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Abstract  HIV/AIDS and Malaria are the two great threats for human being. These are causing a lot of death every year. 
Here comprehensive mathematical techniques have been used to analyze the co-infection of HIV-Malaria. A mathematical 
model of co-infection has been formulated. It is found that, using the next generation matrices, the disease free equilibrium 
point is locally asymptotically stable when the reproduction number is less than unity and unstable when reproduction 
number is greater than unity. Centre manifold theory is used to show that the HIV/AIDS-malaria co-infection model`s 
endemic equilibrium point is locally asymptotically stable when the associated reproduction numbers are less than unity. It 
has shown that, reduction of sexual activities among the HIV infected population will reduces the HIV/AIDS in the society. 
As well as it will also reduce the mortality rate of HIV- malaria co-infection.    
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1. Introduction 
Human Immunodeficiency Virus (HIV) is a virus that 

gradually attacks the immune system, which is our body’s 
natural defense against illness. If a person becomes infected 
with HIV, they will find it harder to fight off infections and 
diseases. The virus destroys a type of white blood cell called 
a T-helper cell and makes copies of itself inside them. 
T-helper cells are also referred to as CD4 cells [1, 4, 7]. 

The first cases were reported in 1981 and today there are 
approximately 36.9 million people currently living with 
HIV and tens of millions of people have died of 
AIDS-related causes since the beginning of the epidemic [2, 
3, 5]. While new cases have been reported in all regions of 
the world, approximately 70% are in sub-Saharan Africa [9]. 
Most people living with HIV or at risk for HIV do not have 
access to prevention, care, and treatment, and there is still 
no cure [15, 17]. HIV primarily affects those in their most 
productive years; about 38% of new infections are among 
those under age 25 [6, 8]. 

HIV is found in the blood, sexual and bodily fluids of an 
infected person. The most common form of transmission 
are unsafe sex, unsafe blood transfusion, transmission from 
mother to child, intravenous drug use with contaminated 
needles and other blood related modes like bleeding 
wounds. 
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It targets and infects white blood cells known as CD4+ 
T-cells which are part of the immune system. CD4+ T-cells 
are helper cells produced from precursors in bone marrow 
and thymus. When a person has chronic HIV infection, it 
causes gradual depletion of the CD+4 T-cell pool In a 
normal human being the level of CD+4 T-cells in the 
peripheral blood is regulated at a level between 800mm-3 to 
1200mm-3 when the CD+4 T-cell count falls below 
200mm-3, a person becomes vulnerable to opportunistic 
infections. CD+4 T-cells are a primary indicator used to 
measure progression of HIV infection in an HIV infected 
person [10, 11, 12].  

Despite these challenges, new global efforts have been 
mounted to address the epidemic, particularly in the last 
decade, and there are signs that the epidemic may be 
changing course. The number of people newly infected with 
HIV and the number of AIDS-related deaths have declined, 
contributing to the stabilization of the epidemic. In addition, 
the number of people with HIV receiving treatment has 
increased to 15.8 million as of June 2015, a 2.2 million 
increase since June 2014. Young people, ages 15-24, 
account for approximately 30% of new HIV infections 
(among those 15 and over) [9, 13, 16]. 

Malaria is an infectious disease caused by Plasmodium 
parasites and transmitted between humans through bites of 
female Anopheles mosquitoes. Malaria was first discovered 
centuries ago by the Chinese in 2700 BC [6]. However it 
was in the 1800’s when Ross made his ground breaking 
discoveries that led to our understanding of the mechanics 
behind malaria infections. About 3.2 billion people – nearly 
half of the world's population – are at risk of malaria. In 2015, 
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there were roughly 214 million malaria cases and an 
estimated 438000 malaria deaths. Increased prevention and 
control measures have led to a 60% reduction in malaria 
mortality rates globally since 2000. Sub-Saharan Africa 
continues to carry a disproportionately high share of the 
global malaria burden. In 2015, the region was home to 89% 
of malaria cases and 91% of malaria deaths [8, 14]. 

The most common first symptoms of malaria are similar 
to those of Flu. The patient may experience headache, 
aching muscles, stomach ache and weak or lack of energy. 
After a day or so the body temperature may rise (up to 40°C) 
and the patient may have fever, shivers, severe headache, 
diarrhea, loss of appetite, nausea, vomiting, back pain and 
increased sweating. The individuals most vulnerable to 
malaria are children under the age of 5 years. This is 
attributed to their weaker immunity. Aside from children, 
pregnant women are also heavily affected, with resultant 
effects on maternal health and birth outcomes. 

Treatment of malaria depends on many factors including 
disease severity, the species of malaria parasite causing the 
infection and the part of the world in which the infection 
was acquired. The latter 2 characteristics help determine the 
probability that the organism is resistant to certain 
anti-malarial drugs. Additional factors such as age, weight, 
and pregnancy status may limit the available options for 
malaria treatment [10]. 

Malaria and human immunodeficiency virus (HIV) are the 
most deadly and important global health problems of our 
time. Malaria accounts for more than a million deaths each 
year, of which about 90% occur in tropical Africa, where 
malaria is the leading cause of mortality in children below 
five years [26]. Sub-Saharan Africa is also home to more 
than 29 million people living with HIV/AIDS. Both Malaria 
and HIV are considered as diseases of poverty, since they 
hinder sustainable development and contribute to poverty by 
taking a great toll on the young productive generation who 
would otherwise enter the workforce and contribute to the 
nation’s economy. The global distribution of Malaria and 
HIV is the same, with the majority of those affected living in 
sub-Saharan Africa, the Indian subcontinent, and Southeast 
Asia. Owing to the overlap of their geographic distribution 
and resultant rates of co-infection, interactions between the 
two diseases pose major public health problems [8]. 

This study was carried out from October to November 
2013 in Owena, Idanre Local Government Area and State 
Hospital Akure, Ondo State. A total of 150 people of 
different age groups and sexes were screened for malaria and 
co-infection with HIV. In Owena and State hospital, 88 and 
62 blood samples were examined respectively for the 
presence of malaria using thick and thin smear, and also for 
the presence of Human Immunodeficiency Virus (HIV) 
using Abbott Determine kit and Stat Pak kit. A standardized 
questionnaire was used to obtain information’s from each 
person. Such information is those relating the infection rate 
with age, sex and state of origin, place of residence [19]. 

2. Formulation of Model 
In modelling the total human population at any time t, 

denoted by 𝑁𝑁(𝑡𝑡) is subdivided into sub-population namely, 
Susceptible  (𝑆𝑆(𝑡𝑡)), who are not yet infected either by HIV 
or malaria, exposed to Malaria but show no clinical 
symptoms of the disease (𝐸𝐸(𝑡𝑡)), exposed to malaria infected 
having HIV (𝐸𝐸𝐻𝐻(𝑡𝑡)), individuals infected with malaria not 
yet displaying symptoms (𝐼𝐼(𝑡𝑡)), HIV infected individuals 
not yet displaying symptoms of AIDS (𝐻𝐻(𝑡𝑡)), HIV infected 
individuals yet displaying symptoms of AIDS (𝐴𝐴(𝑡𝑡)) , 
individuals dually infected with HIV and malaria (𝐼𝐼𝐻𝐻(𝑡𝑡)), 
individuals treated for HIV showing symptoms of malaria 
�𝐻𝐻𝑀𝑀(𝑡𝑡)�,  individuals treated for AIDS showing symptoms 
of malaria (𝐴𝐴𝑀𝑀(𝑡𝑡)). 

Thus we have 
𝑁𝑁(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) + 𝐸𝐸(𝑡𝑡)𝐸𝐸𝐻𝐻(𝑡𝑡) + 𝐼𝐼(𝑡𝑡) + 𝐻𝐻(𝑡𝑡) 
              +𝐴𝐴(𝑡𝑡) + 𝐼𝐼𝐻𝐻(𝑡𝑡) + 𝐻𝐻𝑀𝑀(𝑡𝑡) + 𝐴𝐴𝑀𝑀(𝑡𝑡) 

The susceptible population is increased by the 
recruitment of individuals (assumed susceptible) into the 
population at a rate π. 

Susceptible individuals acquire Malaria infection, 
following effective contact with the people infected with 
Malaria only (i.e. those in the E, HM  and  AM  classes) at a 
rate  λ1, where 

𝜆𝜆1 =
𝛽𝛽1(𝐸𝐸 + 𝛼𝛼1𝐼𝐼)

𝑁𝑁
  

𝜆𝜆1  is the force of infection for malaria. Here β1 is the 
transmission rate for Malaria and 𝛼𝛼1 > 1  accounts for the 
assumed reduction of infectivity of infectious individuals in 
the exposed class and known as the modification parameter. 

Similarly, the susceptible individuals acquire HIV from 
with HIV at a rate  λ2, where 

𝜆𝜆2 =
𝛽𝛽2(𝐻𝐻 + 𝛼𝛼2𝐴𝐴 + 𝛼𝛼3𝐸𝐸𝐻𝐻 + 𝛼𝛼4𝐴𝐴𝑀𝑀)

𝑁𝑁
  

𝜆𝜆2  is the force of infection for HIV. Here β2  is the 
transmission rate for HIV and 𝛼𝛼4 > 𝛼𝛼2 > 𝛼𝛼3 > 1  
accounts for the assumed reduction of infectivity of 
infectious individuals in the exposed class and known as the 
modification parameter. 

In the susceptible class, population is entering into this 
class at a constant rate  π. 

In the malaria exposed class (𝐸𝐸(𝑡𝑡)), individuals entering 
into this class from susceptible class �𝑆𝑆(𝑡𝑡)� at a rate λ1. 
Also individuals entering into the HIV class �𝐻𝐻(𝑡𝑡)�  from 
susceptible class (𝑆𝑆(𝑡𝑡)) at a rate  λ2. 

In the malaria infected class �𝐼𝐼(𝑡𝑡)� , individual 
progresses to Malaria infected class �𝐼𝐼(𝑡𝑡)�  from the 
Malaria exposed class �𝐸𝐸(𝑡𝑡)� at a rate  σ1. In this class, let 
d1  denotes the death rate due to the disease. In AIDS class 
�𝐴𝐴(𝑡𝑡)�, individual is advancing to AIDS class �𝐴𝐴(𝑡𝑡)� from 
HIV infected class �𝐻𝐻(𝑡𝑡)� at a rate  σ2. In this class, let 
d2 denotes the death rate due to the disease. 

In the exposed to malaria infected having HIV class 
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(𝐸𝐸𝐻𝐻(𝑡𝑡)) , individuals forward movement rate to malaria 
infected having HIV class (𝐸𝐸𝐻𝐻(𝑡𝑡)) is λ2. 

Dually infected with HIV and malaria class is denoted by 
(𝐼𝐼𝐻𝐻(𝑡𝑡)). Now the individuals progress to dually infected 
with HIV and malaria class �𝐼𝐼𝐻𝐻(𝑡𝑡)� from the exposed to 
malaria infected having HIV class (𝐸𝐸𝐻𝐻(𝑡𝑡))  at a rate 
σ2. Also individually progress to this class from Malaria 
infected class �𝐼𝐼(𝑡𝑡)�.  In this class, let d3  denotes the 
death rate due to the disease. 

HIV class having Malaria is denoted by �𝐻𝐻𝑀𝑀(𝑡𝑡)� , 
individual’s forward movement to HIV class having 
Malaria �𝐻𝐻𝑀𝑀(𝑡𝑡)� from the HIV class �𝐻𝐻(𝑡𝑡)� at a rate λ1. 

AIDS class having Malaria �𝐴𝐴𝑀𝑀(𝑡𝑡)� , individuals 
advancement to AIDS class having Malaria �𝐴𝐴𝑀𝑀(𝑡𝑡)� from 
the HIV class having Malaria �𝐻𝐻𝑀𝑀(𝑡𝑡)� at a rate σ4, also 
individually progress to this class from AIDS class (𝐴𝐴(𝑡𝑡)) 
at a rate λ1. In this class, let d4 denotes the death rate due 
to the disease. 

In Malaria infected class (𝐼𝐼(𝑡𝑡)) , AIDS class 
�𝐴𝐴(𝑡𝑡)�, dually infected with HIV and malaria class (𝐼𝐼𝐻𝐻(𝑡𝑡)) 
and AIDS class having Malaria �𝐴𝐴𝑀𝑀(𝑡𝑡)� , the disease 
induced death rates are denoted by 𝑑𝑑1, 𝑑𝑑2, 𝑑𝑑3  and 𝑑𝑑4 
respectively. Further, natural mortality occurs in all classes 
is denoted by 𝜇𝜇. 

Combining all the aforementioned assumption and 
definitions, the model becomes: 

dS
dt

= π − λ1S − λ2S − μ            

dE
dt

= λ1S − λ2E − σ1E − μE    

dI
dt

= σ1E + λ2I − (μ + d1)I   

dH
dt

= λ2S − σ2H − μH − λ1H … … (1) 

dA
dt

= σ2H − λ1A − (μ + d2) 

dEH

dt
= λ2E − σ3EH − μEH             

dIH

dt
= λ2I + σ3EH − (μ + d3)IH  

dHM

dt
= λ1H − σ4HM − μHM  

dAM

dt
= λ1A + σ4HM − (μ + d4)AM  

Where            𝛼𝛼1 > 1 
𝛼𝛼4 > 𝛼𝛼2 > 𝛼𝛼3 > 1 

Schematically this can be shown as, 
 
 
 
 

 
Figure 1.  Diagram of the model 

3. Positivity and Boundedness of 
Solution 

Model (1) describes the co-infection of Malaria and HIV 
diseases and therefore it can be shown that the associated 
state variables are non-negative for all time 𝑡𝑡 ≥ 0 and that 
the solutions of the model (1) with positive initial data 
remains positive for all time 𝑡𝑡 ≥ 0  [15]. We assume the 
associated parameters are non-negative all time 𝑡𝑡 ≥ 0 all 
feasible solutions are uniformly bounded in a proper subset 
Ψ.  

Theorem: Solutions of the model (1) are contained in a 
region where t ≥ 0 [15]. 

Proof: To show that all feasible solutions are 
uniformly-bounded in a proper subset 𝑡𝑡 ≥ 0 . Let 
(𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝐻𝐻, 𝐴𝐴, 𝐸𝐸𝐻𝐻, 𝐼𝐼𝐻𝐻, 𝐻𝐻𝑀𝑀, 𝐴𝐴𝑀𝑀) 𝜖𝜖 ℝ+

9     be any solution with 
non-negative initial conditions. From the theorem on 
differential inequality if t follows that, 

𝑙𝑙𝑙𝑙𝑙𝑙
𝑡𝑡→∞

𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆(𝑡𝑡) ≤
𝜋𝜋
𝜇𝜇

 

Taking the time derivative of N along a solution path of 
the model (1) gives 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜋𝜋 − 𝜇𝜇𝜇𝜇 − 𝑑𝑑1𝐼𝐼 − 𝑑𝑑2𝐴𝐴 − 𝑑𝑑3𝐼𝐼𝐻𝐻 − 𝑑𝑑4𝐴𝐴𝑀𝑀 

Then, 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜋𝜋 − 𝜇𝜇 

From the theorem on differential inequality it follows 
that, 

0 ≤ 𝑁𝑁 ≤ 𝜋𝜋
𝜇𝜇 + 𝑁𝑁(0)𝑒𝑒−𝜇𝜇𝜇𝜇  

Where, N(0) represents the value of (1) evaluated at the 
initial values of the respective variables. Thus as t → ∞ we 
have 
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0 ≤ 𝑁𝑁 ≤
𝜋𝜋
𝜇𝜇

 

It follows that 𝑁𝑁  is bounded and all the feasible 
solutions of the model (1) starting in the region Ψ for all   
t ≥ 0, approaches, enter or stay in the region, where 

𝛹𝛹 = (( 𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝐻𝐻, 𝐴𝐴, 𝐸𝐸𝐻𝐻, 𝐼𝐼𝐻𝐻, 𝐻𝐻𝑀𝑀, 𝐴𝐴𝑀𝑀):𝑁𝑁 ≤ 𝛱𝛱
𝜇𝜇 ) 

Thus Ψ is positively invariant under the flow induced by 
(1). Existence, uniqueness and continuation results also 
hold for the model (1) in Ψ. Hence model (1) is well-posed 
mathematically and epidemiologically and it is sufficient to 
consider its solutions in Ψ. 

4. Disease-free Equilibrium Point 
Disease-free equilibrium (DFE) points of a disease model 

are its steady-state solutions in the absence of infection or 
disease. We denote this point by E0  and define the 
“diseased” classes that are either exposed or infectious. 
Then can construct the following two lemmas.  

Lemma: For all equilibrium points on  𝛹𝛹 ∩ ℝ+
9 ,  for 

which 𝐸𝐸 = 𝐼𝐼 = 𝐻𝐻 = 𝐴𝐴 = 𝐸𝐸𝐻𝐻 = 𝐼𝐼𝐻𝐻 = 𝐻𝐻𝑀𝑀 = 𝐴𝐴𝑀𝑀 = 0 . Then 
the positive DFE for the model (1) is 

𝑁𝑁 = 𝜋𝜋
𝜇𝜇
. 

Lemma: The model (1) has exactly one DFE and the DFE 
point is    𝐸𝐸0 = (𝜋𝜋

𝜇𝜇
, 0,0,0,0,0,0,0) 

Proof: The proof of the lemma requires that we show that 
the DFE is the only equilibrium point of (1) on  Ψ ∩  ℝ+ 

9  
Substituting E0 into (1) shows all derivatives equal to zero, 
hence DFE is an equilibrium point. From above lemma, the 
only equilibrium point for N is 𝜋𝜋

𝜇𝜇
. Thus the only 

equilibrium point for 𝛹𝛹 ∩  ℝ+ 
9  is DFE. 

5. Local Stability of the Disease-free 
Equilibrium  

The global stability of the model (1) is highly dependent 
on the basic reproduction number which is denoted by  𝑅𝑅0   
[3]. The basic reproduction number is defined as the 
expected number of secondary infections produced by an 
index case in a completely susceptible population. The 
associated nonnegative matrix F, for the new infection 
terms, and the non-singular M-matrix, V, for the remaining 
transfer terms are given respectively, by 

⎝

⎜
⎜
⎜
⎜
⎛

𝛽𝛽1   
0  
0  
0  
0  
0  
0  
0  

𝛽𝛽1𝛼𝛼1   
0   
0    
0    
0    
0    

 0      
 0     

 0    
0   
𝛽𝛽2
0    

      0          
   0       

0   
0   

    0     
    0     
𝛽𝛽2𝛼𝛼2

0 
0
0
0
0

0  
0  

      𝛽𝛽2𝛼𝛼3      
0  
0  
0  
0  
0  

0
0
0
0
0
0
0
0

           0            
0
0
0
0
0
0
0

0
0

𝛽𝛽2𝛼𝛼4
0
0
0
0
0 ⎠

⎟
⎟
⎟
⎟
⎞

 

and 

⎝

⎜
⎜
⎜
⎜
⎛

𝑘𝑘1
𝜎𝜎1
0
0
0
0
0
0

       0        
𝑘𝑘2
0
0
0
0
0
0

         0         
0
𝑘𝑘3
−𝜎𝜎2

0
0
0
0

       0        
0
0
𝑘𝑘4
0
0
0
0

        0         
0
0
0
𝑘𝑘5
−𝜎𝜎3

0
0

      0      
0
0
0
0
𝑘𝑘6
0
0

            0            
0
0
0
0
0
𝑘𝑘7
−𝜎𝜎4

0
0
0
0
0
0
0
𝑘𝑘8⎠

⎟
⎟
⎟
⎟
⎞

 

Where  𝑘𝑘1 = 𝜎𝜎1 + 𝜇𝜇, 𝑘𝑘2 = 𝜇𝜇 + 𝑑𝑑1, 𝑘𝑘3 = 𝜎𝜎2 + 𝜇𝜇,  
 𝑘𝑘4 = 𝜇𝜇 + 𝑑𝑑2, 𝑘𝑘5 = 𝜎𝜎3 + 𝜇𝜇, 𝑘𝑘6 = 𝜇𝜇 + 𝑑𝑑3, 𝑘𝑘7 = 𝜎𝜎4 + 𝜇𝜇, 
𝑘𝑘8 = 𝜇𝜇 + 𝑑𝑑4. 

The basic reproduction number 𝑅𝑅0 is the spectral radius 
of the matrix 𝐹𝐹𝑉𝑉−1. By using Maple the eigenvalues of the 
matrix 𝐹𝐹𝑉𝑉−1 are 

𝑅𝑅𝑚𝑚=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

0
0
0
0
0
0

𝛽𝛽2(𝜇𝜇 + 𝑑𝑑2 + 𝛼𝛼2𝜎𝜎2)
𝜇𝜇𝜎𝜎2 + 𝜎𝜎2𝑑𝑑2 + 𝜇𝜇2 + 𝑑𝑑2𝜇𝜇
𝛽𝛽1(𝜇𝜇 + 𝑑𝑑1 + 𝛼𝛼1𝜎𝜎1)

𝜇𝜇2 + 𝑑𝑑1𝜇𝜇 + 𝜇𝜇𝜎𝜎1 + 𝜎𝜎1𝑑𝑑1⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

Denoting    𝑅𝑅1 = 𝛽𝛽2(𝜇𝜇+𝑑𝑑2+𝛼𝛼2𝜎𝜎2)
𝜇𝜇𝜎𝜎2+𝜎𝜎2𝑑𝑑2+𝜇𝜇2+𝑑𝑑2𝜇𝜇  

 and 

𝑅𝑅2 =
𝛽𝛽1(𝜇𝜇 + 𝑑𝑑1 + 𝛼𝛼1𝜎𝜎1)

𝜇𝜇2 + 𝑑𝑑1𝜇𝜇 + 𝜇𝜇𝜎𝜎1 + 𝜎𝜎1𝑑𝑑1
 

we have,   𝑅𝑅0 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1, 𝑅𝑅2). 
Thus we have the following lemma 
Lemma: The disease-free equilibrium  E0 of the model 

(1) is locally asymptotically stable whenever 𝑅𝑅0 < 1 and 
unstable 𝑅𝑅0 > 1. 

6. Global Stability of the Disease-free 
Equilibrium 

The global asymptotically stability (GAS) of the 
disease-free state of the model is investigated using the 
theorem by Castillo-Chavez. We rewrite the model as: 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐻𝐻(𝑋𝑋, 𝑍𝑍) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐺𝐺(𝑋𝑋, 𝑍𝑍), 𝐺𝐺(𝑋𝑋, 0) = 0 … … … . (2) 

Where 𝑋𝑋 = 𝑆𝑆 and  
𝑍𝑍 = (𝐸𝐸 , 𝐼𝐼, 𝐻𝐻, 𝐴𝐴, 𝐸𝐸𝐻𝐻, 𝐼𝐼𝐻𝐻, 𝐻𝐻𝑀𝑀, 𝐴𝐴𝑀𝑀), with the components of 

 𝑍𝑍 ∈ ℝ8  
+  denoting the infected population. 

The disease free equilibrium is now denoted as: 
𝐸𝐸0 = (𝑋𝑋∗, 0), 𝑋𝑋∗ = 𝜋𝜋

𝜇𝜇  

The condition must be met to guarantee a local 
asymptotic stability 

    
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐻𝐻(𝑋𝑋, 0) … … . (3)   

Here, X∗ is globally asymptotically stable (GAS) 
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𝐺𝐺(𝑋𝑋, 𝑍𝑍) = 𝑃𝑃𝑃𝑃 − 𝐺𝐺∗(𝑋𝑋, 𝑍𝑍), 𝐺𝐺∗(𝑋𝑋, 𝑍𝑍)  
                ≥ 0 𝑓𝑓𝑓𝑓𝑓𝑓 (𝑋𝑋, 𝑍𝑍) ∈ 𝛺𝛺… … … (4) 
Where  P = DzG(X∗, 0), is an M-matrix (the off-diagonal 

elements of P are non-negative) and Ω is the region where 
the model makes biological sense. If the system (3) satisfies 
the conditions of (4) then the theorem below holds: 

Theorem: The fixed point E0 = (X∗, 0)  is a globally 
asymptotically stable equilibrium of the system (3) provided 
that 𝑅𝑅0 < 1 and the assumptions in (4) are satisfied. 

Proof: Form the model system (1) and (4), we have 
𝐻𝐻(𝑋𝑋, 0) = (𝜋𝜋 − 𝜇𝜇𝜇𝜇) 
𝐺𝐺(𝑋𝑋, 𝑍𝑍) = 𝑃𝑃𝑃𝑃 − 𝐺𝐺∗(𝑋𝑋, 𝑍𝑍) … … (5)   
Where 𝐺𝐺(𝑋𝑋, 𝑍𝑍) is as follows: 

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝛽𝛽1[𝐸𝐸 + 𝛼𝛼1𝐼𝐼](1 − 𝑆𝑆
𝑁𝑁

)

𝛽𝛽2[𝐻𝐻 + 𝛼𝛼2𝐴𝐴 + 𝛼𝛼3𝐸𝐸𝐻𝐻 + 𝛼𝛼4𝐴𝐴𝑀𝑀] 𝐸𝐸
𝜇𝜇

𝛽𝛽2[𝐻𝐻 + 𝛼𝛼2𝐴𝐴 + 𝛼𝛼3𝐸𝐸𝐻𝐻 + 𝛼𝛼4𝐴𝐴𝑀𝑀] 𝐼𝐼
𝑁𝑁

𝛽𝛽2[𝐻𝐻 + 𝛼𝛼2𝐴𝐴 + 𝛼𝛼3𝐸𝐸𝐻𝐻 + 𝛼𝛼4𝐴𝐴𝑀𝑀](1 − 𝑆𝑆
𝑁𝑁

)

𝛽𝛽1[𝐸𝐸 + 𝛼𝛼1𝐼𝐼]
𝐴𝐴
𝑁𝑁

−[𝐻𝐻 + 𝛼𝛼2𝐴𝐴 + 𝛼𝛼3𝐸𝐸𝐻𝐻 + 𝛼𝛼4𝐴𝐴𝑀𝑀] 𝐸𝐸
𝑁𝑁

−𝛽𝛽1[𝐸𝐸 + 𝛼𝛼1𝐼𝐼]
𝐻𝐻
𝑁𝑁

−𝛽𝛽1[𝐸𝐸 + 𝛼𝛼1𝐼𝐼]
𝐴𝐴
𝑁𝑁 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

  =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝐺𝐺1
∗(𝑋𝑋, 𝑍𝑍)

𝐺𝐺2
∗(𝑋𝑋, 𝑍𝑍)

𝐺𝐺3
∗(𝑋𝑋, 𝑍𝑍)

𝐺𝐺4
∗(𝑋𝑋, 𝑍𝑍)

𝐺𝐺5
∗(𝑋𝑋, 𝑍𝑍)

𝐺𝐺6
∗(𝑋𝑋, 𝑍𝑍)

𝐺𝐺7
∗(𝑋𝑋, 𝑍𝑍)

𝐺𝐺8
∗(𝑋𝑋, 𝑍𝑍)⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

Here 𝐺𝐺6
∗(𝑋𝑋, 𝑍𝑍) < 0,  𝐺𝐺7

∗(𝑋𝑋, 𝑍𝑍) < 0,  𝐺𝐺8
∗(𝑋𝑋, 𝑍𝑍) < 0  and so 

the conditions are not met. So E∗ may not be globally 
asymptotically stable when R0 < 0. 

7. Endemic Equilibrium of the Model 
A disease is endemic in a population if it persists in a 

population. The endemic equilibrium of the model is 
studied using the Central Manifold Theorem [1]. To apply 
this theorem we make the following change of variables. 

Let  𝑆𝑆 = 𝑥𝑥1, 𝐸𝐸 = 𝑥𝑥2, 𝐼𝐼 = 𝑥𝑥3, 𝐻𝐻 = 𝑥𝑥4, 𝐴𝐴 = 𝑥𝑥5,  𝐸𝐸𝐻𝐻 = 𝑥𝑥6,
𝐼𝐼𝐻𝐻 = 𝑥𝑥7,  𝐻𝐻𝑀𝑀 = 𝑥𝑥8, 𝐴𝐴𝑀𝑀 = 𝑥𝑥9, so that 

𝑁𝑁 = 𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥4 + 𝑥𝑥5 + 𝑥𝑥6 + 𝑥𝑥7 + 𝑥𝑥8 + 𝑥𝑥9 
The model (1) can be rewritten in the form: 

dS
dt

= f(x) 

Where 
    𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5, 𝑥𝑥6, 𝑥𝑥7, 𝑥𝑥8, 𝑥𝑥9) 

And 𝐹𝐹 = (𝑓𝑓1,  𝑓𝑓2, 𝑓𝑓3, 𝑓𝑓4, 𝑓𝑓5, 𝑓𝑓6, 𝑓𝑓7, 𝑓𝑓8, 𝑓𝑓9) as 
dx1

dt
= π− λ1x1 − λ2x1 − μx1 

dx2

dt
= λ1x1 − λ2x2 − σ1x2 − μx2     

dx3

dt
= σ1x2 + λ2x3 − x3                    

dx4

dt
= λ2x1 − σ2x4 − μx4 − λ1x4 

dx5

dt
= σ2x4 − λ1x5 − (μ + d2)x5 … (6) 

dx6

dt
= λ2x2 − σ3x6 − μx6 

dx7

dt
= λ2x3 + σ3x6 − (μ + d3)x7 

dx8

dt
= λ1x4 − σ4x8 − μx8                   

dx9

dt
= λ1x5 + σ4x8 − (μ + d4)x9 

Where       𝜆𝜆1 = 𝛽𝛽1(𝑥𝑥2+𝛼𝛼1𝑥𝑥7)
𝑁𝑁

  

  𝜆𝜆2 =
𝛽𝛽2(𝑥𝑥4 + 𝛼𝛼2𝑥𝑥5 + 𝛼𝛼3𝑥𝑥6 + 𝛼𝛼4𝑥𝑥9)

𝑁𝑁
 

The Jacobian of the system (6) is  
 

 

𝐽𝐽 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

−𝜇𝜇 −𝛽𝛽1 −𝛽𝛽1𝛼𝛼1 −𝛽𝛽2 −𝛽𝛽2𝛼𝛼2 −𝛽𝛽2𝛼𝛼3 0 0 −𝛽𝛽2𝛼𝛼4
0 −𝛽𝛽1 − 𝜎𝜎1 − 𝜇𝜇 𝛽𝛽1𝛼𝛼1 0 0 0 0 0 0
0 𝜎𝜎1 −𝜇𝜇 − 𝑑𝑑1 0 0 0 0 0 0
0 0 0 𝛽𝛽2 − 𝜎𝜎2 − 𝜇𝜇 𝛽𝛽2𝛼𝛼2 𝛽𝛽2𝛼𝛼3 0 0 𝛽𝛽2𝛼𝛼4
0 0 0 𝜎𝜎2 −𝜇𝜇 − 𝑑𝑑2 0 0 0 0
0 0 0 0 0 −𝜎𝜎3 − 𝜇𝜇 0 0 0
0 0 0 0 0 𝜎𝜎3 −𝜇𝜇 − 𝑑𝑑3 0 0
0 0 0 0 0 0 0 −𝜎𝜎4 − 𝜇𝜇 0
0 0 0 0 0 0 0 𝜎𝜎4 −𝜇𝜇 − 𝑑𝑑4⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

To analyze the dynamics of (6), we compute the eigenvalues of the Jacobean of (6) at the disease free equilibrium (DFE). 
It can be shown that this Jacobean has a right eigenvector given by: 

𝑉𝑉 = (𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, 𝑣𝑣4, 𝑣𝑣5, 𝑣𝑣6, 𝑣𝑣7, 𝑣𝑣8,𝑣𝑣9)𝑇𝑇 
Where  

𝑣𝑣1 =
�(𝜇𝜇2 + 𝜇𝜇𝑑𝑑1 + 𝜇𝜇𝑑𝑑2 + 𝑑𝑑1𝑑𝑑2) + 𝛼𝛼1𝑟𝑟1(𝜇𝜇 + 𝑑𝑑2)�𝛽𝛽1𝑣𝑣2  

(𝜇𝜇 + 𝑑𝑑1)(𝜇𝜇 + 𝑑𝑑2)
 +

�(𝜇𝜇2 + 𝜇𝜇𝑑𝑑1 + 𝜇𝜇𝑑𝑑2 + 𝑑𝑑1𝑑𝑑2) + 𝛼𝛼2𝑟𝑟2(𝜇𝜇 + 𝑑𝑑1)�𝛽𝛽2𝑣𝑣2

(𝜇𝜇 + 𝑑𝑑1)(𝜇𝜇 + 𝑑𝑑2)
 

𝑣𝑣2 = 𝑣𝑣2 

𝑣𝑣3 =
𝜎𝜎1

𝜇𝜇 + 𝑑𝑑1
𝑣𝑣2 
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𝑣𝑣4 = 𝑣𝑣4 

𝑣𝑣5 =
𝜎𝜎2

𝜇𝜇 + 𝑑𝑑2
𝑣𝑣4 

𝑣𝑣6 = 0 
𝑣𝑣7 = 0 
𝑣𝑣8 = 0 
𝑣𝑣9 = 0 

 
And the left eigenvectors are given by 
 

 𝑊𝑊 = (𝑤𝑤1,𝑤𝑤2,𝑤𝑤3, 𝑤𝑤4, 𝑤𝑤5, 𝑤𝑤6, 𝑤𝑤7, 𝑤𝑤8, 𝑤𝑤9)𝑇𝑇 where 
𝑤𝑤1 = 0 
𝑤𝑤2 = 𝑤𝑤2 

𝑤𝑤3 =
𝛽𝛽1𝛼𝛼1

𝜇𝜇 + 𝑑𝑑1
𝑤𝑤2 

𝑤𝑤4 = 𝑤𝑤4 

𝑤𝑤5 =
𝛽𝛽2𝛼𝛼2

𝜇𝜇 + 𝑑𝑑2
𝑤𝑤4 

𝑤𝑤6 = −
𝛽𝛽2𝛼𝛼3𝜎𝜎3

(𝜎𝜎3 + 𝜇𝜇)(𝛽𝛽2 − 𝜎𝜎2 − 𝜇𝜇)𝑤𝑤5 

𝑤𝑤7 = 0 

𝑤𝑤8 = −
𝛽𝛽2𝛼𝛼4𝜎𝜎2𝜎𝜎4

(𝜎𝜎4 + 𝜇𝜇)(𝛽𝛽2 − 𝜎𝜎2 − 𝜇𝜇)𝑤𝑤5 

Now using (6) we have 

  𝑆𝑆∗ = − 1
𝑁𝑁

(2(𝑣𝑣1𝑤𝑤3 𝑤𝑤8𝛽𝛽1𝛼𝛼1 + 𝑣𝑣1𝑤𝑤5𝑤𝑤8𝛽𝛽2𝛼𝛼2 + 

          𝑣𝑣1𝑤𝑤3𝑤𝑤8𝛽𝛽2𝛼𝛼3 + 𝑣𝑣1𝑤𝑤8𝑤𝑤9𝛽𝛽2𝛼𝛼4)  
And 

𝑟𝑟∗ = (𝑤𝑤4 + 𝑤𝑤5𝛼𝛼2 + 𝑤𝑤6𝛼𝛼3 + 𝑤𝑤9𝛼𝛼4) 
Clearly we can see that  
      𝑆𝑆∗ < 0. 
And  𝑟𝑟∗ > 0 
Thus we have established the following theorem: 
Theorem. The model (1) has a unique endemic 

equilibrium which is locally asymptotically stable when 
 R0 < 1  and unstable when   R0 > 1  [16]. 

8. Numerical Simulations and 
Discussions 

The parameters and their values that are used the model 
are listed below. 

Table 1.  Description of parameters of model  

Variables Descriptions 

𝑆𝑆(𝑡𝑡) Susceptible class 

𝐸𝐸(𝑡𝑡) Individuals Exposed to Malaria but show no clinical 
symptoms. 

𝐼𝐼(𝑡𝑡) Individuals infected with malaria not yet displaying 
symptoms. 

𝐻𝐻(𝑡𝑡) HIV infected individuals not yet displaying symptoms 
of AIDS. 

𝐴𝐴(𝑡𝑡) HIV infected individuals and displaying symptoms of 
AIDS. 

𝐸𝐸𝐻𝐻(𝑡𝑡) Exposed to malaria infected having HIV. 

𝐼𝐼𝐻𝐻(𝑡𝑡) Individuals dually infected with HIV and Malaria. 

𝐻𝐻𝑀𝑀(𝑡𝑡) Individuals treated for HIV showing symptoms of 
Malaria. 

𝐴𝐴𝑀𝑀(𝑡𝑡) Individuals treated for AIDS showing symptoms of 
Malaria. 

Table 2.  The value of the parameters of the model 

Variables Description Values 

𝜋𝜋 Recruitment rate of humans 0.038 [3] 

𝛽𝛽1 Transmission rate for Malaria 0.03 [5] 

𝛽𝛽2 Transmission rate for HIV 0.01 [7] 

𝜎𝜎1 Transfer rate between I and E 0.09 [11] 

𝜎𝜎2 Transfer rate between H and A 0.01 [8] 

𝜎𝜎3 Transfer rate between 𝐸𝐸𝐻𝐻  and 𝐼𝐼𝐻𝐻  0.05 [13] 

𝜎𝜎4 Transfer rate between 𝐻𝐻𝑀𝑀  and 𝐴𝐴𝑀𝑀  0.025 [1] 

𝑑𝑑1 Death rate due to Malaria 0.01 [17] 

𝑑𝑑2 Death rate due to AIDS 0.004 [3] 

𝑑𝑑3 Death rate due to infected with HIV and Malaria 0.003 [2] 

𝑑𝑑4 Death rate due to AIDS having Malaria 0.05 [5] 

𝛼𝛼1 Modification Parameter 1.01 [3] 

𝛼𝛼2 Modification Parameter 1.25 [5] 

𝛼𝛼3 Modification Parameter 1.23 [6] 

𝛼𝛼4 Modification Parameter 1.3 [6] 

𝜇𝜇 Natural death rate 0.01 [6] 

Figure (2) shows that the infected population is increasing 
when the basic reproduction number 𝑅𝑅0 = 1.3142 which is 
bigger than 1 and figure (3) shows that the infected 
population is decreasing when R0 < 1 (𝑅𝑅0 = 0.9264).  
Figure (4) (prevalence of HIV infection) indicates that the 
number of total infected population increases whenever the 
basic reproduction number R0 > 1 (R0 = 1.3142) and the 
figure (5) shows that the prevalence of HIV infection 
decreases when R0 < 1 (R0 = 0.9464). Figure (6) and (7) 
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(HIV and Malaria co-infection) both indicate respectively 
that when the basic reproduction number R0 > 1  
(R0 = 1.3242), the number of total infected population 
increases and when  R0 < 1 (R0 = 0.9464), the number of 
total infected population decreases. 

 

Figure 2.  Total infection when 𝑅𝑅0 > 1 

 

Figure 3.  Total Infection when 𝑅𝑅0 < 1 

 

Figure 4.  Prevalence of HIV when 𝑅𝑅0 > 1 

 

Figure 5.  Prevalence of HIV when 𝑅𝑅0 < 1 

 

Figure 6.  Prevalence of Co-infection when 𝑅𝑅0 > 1 

 
Figure 7.  Prevalence of Co-infection when 𝑅𝑅0 < 1 
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9. Conclusions 
HIV and malaria affect millions of people across 

overlapping geographic distributions. The risk of 
transmission of both diseases can be increased because of 
co-infection. Here we have formulated a deterministic 
mathematical model for the co-infection of HIV/AIDS and 
malaria in order to assess their synergic relationship. 
Positivity and boundness of solutions are analyzed 
quantitatively. Sensitivity indices of the basic reproductive 
number ‘R0’ to the parameters in the model is calculated. 
Comprehensive mathematical techniques are used to analyze 
the model steady states. It is found that using the next 
generation matrices, the disease free equilibrium point is 
locally asymptotically stable when the reproduction number 
is less than unity and unstable when reproduction number is 
greater than unity. Centre manifold theory is used to show 
that the HIV/AIDS-malaria co-infection model`s endemic 
equilibrium are locally asymptotically stable when the 
associated reproduction numbers are less than unity. In 
summary, the main findings of this paper, if reduction in 
sexual activity of individuals with malaria symptoms 
decreases the number of new cases of HIV and the mixed 
HIV-malaria infection and also protecting HIV infective 
from mosquito bites. 
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