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Abstract  This paper concentrates on the mathematical model for optimal control and cost-effectiveness analysis of 
tomato yellow leaf curl virus disease. The boundedness of the model has been analytically examined. The preferable optimal 
level of the intervention strategy to reduce the spreads and the cost of implementing control strategies were determined by 
introducing the time-dependent control. Pontryagin’s maximum principle was used to determine necessary conditions for the 
optimal control of the disease while numerical results obtained through forward-backward sweep method and fourth-order 
Runge-Kutta scheme using the forward solution of the state equations. The cost-effectiveness analysis results show that 
protective netting and removal of the infected plant is the most cost-effective strategy to combat the epidemic of tomato 
disease with limited resources. Therefore, TYLCV can be controlled if the farmers will effectively apply protective netting 
and remove the infected plants from the farm. 
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1. Introduction 
Production of tomato in many parts of the world has faced 

a major constraint due to Tomato yellow leaf curl virus 
(TYLCV) [1]. The virus belongs to the genus Begomovirus 
of the family Geminiviridae. The virus was first identified in 
Israel around 1930. However, since 1935 it has been a 
permanent pest, mainly in the Jordan Valley. The virus has 
affected more than 30 countries that grow tomatoes and is 
commonly found in tropical and subtropical regions [2]. 
TYLCV has been found in different areas worldwide, such as 
the Mediterranean, Japan, China, and many other countries 
[3]. TYLCV can also affect tobacco, pumpkin, cassava, 
cotton, and other economically important crops [4]. Most of 
the developing countries are affected by TYLCV due to 
climatic change and the high costs of treatments used in 
order to control the disease [5]. Examples of African 
countries that are affected by TYLCV disease are Egypt, 
Sudan, Tunisia, Burkina Faso, Nigeria, Senegal, Cape Verde 
Islands, Mali, Ivory Coast, Gambia, Mauritania and 
Tanzania [6]. In Tanzania, an initial survey was conducted in 
1993/1994. Since then one new distinct tomato Gemini  
virus has been identified [3]. TYLCV is transmitted by the  
insect vector Bemisiatabaci, commonly known as Silver leaf  
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whiteflies (Bemisiatabaci) [7]. The virus is efficiently 
transmitted during the adult stage of the whiteflies. 
Generally, female whiteflies transmit the virus more 
effective than the males. 

The whitefly can acquire the virus when it feeds by 
sucking plant juices from the underside of leaves of infected 
plants for 15 to 30 minutes. After 21-24 hours of incubation 
within the insect it can transmit the virus to other tomato 
plants. A period of at least 15 minutes of feeding on the new 
tomato host is subsequently required for transmission of the 
virus. The whitefly retains the virus for up to 20 days after an 
acquisition period and thereafter loses the ability to transmit 
it to another plant [8]. Shorter acquisition feeding results in 
shorter virus-retention period. Vector transmission 
efficiency of TYLCV declines with time and most of the 
females fail to transmit the virus for more than 10 days after 
acquisition [9]. However, during that period, the vector is 
unable to compensate for its steadily decreasing 
viral-transmission capacity by reacquiring the virus from the 
infected source. The symptoms develop on young plants 
after 10 to 14 days; however, the disease can be easily 
recognized when tomato plants are infected at the seedling 
stage, especially when the infection occurs before the 
flowering stage. At this stage, tomatoes are severely affected 
by the disease. Whitefly populations decrease after heavy 
rains. This leads to reduction of the spread of TYLCV and 
during the night, they settle on the lower leaf surfaces. 
During spring and summer, whitefly populations migrate, 
hence reduction in the spread of TYLCV. So, the growers 
need to monitor whitefly populations very closely and 
destroy whitefly weed hosts and crop residues. Disease 
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incidence increases rapidly and can reach to 100% infection 
at a harvest [10]. 

The mainly intensive treatment of TYLCV is by using 
insecticide control [11], hybrid seeds, crop rotation, growing 
tomatoes under greenhouse conditions and resistant crop 
varieties. This means that tomato crops should not be located 
near plants that attract whiteflies, such as eggplants, beans, 
pumpkins and other flowering weeds [12]. 

Sabuka et al [23] developed an epidemiological model in 
which vectors make only a transitory visit to the crop and do 
not reproduce. They also estimated parameters for the case of 
tomato leaf curl virus disease (TLCVD) (Geminiviridae, 
Subgroup III) in India. Their results showed that the use of 
protective netting combined with the growth of resistant 
varieties has the potential to reduce both B. Tabaci 
immigration to the crop and to reduce virus inoculation by 
those insects which do reach the crop [13]. Also, introduced 
a mathematical model that simulates the complex dynamic 
interaction between Begomovirus genetics, their adaptability 
to certain plants, and the availability of those plants to the 
virus under different cropping patterns. Their results indicate 
that developing more diverse and less concentrated cropping 
patterns, both in crop land extent and in time seems to be the 
only simple recourse. It has been recognized that it is 
important to choose the optimal level of prevention and 
detection effort for management of diseases [14]. In addition, 
according to Epanchin-Niell [15], it is also important to use 
optimal control of established invasive species. This review 
focuses on economically optimal control methods [16,18] 
simulation methods [15] with biological invasion spread 
theory to manage the spread of TYLCV. Jeger et al [17] 
worked on epidemiological model with its parameters 
estimation for tomato leaf curl virus disease in India while 
Maruthi [20] compared the control strategies for controlling 
the disease.  

2. Material and Methods 
This study modifies the work by Jeger et al [18] by 

incorporating the time dependent control to the tomato plants 
and vector populations in analysing the cost effectiveness  
of control strategies. The formulated dynamics include  
tomato plants and vector that spread the disease in tomato. 
The tomato plant is divided into the following sub 
epidemiological classes: Healthy tomato 1( )S , latently class
( )L , and infectious tomato plant ( )X . Healthy tomato 
plants are added at rate π . All classes were assumed to be 
removed at a constant rate β  in accordance with the period 
of the crop cycle. Healthy tomato plants became latently 
infected at rate a which also depends on the availability of 
healthy vectors 2S  and the abundance of infective vectors 
Y . Latently infected plants L  pass to the infectious class at a 
rate b which is inversely proportional to the mean latent 
period. The acquisition parameter λ  determines the rate at 
which non-infective vectors 2S  became infective 

depending on the availability of non-infective vectors and 
the abundance of infectious hosts Y . A constant rate of 
immigration µ  was assumed to take place from these 
alternative hosts with infective vectors proportion θ  and a 
non-infective vector proportion (1 )−θ  was assigned θµ  
and (1 )−θ µ  respectively while 𝑔𝑔 is the mortality rate of 
vectors. 

To ensure full protection of the tomato plants, the time 
dependent control was proposed and incorporated. The main 
control measures considered in this study includes protective 
netting 1u , insecticide control 2u  and the removal of the 
infected plant 3u . The incorporated control measures of the 
TLCV disease focus on decreasing the transmission of the 
virus by removing infected plants in the field and carefully 
placing into plastic bags for disposal, use of insecticides 
(regularly spraying during the seedling stage to reduce the 
population of the whitefly vector) and application of 
protective netting. The protective netting also reduces both  
B. Tabaci immigration to the crop and prohibits infected 
whitefly in reaching other crops. Basing on these 
assumptions, we come up with the following system of the 
equations: 

1
1 1 1(1 )= − − −

dS u aS Y S
dt

π β  

1 1(1 )= − − −
dL u aS Y bL L
dt

β  

3( )= − +
dX bL u X
dt

β  

( )2
2 2 2(1 )= − − − +

dS S X u g S
dt

θ µ λ  

2 2( )= + − +
dY S X u g Y
dt

θµ λ                     (1) 

where, 
1u  is the control variable based on protective netting 

2u  is the insecticide control variable based on vector 

3u  is the control variable that measures the effectiveness 
of removal of the infected plant. 

2.1. Boundedness of the Model 
We examine the boundedness of the model (1) with 

absence of control 1u , 2u  and 3u  using the following 
lemma. 

Lemma 
All solutions of the system (1) which starts in 5

+R are 
uniformly bounded. 

Proof: 
Let 

( ) ( ) ( )= +w t k t N t               (2) 

1( ) ( ) ( ) ( )= + +k t S t L t X t and 2( ) ( ) ( )= +N t S t Y t  
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Differentiating and solving (8) we get, 

( ) (1 ) (0)− −= − +t tK t e k eβ βπ
β

and 

( ) (1 ) (0)− −= − +gt gtN t e N e
g
µ

           
(3) 

Then, 

1

2

0 ( ) (1 ) ( (0) (0) (0))

(1 ) ( (0) (0))

− −

− −

≤ ≤ − + + +

+ − + +

t t

gt gt

w t e S L X e

e S Y e
g

β βπ
β

µ   
(4) 

Consequently, as →∞t , we have 

0 ( ) +
≤ ≤

gw t
g

π µβ
β                 

(5) 

for any 0>ε  is bounded.    
Implying that all solutions of the system (1) are  

uniformly bounded in the interior of 5
+R , then 

5
1 2( , , , , ) :+

 +
= ∈ ≤ + 
 

gr S L X S Y R w
g

π µβ ε
β

 for any 

0>ε  is bounded. 

2.2. Application of Optimal Control               
The control theory is applied for the aim of minimizing the 

spread of the disease in the plant as it is used to make a 
decision involving a complex of biological situations [18]. 
The purpose of introducing controls in the model is to find 
the optimal level of the intervention strategy preferred to 
reduce the spread and cost of implementation of the control 
[22]. The control variables 1u , 2u and 3u are minimized 
subject to the differential equations (1) and the minimization 
objective function presented as: 

1 1 12 2 21 2 1 2 31 2 32 2 2, , 01 2 3

 
 
 

= + + + +∫
t f

J A X A Y B u B u B u dtMin
u u u

  (6) 

where, ft  is the final time, 1 2,A X A Y  is the cost 
associated with plant treatment and insecticide control of 
vector while 1B , 2B  and 3B  are relative cost weight for 
each individual control measure. The objective function (6) 
involved in minimizing the number of infected plants as well 
as the cost of applying control strategies is, 

{ }
1 2 3

1 2 3 1 2 3

( ( ), ( ), ( ))
( ), ( ), ( ) | ( ), ( ), ( )

∗ ∗ ∗

= ∈

J u t u t u t
Min u t u t u t u t u t u t U    (7) 

where, 1 2 3{ ( ), ( ), ( )}=U u t u t u t  are measurable.  
By using the system of Equations (1) into a problem of 

minimizing point-wise, a Hamiltonian function (𝐻𝐻), with 
respect to 1 2 3( ), ( ), ( )u t u t u t  is given as: 

{ }
{ }
{ }

( ){ }
{ }

(1 )1 1 1

(1 )1 1

( )3

(1

1 1 12 2 2
1 2 1 1 2 2 3 32 2 2

         1

        2

        3

        4

     

) 2 2 2

( )2 2   5

− − −

− − −

− +

−

= + + + + +

− − +

+ −

+

+

+

+

+

u aS Y S

u aS Y bL L

bL u X

S

H A X A Y

X u g S

S X u g y

B u B u B u

π β

β

β

θ µ λ

θ λ

τ

µ

τ

τ

τ

τ

   (8) 

where, , 1, 2,3, 4,5=i iτ  are the co-state variables associated 
by 1 2, , , ,S L X S Y . The adjoint equations are obtained by 

= −
∂
∂

i
i

d
dt

Hτ
with transversality condition ( ) 0=i ftλ  

Then we obtain the following adjoint equations: 

( ) ( )1 1 2 1
1

( 1 ) 1∂
= − − − − − −

∂
H u aY u aY
S

τ β τ  

2 3( )∂
= − − − −

∂
H b b
L

τ β τ  

( )1 3 3 4 2 5 2
∂

= − − − − + −
∂
H A u S S
X

τ β τ λ τ λ         (9) 

( )4 2 5
2

∂
= − − − − −

∂
H X g u X
S

τ λ τ λ  

( ) ( )2 1 1 1 2 1 1 5 21 1 ( )∂
= − + − − − − − −

∂
H A u aS u aS u g
Y

τ τ τ  

The optimality of the control problem is obtained as: 

( )∗ ∂
=
∂i

i

Hu t
u  

where 1,2,3=i .  
Then,  

1 1 1 1 1 2
1

∂
= + −

∂
H B u YaS YaS
u

τ τ  

2 2 2 5
2

4
∂

= − −
∂

H B Su
u

Yτ τ    

3
3

33
∂

= −
∂

H B u
u

Xτ                          (10) 

The solution of 1 ( )∗u t , 2 ( )∗u t , 3 ( )∗u t  are presented in 
compact form as: 

1 2 1
1

1

( )
( ) max 0,min 1,∗   − =   

   

Yasu t
B
τ τ

 

5 2 4
2

2
( ) max 0,min 1,∗   + =   

   

Y S
u t

B
τ τ

and     

* 3
3

3
  ( ) max 0,min 1,

   =   
   

X
u t

B
τ

                 (11) 
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3. Numerical Results 
In this section, the numerical effects of optimal control 

strategies are analysed and discussed. The solution of the 
optimal control problem was obtained by solving the 
optimality system of state and adjoint systems through 
forward-backwards sweep method. The adjoint systems (9) 
were solved by fourth-order Runge-Kutta scheme using the 
forward solution of the state equations. The optimality 
condition is satisfied through the convex update of the 
previous control values.   

3.1. Optimal Control Numerical Results 

The main objective of this study was to assess the impact 
of control strategies such as insecticides, protective netting 
and removal of infected plants on the transmission of TLCV. 
In order to support the analytical results, graphical 
representations of various strategies are visualized for 
determining its impact whenever the control is applied to the 
system [21]. For the numerical simulations, we use the 
literature parameter values as shown in the Table 1 as applied 
by other researchers. 

Table 1.  Ranges of parameters and variables used in the model with data 
sources 

Symbol Default Value Estimated 
range 

Reference 
source 

b  10.075 −day  0.05-0.1 [19] 

a  1 10.01 − −vector day  0-0.1 [8] 
 

β  10.01 −day  0.0083-0.013 [19] 

λ  1 10.003 − −plant day  0-0.2 [8] 
 

µ  1 10.3 − −plant day  0-1 [20] 

θ  0.2 proportion 0-1 [20] 

g  10.06 −day  0.03-1 Assumed 

π  0.1 0-1 Assumed 

Strategy A: Combination of protective netting and 
whitefly insecticide 

Figure 1 shows the positive effect of protective netting and 
insecticide when 1u  and 2u  are applied to the system and 

3u  is set to zero. Figure 1(a) shows that, when the control is 
applied, the susceptible tomato increases while infected 
tomato decreases. The significant difference is also observed 
in susceptible and infected vector, when the control is 
applied, infected vector decreases as well as susceptible 
vector decreases as shown in Figure 1(b). This result shows 
that the optimal control measure is effective in tomato plant 
and vector. 

Strategy B: Combination of protective netting and 
removal of infected tomato plants 

We can observe from Figure 2 when 1u  and 3u  are 
applied to the system and 2u  is set to zero. The number of 
susceptible tomatoes increase while infected tomatoes 

decrease as a result, reducing the transmission of the virus to 
another plant. Figure 2(b) shows that, when the control is 
applied, the infected vector decreases. 

 

Figure 1(a).  The effects of protective netting and whitefly insecticide on 
tomato plant population 

 

Figure 1(b).  The effects of protective netting and whitefly insecticide 
vector population 

 

Figure 2(a).  The effects of protective netting and removal of infected 
tomato plants on tomato plant population 
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Figure 2(b).  The effects of protective netting and removal of infected 
tomato plants on vector population 

Strategy C: Combination of insecticide and removal of 
infected tomato plants 

The results show that the use of insecticide and removal of 
infected tomato plants in the system will reduce the spread of 
the disease. We can observe this from Figure 3(a) where the 
infected tomato decreases because of removing the infected 
plants; and infected vector decreases by increasing 
insecticides to the system. Moreover, the combination of 
strategies 1u and 3u give good results to optimize the 
objective function (𝐽𝐽). 

Strategy D: Combination of insecticide, protective 
netting and removal of infected tomato plants 

The results show that the use of insecticide, protective 
netting and removal of infected tomato plants in the system 
will reduce the spread of the disease. We can observe this 
tendency from Figure 4(a), which displays that the infected 
tomato decreases by intensifying the removal of the infected 
plants and infected vector decreases by strengthening 
insecticides application and protective netting to the system. 
Moreover, Figure 4(b) shows that when the control is applied, 
the infected vector decreases. The combination of strategies

1u , 2u and 3u give the best results to optimize the objective 
function (𝐽𝐽). 

 

Figure 3(a).  The effects of insecticide and removal of infected tomato 
plants on tomato population 

 

Figure 3(b).  The effects of insecticide and removal of infected tomato 
plants on vector population 

 

Figure 4(a).  The effects of insecticide, protective netting and removal of 
infected tomato plants on tomato population 

 

Figure 4(b).  The effects of insecticide, protective netting and removal of 
infected tomato plants on vector population 
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4. Cost-effective Analysis 
The cost effectiveness analysis helps to show the 

economic benefit of each control measure. It is used to make 
comparisons between the relative costs and outcomes     
of different strategies. In making decision on which 
intervention to implement in limited resources, the economic 
evaluation of tomato yellow curl leaf disease is carried out to 
find the most cost effective strategy. In this study, the cost 
effectiveness is thoroughly analysed using incremental cost 
effectiveness ratio (ICER) which compares the differences 
between the costs and health outcomes of the two competing 
intervention strategies. Each intervention is compared with 
the next less effective alternative [19]. The averted plant is 
computed by finding the difference between the total number 
of plants without control and the total number of plants with 
control. The total control cost is evaluated as: 

3
2 2 2

1 1 2 2 3 3
, , 01 2 3

1 1 1( )
2 2 2

 = + + 
 ∫

u u u
C u B u B u B u dtMin

 
The total control costs 2

1 1B u , 2
2 2B u  and 2

3 3B u  (where 

iB  for 1, 2,3=i ) are relative cost weight for each control 
measure. The numerical output for the control strategies are 
ranked in increasing order of effectiveness in form of 
infection averted as shown in Table 2. 

Table 2.  Control strategies in order of increasing averted 

Strategies Total infections 
averted 

Control costs

( )$  

Total costs J

( )$  

Strategy A 12.0399 374.6875 6289700 
Strategy B 490.3793 599.5000 3837200 
Strategy C 490.5713 823.8652 3374000 
Strategy D 490.589 673.9917 3837200 

We calculate and compare the ICER for strategy C and B 
as shown in Table 3: 

Table 3.  Total infection averted, total cost and ICER 

Strategies 
Total 

infections 
averted 

Control costs 

( )$  ICER 

Strategy C 12.0399 374.6875 31.1204827283 
Strategy B 490.3793 599.5000 0.4699853284 

The ICER is calculated as follows: 
      and 

     and 
=

Difference in cost in strategy i jICER
Difference infected in strategy i j  

374.6875( ) 31.1204827283
12.0399

= =ICER C  

599.5 374.6875( ) 0.4699853284
490.3793 12.0399

−
= =

−
ICER B  

Table 3 presents the comparison between strategies C and 
B shows a cost savings of 0.4699853284 for strategy B over 
strategy C. Similarly, the high ICER for strategy C indicates 

that strategy C is costlier and less effective than strategy B. 
Therefore, strategy C is excluded from the set of alternatives 
so it does not consume limited resources. The strategy B is 
now compared with D as presented in Table 4. 

Table 4.  Total infection averted, total cost and ICER 

Strategies Total infections 
averted 

Control costs 

( )$  ICER 

Strategy B 490.3793 599.5000 1.2225230551 
Strategy D 490.5713 823.8652 1168.56875 

The ICER is calculated as follows: 
599.5( ) 1.2225230551

490.3793
= =ICER B

  
823.8652 599.5( ) 1168.56875

490.5713 490.3793
−

= =
−

ICER D
 

The comparison between strategies B and D shows a cost 
savings of 1.2225230551 for strategy B over strategy D. 
Similarly, the high ICER for strategy D indicates that 
strategy D is more costly and less effective than strategy B. 
Therefore, strategy D is excluded from the set of alternatives 
because it does not consume limited resources. The next 
comparison between the strategy B and A is presented in 
Table 5. 

Table 5.  Total infection averted, total cost and ICER 

Strategies Total infections 
averted 

Control costs  

( )$  
ICER 

Strategy B 490.3793 599.5000 1.22 
Strategy A 490.589 673.9917 450.60 

The ICER is calculated as follows: 
599.5( ) 1.2225230551

490.3793
= =ICER B

  
693.9917 599.5( ) 450.6041964711

490.589 490.3793
−

= =
−

ICER A
 

The comparison between strategies B and A, shown in 
Table 5 shows, the cost savings of 1.22 for strategy B over 
strategy A. The lower ICER for strategy B indicates that 
strategy B is strongly dominated. That is, strategy A is 
costlier and less effective than strategy B. Strategy A has to 
be excluded from the set of alternatives since it consumes 
limited resources. From the result, we conclude that strategy 
B (the control variable based on protective netting and 
removal of infected tomato plants) has the least ICER and 
therefore, is the more cost-effective strategy. 

5. Conclusions 
In this paper, deterministic model for the transmission of 

the tomato yellow leaf curl disease was formulated and  
three control strategies have been investigated. The cost 
effectiveness analysis was also a focal point of concentration 
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to combat the disease in tomato plants. The Pontryagin’s 
maximum principle was used in deriving and analysing the 
conditions for optimal control of the tomato yellow leaf curl 
disease with control strategies such as protective netting 1u , 
the insecticide control 2u  and removal of the infected plant 

3u . The numerical analysis shows that each strategy has 
potential to control the transmission of the disease. 
Whenever control is applied, numerical results show that 
susceptible tomato increases while infected tomato decreases. 
The significant difference is also observed in susceptible and 
infected vector, when the control is applied, infected vector 
decreases as well as susceptible vector decreases. Cost 
effectiveness analysis indicates that the use of protective 
netting and removal of the infected plant is the cost effective 
optimal control strategy and is sufficient to combat the 
epidemic of tomato disease with limited resources. 
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