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Abstract  In this paper, a new technique is presented for solving linear mixed Volterra-Fredholm integral equations of the 

second kind. This technique is based on a polynomial of degree n and on the conversion of the integral equation to a linear 

programming problem, which will be solved by the Simplex method. For more illustration, an algorithm is suggested, and 

applied on several examples. The program is written in MATLAB (R2015a) to compute the results. To show the competency 

of the method and the accuracy of the results, comparison between the exact and the approximate solution are given by 

computing the absolute error and the least square error (L.S.E.).  
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1. Introduction 

Integral equations are found in different fields of science 

and several applications in approximation theory, fluid 

dynamics, electrodynamics, medicine, etc. 

Recently, several works have been devoted to the 

existence of the solution of mixed type of Volterra-Fredholm 

integral equations [1, 3, 8]. The analytical solution of this 

type of integral equation is obtained in [1, 9, 11], while the 

numerical methods takes an important place in solving them 

[5, 7, 10, 14, 16, 17]. 

The linear mixed Volterra-Fredholm integral equation of 

the second kind (LMV-FIESK), which has the form 

𝑢 𝑥 = 𝑓 𝑥 +   𝑘 𝑟, 𝑡 𝑢 𝑡 𝑑𝑡𝑑𝑟;  𝑎 ≤ 𝑥 ≤ 𝑏
𝑏

𝑎

𝑥

0
   (1) 

is considered in this paper, where the free term f and the 

kernel k are known , while u(x) is the unknown function 

which will be found. 

In [3], Ibrahim, et al. used new iterative method for 

solving the mixed Volterra-Fredholm integral equations. 

Wang treated this problem in [6] by using Taylor collocation 

method. In [12], Shahooth solved the Volterra-Fredholm 

integral equations of the second kind by using Bernstein 

polynomials method. In addition, Ezzati and Najafalizadeh, 

used Cas wavelets for solving Volterra-Fredholm integral 

equations in [14].  

 

* Corresponding author: 

pakhshansoran@gmail.com (Pakhshan Mohammed Ameen Hasan) 

Published online at http://journal.sapub.org/am 

Copyright ©  2018 The Author(s). Published by Scientific & Academic Publishing 

This work is licensed under the Creative Commons Attribution International 

License (CC BY). http://creativecommons.org/licenses/by/4.0/ 

Throughout this work, the central problem is the 

approximation of 𝑢 𝑥  by a function whose general form 

𝑢𝑛 𝑥  depends on n parameters 𝛽1, 𝛽2, … , 𝛽𝑛 . By choosing 

approximate values 𝛽𝑗
∗, 𝑗 = 1,2, … , 𝑛  of these parameters 

according to some appropriate approximation criterion, we 

obtain a particular approximating function 𝑢𝑛
∗(𝑥)  of the 

equation (1).  

2. Fundamental Concepts [2, 11] 

2.1. Linear Programming Problem (LPP) 

It is one of the most important optimization 

(maximization\ minimization) techniques developed in the 

field of operations research. More formally, linear 

programming is a technique for the optimization of a linear 

objective function (obj.fn.) subject to linear equality and\or 

inequality constraints, where the variables are nonnegative. 

In general, a linear programming model is defined as 

follows: 

𝑚𝑎𝑥. 𝑜𝑟 𝑚𝑖𝑛. 𝑍 = 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯+ 𝑐𝑛𝑥𝑛  

subject to 

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯+ 𝑎1𝑛𝑥𝑛 (≤, =, 𝑜𝑟 ≥)𝑏1 

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯+ 𝑎2𝑛𝑥𝑛 (≤, =, 𝑜𝑟 ≥)𝑏2 

⋮ 

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯+ 𝑎𝑚𝑛 𝑥𝑛(≤, =, 𝑜𝑟 ≥)𝑏𝑚  

𝑥1, 𝑥2, … , 𝑥𝑛 ≥ 0  

The required smallest (or largest) value of the objective 

function is called the optimal value and the variables 

 𝑥1, 𝑥2, … , 𝑥𝑛  that give the optimal solution are called the 

decision variables. 
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3. The Method  

An important class of methods for solving integral 

equations involve substitution of a suitable approximation 

function 𝑢𝑛(𝑥)  in place of the unknown solution 𝑢(𝑥) . 

Here the key to effective approximating lies in the selection 

of the appropriate general form of 𝑢𝑛(𝑥) in the form  

𝑢𝑛 𝑥 =  𝛽𝑖𝑥
𝑖−1𝑛

𝑖=1              (2) 

The values of 𝛽𝑖  are then determined using the 

transformation 𝑢𝑛  which arises from substituting this 

function in the integral equation (1), which yields  

 𝛽𝑖𝑥
𝑖−1 𝑛

𝑖=1  = 𝑓 𝑥   

+  𝑘 𝑟, 𝑡  𝛽𝑖𝑡
𝑖−1 𝑛

𝑖=1  𝑑𝑡𝑑𝑟 + 𝜖𝑛 𝑥 
𝑏

𝑎

𝑥

0
     (3) 

Thus 

𝜖𝑛 𝑥 = 𝑓 𝑥 −  𝛽𝑖  𝑥
𝑖−1  −   𝑘 𝑟, 𝑡 𝑡𝑖−1𝑑𝑡𝑑𝑟

𝑏

𝑎

𝑥

0
  𝑛

𝑖=1 (4) 

Let  

 𝜑𝑖 𝑥 =  𝑥𝑖−1  −   𝑘 𝑟, 𝑡 𝑡𝑖−1𝑑𝑡𝑑𝑟
𝑏

𝑎

𝑥

0
      (5) 

Thus equation (4) becomes:  

𝜖𝑛 𝑥 = 𝑓 𝑥 −  𝛽𝑖𝜑𝑖 𝑥  𝑛
𝑖=1         (6) 

One way of improving this technique is to select (𝑚 > 𝑛) 

points 𝑥𝑗 ∈ [𝑎, 𝑏] and solve the over determined system of 

linear equations  

 𝛽𝑖𝑥𝑗
𝑖−1 = 𝑢 𝑥𝑗   ;  𝑗 = 1,2, … ,𝑚 𝑛

𝑖=1     (7) 

This allows us to represent the function u(x) on more than 

(n) points of [a, b], when determining  𝑢𝑛
∗ . Further, for 

problem (7) a solution always exists in the following sense. 

Let the residuals of equation (7) be defined as 

 𝜖𝑛 𝑥𝑗  = 𝑓 𝑥𝑗  −  𝛽𝑖𝜑𝑖 𝑥𝑗  ; 𝑗 = 1,2, … ,𝑚 𝑛
𝑖=1    (8) 

and  

 𝜌 =     𝜖𝑛 𝑥𝑗     𝑚
𝑗=1              (9) 

Consider the problem of determining  

 𝜖∗𝑛 1 = Minimum𝛽1 ,𝛽2 ,…,𝛽𝑛   𝜖𝑛 1     (10) 

where  

 𝜖∗𝑛 1 = Minimum𝛽1 ,𝛽2 ,…,𝛽𝑛
  𝜖𝑛(𝑥𝑗 ) 𝑚

𝑗=1    (12) 

By substituting equation (8) in equation (12), we get 

 𝜖∗𝑛 1 = Minimum𝛽1 ,𝛽2 ,…,𝛽𝑛
  𝑓 𝑥𝑗  −  𝛽𝑖𝜑𝑖 𝑥𝑗  

𝑛
𝑖=1  𝑚

𝑗=1    

(13) 

The quantity  𝜖∗𝑛 1 always exists and the optimal values 

of 𝛽𝑖  yield a best 𝑙1  (least-first-power) solution to equation 

(1).  

Thus a general technique for determining 𝑙1 solution to 

the LMV-FIESK is available which is based on solving the 

equivalent problem  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜌 

subject to  

 
𝜌 +  𝛽𝑖𝜑𝑖(𝑥𝑗 ) ≥ 𝑓(𝑥𝑗 )𝑛

𝑖=1

𝜌 −  𝛽𝑖𝜑𝑖 𝑥𝑗  ≥ −𝑓(𝑥𝑗 )𝑛
𝑖=1

  ;  𝑗 = 1,… ,𝑚.   (14) 

 𝛽𝑗
′𝑠 are unrestricted in sign.  

The approximate values 𝛽𝑖
∗
 of 𝛽𝑖  which are calculated in 

(14) give an approximate solution of equation (1) as  

𝑢∗
𝑛 𝑥 =  𝛽𝑖

∗𝑥𝑖−1 

𝑛

𝑖=1

 

In practice we do not solve (14) exactly, but alternatively a 

corresponding discrete problem is solved using the Simplex 

method of Linear Programming. 

4. The Algorithm 

To find an approximate solution of (LMV-FIESK) 

perform the following steps:  

Step 1: select two positive integers n and m. 

Step 2: compute 𝑓 𝑥𝑗   ; ∀ 𝑗 = 1,2, … ,𝑚. 

Step 3: calculate  𝜑𝑖 𝑥𝑗   in equation (5) for all 𝑖 =

1, 2,… , 𝑛 and 𝑗 = 1, 2, … ,𝑚. 

Step 4: use equation (9) to compute 𝜌, and then construct 

the objective function (𝑀𝑖𝑛. 𝜌) of the LPP. 

Step 5: construct the constraints of the LPP from equation 

(14). 

Step 6: use the Simplex method to find optimal 

approximate values 𝛽𝑖
∗  of  𝛽𝑖  ; 𝑖 = 1,2, … , 𝑛. 

Step 7: substitute these values of 𝛽𝑖
∗′𝑠;  𝑖 = 1,2, … , 𝑛 in 

the equation (2) to determine the approximate solution of 

equation (1).  

5. Numerical Examples 

In this section, several examples will be solved to show 

the accuracy of our approach. 

Example 1. Consider the (MLV-FIE2nd) 

𝑢 𝑥 = 2 + 4𝑥 −
9

8
𝑥2 − 5𝑥3 +    𝑟 − 𝑡 𝑢 𝑡 𝑑𝑡𝑑𝑟

1

0

𝑥

0

 

whose exact solution is 𝑢 𝑥 = 2 + 3𝑥 − 5𝑥3. 

Applying the algorithm of the described method with n=4 

and 2m=8 constraints will convert the integral equation to 

the following LPP: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜌 = −4.2222222𝛽1 − 2.2777778𝛽2 

−1.7962963𝛽3 − 1.5388889𝛽4 

subject to 

 
 
 
 
 
 
 
 
5.2222222 2.2777778 1.7962963 1.5388889
5.3333333 2.6944444 1.9722222 1.6287037
5.3333333 3.0555556 2.3333333 1.9129630
5.222222 3.3611111 2.8796296 2.6138889

3.2222222 2.2777778 1.7962963 1.5388889
3.1111111 1.8711111 1.6203704 1.4490741
3.1111111 1.5000000 1.2592593 1.1648148
3.2222222 1.1944444 0.7129630 0.4638889 

 
 
 
 
 
 
 

.

 
 
 
 
 
 
 
𝛽1

𝛽2

𝛽3

𝛽4 
 
 
 
 
 
 

≤

 
 
 
 
 
 
 
 

9.5833333
10.6065481
10.2685000
7.4581852
5.5833333
4.5602185
4.8981481
7.7083333  

 
 
 
 
 
 
 

 

where 𝛽1, 𝛽2, 𝛽3, 𝑎𝑛𝑑 𝛽4 are unrestricted in sign,  

which will be solved by the Simplex method to get the values 

of 𝛽𝑖
′𝑠 𝑓𝑜𝑟 𝑖 = 1,2,3, 4. 
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Thus  

𝛽1 = 2.0000741, 𝛽2 = 2.9997596, 𝛽3 = 0, 𝑎𝑛𝑑 𝛽4

= −4.9998956 

Putting these values in equation (2) produces the 

approximate solution  

𝑢𝑛 𝑥 = 2.0000741 + 2.9997596𝑥 − 4.9998956𝑥3  

In this case the least square error (L.S.E.) is 

(2.815477𝑒 − 08). 

Increasing the value of m and taking m=6>n, will give a 

LPP with 4 unknowns and 12 constraints. Use the Simplex 

method to get the values of  𝛽𝑖 's, then put them in equation 

(2) to get the approximate solution 

𝑢𝑛 𝑥 =  1.99999991 + 3.00000060𝑥 

 −0.00000113𝑥2 − 4.99999938𝑥3 

In Table (1), the real solution and the corresponding 

approximate solution using (LPP) are obtained; also the 

values of the absolute error and (L.S.E) are presented. 

Table 1.  The LPP results compared with exact solutions for n=4 and m=6 

𝑥𝑗  
Exact solution 

𝑢(𝑥𝑗 ) 
𝑢𝑛 𝑥𝑗   (LPP) 

Absolute Error 

 𝑢 𝑥𝑗  − 𝑢𝑛 𝑥𝑗    

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

2 

2.295 

2.560 

2.765 

2.880 

2.875 

2.720 

2.385 

1.840 

1.055 

0 

1.9999999100 

2.2949999595 

2.5599999902 

2.7650000058 

2.8800000100 

2.8750000066 

2.7199999994 

2.3849999921 

1.8399999884 

1.0549999921 

0.0000000070 

9.00e-08 

4.05e-08 

9.80e-09 

5.78e-09 

1.00e-08 

6.63e-09 

9.00e-08 

7.92e-09 

1.16 e-08 

7.78 e-09 

7.00 e-09 

L.S.E 1.032024809𝑒 − 14 

Example 2. The integral equation  

𝑢 𝑥 = sin 𝑥 −
1

2
 𝑥2 + 2𝑥 +    1 + 𝑟𝑡 𝑢 𝑡 𝑑𝑡𝑑𝑟

𝜋
2

0

𝑥

0

,  

has the exact solution 𝑢 𝑥 = sin(𝑥). 

Assume that the approximate solution is of the form  

 𝑢𝑛 𝑥 =  𝛽𝑖𝑥
 𝑖−1  

𝑛

𝑖=1

 

By following the steps of the algorithm and choosing 

different values of n and m, we will get the results of L.S.E. 

that are listed in Table (2).  

Table 2.  The L.S.E. of Example 2 for different values of n and m 

(𝑛,𝑚) (4, 6) (5, 8) (6, 10) 

L.S.E 2.7827618e-04 6.2680573e-05 8.5878406e-10 

while, taking n=8 and m=10, gives the approximate solution  

𝑢𝑛 𝑥 = −0.000000175 + 1.000002546𝑥
+ 0.000000979𝑥2 

−0.166705619𝑥3 + 0.000075868𝑥4 + 0.008302601𝑥5 

−0.000034394𝑥6 − 0.000170867𝑥7 

Table (3) presents the comparison between the exact and 

the numerical solutions with n=8, and m=10. 

Table 3.  The comparison between the exact and the numerical solutions 

𝑥𝑗  
Exact solution 

𝑢(𝑥𝑗 ) 

Approximate 

solution 𝑢𝑛 𝑥𝑗   

Absolute Error 

 𝑢(𝑥𝑗 ) − 𝑢𝑛 𝑥𝑗    

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0 

0.1105170918 

0.2442805516 

0.4049576422 

0.5967298790 

0.8243606353 

1.0932712802 

1.4096268952 

1.7804327427 

2.2136428000 

2.7182818284 

1.1100000e-07 

0.1105173029 

0.2442804182 

0.4049576839 

0.5967299999 

0.8243605244 

1.0932710072 

1.4096268228 

1.7804328799 

2.2136425812 

2.7182820090 

1.11e-07 

2.11e-07 

1.33 e-07 

4.16e-08 

1.21e-07 

1.11e-07 

2.73e-07 

7.25e-08 

1.37e-07 

2.19e-07 

1.81e-07 

L.S.E 2.822575483𝑒 − 13 

Example 3. Consider the MV-FIE 

𝑢 𝑥 = 𝑥𝑒𝑥 −
𝑥2

2
+   𝑟𝑢 𝑡 𝑑𝑡 ;  0 ≤ 𝑥 ≤ 1

1

0

𝑥

0

 

the exact solution is 𝑢 𝑥 = 𝑥𝑒𝑥 . 

Performing the prescribed steps in the algorithm with 

different values of (n, m), we get the results that are listed in 

Table (4). 

Table 4.  L.S.E. of Example (3) with different values of n and m 

 (𝑛,𝑚) (4, 6) (5, 10) (7, 10) 

L. S. E 7.33095339e-05 1.37998995e-05 3.21957269e-10 

while, taking n=8 and m=10, gives the numerical solution  

𝑢𝑛 𝑥 = −0.000000111 + 1.000024516𝑥
+ 0.999613485𝑥2 

+0.502317746𝑥3 + 0.159879654𝑥4 + 0.052130940𝑥5 

+0.000000087𝑥6 + 0.004315692𝑥7  

Table (5) presents the comparison between the exact and 

the numerical solutions for n=8, and m=10. 

Table 5.  The comparison between the exact and the numerical solutions 

 

𝑥𝑗  

Exact solution 

𝑢(𝑥𝑗 ) 

Approximate 

solution 𝑢𝑛 𝑥𝑗   

Absolute Error 

 𝑢(𝑥𝑗 ) − 𝑢𝑛 𝑥𝑗    

0 

0.1(π) 

0.2(π) 

0.3(π) 

0.4(π) 

0.5(π) 

0 

0.309016994 

0.587785252 

0.809016994 

0.951056516 

1.000000000 

-0.000000175 

0.309017127 

0.587785120 

0.809016968 

0.951056312 

0.999999670 

1.750e-07 

1.326e-07 

1.318e-07 

2.589e-08 

2.039e-07 

3.303e-07 

L.S.E 2.169220666e-13 

Example 4. Consider the MV-FIE 
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𝑢 𝑥 = 𝑓(𝑥) +    𝑟 − 𝑡 𝑢 𝑡 𝑑𝑡𝑑𝑟

𝜋
2

0

𝑥

0

, 0 ≤ 𝑥 ≤
𝜋

2
 

Where  𝑓 𝑥 = 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥 − 𝑥2 +
𝜋

2
𝑥  and the 

exact solution 𝑢 𝑥 = cos 𝑥 + 𝑠𝑖𝑛(𝑥). 

Applying the algorithm of the LPP with n=6 and m=9 we 

get a LPP with 6 unknowns and 18 constraints which can be 

solved by the Simplex method, and then we get the results 

that shown in Table (6).  

Table 6.  The comparison between the exact and the numerical solutions 

𝑥𝑗  
Exact soluton 

𝑢(𝑥𝑗 ) 

Approx. solution 

𝑢𝑛 𝑥𝑗   

Absolute Error 

 𝑢(𝑥𝑗 ) − 𝑢𝑛 𝑥𝑗    

0.0 

0.1(π) 

0.2(π) 

0.3(π) 

0.4(π) 

0.5(π) 

1 

1.260073511 

1.396802247 

1.396802247 

1.260073511 

1 

1.000009658 

1.260080774 

1.396794509 

1.396794513 

1.260080794 

1.000009718 

9.658000e-06 

7.263590e-06 

7.737585e-06 

7.733623e-06 

7.283443e-06 

9.717654e-06 

L.S.E 4.1319717736e-10 

6. Conclusions 

In this paper, the linear programming method is 

introduced to solve the second kind mixed 

Volterra–Fredholm integral equations. Several examples are 

applied for illustration and good approximate results are 

found. Moreover, the results of (LPP) are compared with the 

exact solutions to demonstrate the implementation of the 

method. Also, it is claimed that better results can be obtained 

by increasing both the number of basis functions (n) and the 

number of constraints (m>n). The given numerical examples 

and the outcomes in Tables (1-6) support these claims. 
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