome is a challenging task, particularly in
development of new algorithms to manage ambiguity and
alignment errors. It is important to develop such algorithms
that support distributed-memory parallel computation to
speed up the processes. It is also essential to develop
algorithms that simultaneously estimate error parameters
from data in regard to fast computation and handle large
datasets via better memory management. It is also essential
for error correct ion algorithms to distinguish errors from
polymorphis m.

REFERENCES
[1] Mathkour H, Ahmad M. Genome sequence analysis: A

Survey. J Computer Science 2009; 5(9): 651-660.

[2] Liu Y, Schmidt B, Maskell D L. DecGPU: distributed error
correction on massively parallel graphics processing units
using CUDA and MPI. BMC Bioinformatics 2011; 12:85

[3] Medvedev P, Scott E, Kakaradov B, et al. Error correction
of high-throughput sequencing datasets with non-uniform
coverage. Bioinformatics 2011; 27: 137-141.

[4] Shendure J, Ji H. Next-generation DNA sequencing. Nat
Biotechnol 2008; 26: 1135-1145.

8 M. Tahir et al.: Review of Genome Sequence Short Read Error Correction Algorithms

[5] Hawkins R, Hon G, Ren B. Next-generation genomics: an
integrative approach. Nat Rev Genet 2010, 11: 476-486.

[6] Yang X, Dorman K S, Aluru S. Reptile: representative tiling
for short read error correction. Bioinformatics 2010; 26:
2526–2533.

[7] Sanger F, Nicklen S, Coulson A R. DNA sequencing with
chain-terminating inhibitors. Proc Natl Acad Sci 1977; 74:
5463–5467.

[8] Havlak P, Chen R, Durbin KJ, et al. The Atlas genome
assembly system. Genome Res 2004; 14: 721-732.

[9] Batzoglou S, Jaffe DB, Stanley K, et al. ARACHNE: a
whole-genome shotgun assembler. Genome Res 2002; 12:
177-189.

[10] Myers E W, Sutton G G, Delcher A L, et al. A whole-genome
assembly of Drosophila. Science 2000; 287: 2196-2204.

[11] Huang X, Wang J, Aluru S, et al. PCAP: a whole-genome
assembly program. Genome Res 2003; 13: 2164-2170.

[12] Kelley D, Schatz M, Salzberg S. Quake: quality-aware
detection and correction of sequencing errors. Genome
Biology 2010; 11: R116.

[13] Warren RL, Sutton GG, Jones SJ, et al. Assembling millions
of short DNA sequences using SSAKE. Bioinformatics 2007;
23: 500-501.

[14] Dohm JC, Lottaz C, Borodina T, et al. SHARCGS: a fast and
highly accurate short-read assembly algorithm for de novo
genomic sequencing. Genome Res 2007; 17: 1697-1706.

[15] Jeck WR, Reinhardt JA, Baltrus DA, et al. Extending
assembly of short DNA sequences to handle error.
Bioinformatics 2007; 23: 2942-2944.

[16] Schmidt B, Sinha R, Beresford-Smith B, et al. A fast hybrid
short read fragment assembly algorithm. Bioinformatics 2009;
25: 2279-2280.

[17] Pevzner P.A,Tang H,Waterman M S. An Eulerian path
approach to DNA fragment assembly. Proc Natl Acad Sci
2001; 98: 9748–9753.

[18] Chaisson MJ, Pevzner PA. Short read fragment assembly of
bacterial genomes. Genome Res 2008; 18: 324-330.

[19] Zerbino DR, Birney E. Velvet: algorithms for de novo short
read assembly using de Bruijn graphs. Genome Res 2008;
18:821-829.

[20] Butler J, MacCallum I, Kleber M, et al. ALLPATHS: de novo
assembly of whole-genome shotgun microreads. Genome Res
2008; 18: 810-820.

[21] Simpson JT, Wong K, Jackman SD, et al. ABySS: a parallel
assembler for short read sequence data. Genome Res 2009; 19:
1117-1123.

[22] Li H, Homer N. A survey of sequence alignment algorithms
for next-generation sequencing. Brief Bioinformatics 2010;
11: 473–483.

[23] Tammi M.T, Arner E, Kindlund E, et al. Correcting errors in
shotgun sequences. Nucleic Acids Res 2003; 31: 4663-4672.

[24] David A, Wheeler, Srinivasan M, et al. The complete genome
of an individual by massively parallel DNA sequencing.

Nature 2008; 452: 872–876.

[25] Li H, Durbin R. Fast and accurate long-read alignment with
Burrows-Wheeler transforms. Bioinformatics 2010; 5:
589-595.

[26] Salmela L, Schroder J. Correcting errord in short reads by
multiple alignments. Genome analysis 2011; 27:1455-1461.

[27] Zhao X, Palmer LE, Bolanos R, et al. Edar: an efficient error
detection and removal algorithm for next generation
sequencing data. J Comput Biol 2010; 17: 1549–1560.

[28] Chaisson M J, Brinza D, Pevzner P A. De novo fragment
assembly with short mate-paired reads: Does the read length
matter? Genome Res 2009; 19: 336–346.

[29] Shi H, Schmidt B, Liu W, et al. A parallel algorithm for error
correction in high-throughput short-read data on
CUDA-enabled graphics hardware. J Computing Biology
2009; 17: 603–615.

[30] Zhao Z, Yin J, Zhan Y, et al. PSAEC: An improved algorithm
for short read error correction using partial suffix arrays.
LNCS 2011; 6681: 220-232.

[31] Li R, Zhu H, Ruan J, et al.. De novo assembly of human
genomes with massively parallel short read sequencing.
Genome Res 2010; 20: 265-272.

[32] Bentley D R, Balasubramanian S, Swerdlow H P, et al.
Accurate whole human genome sequencing using reversible
terminator chemistry. Nature 2008; 456:53–59.

[33] Alkan C, Sajjadian S b, Eichler E E. Limitation of
next-generation genome sequence assembly. Nature 2011; 8:
61-65.

[34] Green P. Whole-genome disassembly. Proc Natl Acad Sci
2002; 99: 4143–4144.

[35] Schatz M C, Delcher A L, Salzberg S L. Assembly of large
genomes using second-generation sequencing. Genome Res
2010; 20: 1165–1173.

[36] Meader S, Hillier L W, Locke D, et al. Genome assembly
quality: assessment and improvement using the neutral indel
model. Genome Res 2010; 20: 675–684.

[37] Li H, Ruan J, Durbin R. Mapping short DNA sequencing
reads and calling variants using mapping quality scores.
Genome Res 2008; 11: 1851-1858.

[38] Langmead B, Trapnell C, Pop M, et al. Ultrafast and
memory-efficient alignment of short DNA sequences to the
human genome. Genome Biol 2009; 3:R25.

[39] Ning Z, Cox A J, Mullikin J C. SSAHA: a fast search method
for large DNA databases. Genome Res 2001; 11: 1725–1729.

[40] Li R, Yu C, Li Y, et al. SOAP2: an improved ultrafast tool for
short read alignment. Bioinformatics 2009; 15: 1966-1967.

[41] Huang W, Marth G. EagleView: a genome assembly viewer
for next-generation sequencing technologies. Genome Res
2008; 9: 1538-1543.

[42] Bao H, Guo H, Wang J. MapView: visualization of short
reads alignment on a desktop computer. Bioinformatics 2009;
12: 1554-1555.

[43] Milne I, Bayer M, Cardle L, et al. Tablet next generation

 American Journal of Bioinformatics Research 2013, 3(1): 1-9 9

sequence assembly visualization. Bioinformatics 2010; 3:
401-402.

[44] IGV Software Home Page. http://www.broadinstitute.org/igv
(last accessed on 22 August 2011).

[45] Li H, Handsaker B, Wysoker A, et al. The Sequence
Alignment/Map format and SAMtools. Bioinformatics 2009;
16: 2078-2079.

[46] Yang X, Aluru A, Dorman K S. Repeat-aware modeling and
correction of short read errors. BMC Bioinformatics 2011;
12:S52.

[47] Chaisson M J, Pevzner P, Tang H. Fragment assembly with
short reads. Bioinformatics 2004; 20: 2067–2074.

[48] Schroder J, Schroder H, Puglisi S J, et al. SHREC: a
short-read error correction method. Bioinformatics 2009; 25:
2157–2163.

[49] Salmela L. Correction of sequencing errors in a mixed set of
reads. Bioinformatics 2010; 26: 1284–1290.

[50] Cormen T H, Charles E L, Rivest R L, et al. Introduction to
Algorithms 2nd Edition. McGrawHill Book Company 2001;
pp. 505–509.

[51] David M, Dzamba M, Lister D, et al. SHRiMP2: Sensitivity
yet practical short read mapping. Bioinformatics 2011; 27:
1011-1012

[52] Ilie L, Fazayeli F, Ilie S. HiTEC: accurate error correction in
high-throughput sequencing data. Bioinformatics 2011; 27:
295–302.

[53] Mori Y.: Short description of improved two-stage suffix
sorting algorithm, http://homepage3.nifty.com/wpage/so
ftware/itssort.txt, (last accessed on 23 August 2011)

[54] Kao W C, Andrew H, Chan, Yun S S. ECHO: A
reference-free short-read error correction algorithm. Genome
Res 2011; 110:1181-1192.

[55] Pireddu, Leo S, Zanetti G. SEAL: a distributed short read
mapping and duplicate removal tool. Sequence Analysis 2011;
27: 2159-2160.

[56] Li H, Durbin R. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics 2009; 25:
1754–1760.

[57] Dean,J. and Ghemawat,S. MapReduce: simplified data
processing on large clusters. In OSDI ’04: 6th Symposium on
Operating Systems Design and Impl., USENIX Association
2004.

