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Abstract  In this article, we present asymptotic solutions of fourth order critically oscillatory undamped nonlinear systems 
in which the four eigenvalues are pairwise equal and imaginary. In this regard, the modified Krylov-Bogoliubov-Mitropolskii 
(KBM) method is used, which is considered to be a well-suited method for investigating the transient behaviour of oscillating 
systems, to obtain the solutions of fourth order critically oscillatory nonlinear systems. This paper suggests that the solutions 
obtained by the modified KBM method are quite well consonant with those obtained by the numerical method using 
Mathematica. 
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1. Introduction 
Generally, a significant approach, known as the 

expansion of the small parameter, is used to investigate 
nonlinear oscillatory systems, which is erected upon the 
perturbation theory. The perturbation theory can be defined as 
mathematical methods by which an approximate solution to 
a mathematical problem is figured out. This theory was 
used as a basis for one of the widely known methods called 
the Krylov-Bogoliubov-Mitropolskii (KBM) [1, 2] method 
which is applied to study nonlinear oscillatory and 
non-oscillatory differential systems with small 
nonlinearities. In the beginning, this method was developed 
by Krylov and Bogoliubov [1] to find out the periodic 
solutions of second order nonlinear differential systems 
with small nonlinearities. Shortly after that, Popov [3] 
extended it to damped oscillatory processes. Then, it was 
expanded further and justified by Bogoliubov and 
Mitropolskii [2]. However, due to the physical significance 
of the damped oscillatory systems, Popov's results were 
rediscovered by Mendelson [4]. Later, the method was 
extended by Murty and Deekshatulu [5] for over damped 
nonlinear systems. However, in 1971, Murty [6] 
propounded a unified KBM method for second order 
nonlinear systems which covered all the undamped, 
over-damped and damped oscillatory cases. Next, Osiniskii  
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[7] developed it further and used it to solve third order 
nonlinear differential systems for the first time, imposing 
some restrictions on it. But this rendered the solution 
over-simplified. Therefore, Mulholland [8] lifted those 
restrictions and found the intended solutions of third order 
nonlinear systems. Mickens [9] modified the method for 
nonlinear oscillations with finite damping, and for harmonic 
oscillations without damping. Bojadziev [10] suggested 
damped oscillating processes in biological and biochemical 
systems. Bojadziev and Edwards [11] offered some methods 
for non-oscillatory and oscillatory processes. Later, Arya 
and Bojadziev [12] proposed time dependent oscillating 
systems with damping, slowly varying parameters, and 
delay. Bojadziv [13] subsequently examined the solutions 
of nonlinear systems by transforming the method to damped 
nonlinear oscillations for a 3-dimensional differential 
system. Then, Alam and Sattar [14] expounded time 
dependent third-order oscillating systems with damping. 
Later on, Akbar et al. [15] generalized the method which 
was less intricate than the method put forward by Murty  
et al. [16]. Akbar et al. [17] then expanded it for fourth 
order damped oscillatory systems in the case when the four 
eigenvalues were complex conjugate. Thereupon, the 
perturbation solution of fourth order critically damped 
oscillatory systems was expounded by Haque et al. [18] 
under the conditions that when two of the eigenvalues are 
real and equal and the other two are complex conjugate. 
Later, Rahman et al. [19] presented a technique for fourth 
order damped oscillatory nonlinear systems in the case 
when two of the eigenvalues are real and distinct and the 
other two are complex conjugate. 
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This article provides the solutions of fourth order critically 
undamped oscillatory nonlinear systems where all the 
eigenvalues are pairwise equal and imaginary. This paper 
suggests that the obtained perturbation results are quite well 
consonant with the numerical results for different sets of 
initial conditions together with different sets of eigenvalues. 
In this study, all the results are computed using 
Mathematica 9.0.  

2. Method 
Let us consider a fourth order weakly nonlinear system 

( )( )
1 2 3 4 , , ,ivx k x k x k x k x f x x x xε+ + + + = −          (1) 

where ( )ivx  denotes the fourth derivative and over dots 
indicate the first, second and third derivatives of x  with 
respect to time ;t  1 2 3 4, , ,k k k k  stand for characteristic 
parameters; ε  signifies a positive small parameter and 
( ), , ,f x x x x    is the given nonlinear function. Since the 

system (1) is of fourth order critically undamped oscillatory, 
so we consider the equation (1) has pairwise equal imaginary 
eigenvalues, and assume that the pairwise equal eigenvalues 
are .iλ±  

Therefore, the characteristic parameters of equation (1) 
are defined by 

1k = Sum of the eigenvalues 0=  

2k = Sum of the eigenvalues taken two at a time 22λ=  

3k = Sum of the eigenvalues taken three at a time 0=  

4k = Product of the eigenvalues 4λ=  

Thus, when 0,ε =  the solution of the corresponding 
linear equation of (1) becomes 

    ( ) 0 0 0 0,0 ( ) cos ( )sinx t a c t t b d t tλ λ= + + +       (2) 

where 0 0 0 0, , ,a b c d  are constants of integration. 
Nonetheless, if 0,ε ≠  following Alam [20], an asymptotic 

solution of (1) becomes 

     
( )

( )1

, ( ) cos ( )sin

, , , ,

x t a ct t b dt t

u a b c d t

ε λ λ

ε

= + + +

+ +
          (3) 

where , , ,a b c d  denote functions of t  and they satisfy the 
following first order differential equations: 

        

( )
( )
( )
( )

1

1

1

1

( ) , , , ,

( ) , , , ,

( ) , , , ,

( ) , , , ,

a t A a b c d t

b t B a b c d t

c t C a b c d t

d t D a b c d t

ε

ε

ε

ε

= +

= +

= +

= +















             (4) 

Here, we only consider first few terms in the series 
expansion of (3) and (4). We evaluate the functions iu  and 

, , ,i i i iA B C D  for 1, 2, 3,i =   to the extent that 
, , ,a b c d  appearing in equation (3) and equation (4), satisfy 

the given differential equation (1). In order to determine 
these unknown functions, it should be noted that, in the KBM 
method generally the correction terms, iu  for 1, 2, 3,i =   
exclude the terms, which are also known as ‘secular terms’, 
that render them larger. Theoretically, the solution can be 
obtained up to the accuracy of any order of approximation. 
However, the solution is generally confined to a lower order, 
usually the first as suggested by Murty [6] owing to the 
rapidly growing algebraic complexity for the derivation of 
the formulae. 

Now, differentiating the equation (3) four times with 
respect to t, substituting the value of x and the derivatives 

( ), , , ivx x x x    in the original equation (1), using the relations 
presented in (4), and, finally, equating the coefficients of ,ε
we get 

 

     

3 2 2 2 3
2 2 21 1 1 1 1 1 1 1 1

13 2 2 2 3

2 3 2 2 3
2 21 1 1 1 1 1

12 3 2 2 3

cos 4 4 4 8 12 sin 4 4 12

4 8 cos 4 4 sin 4 4

A A B C D A B B Ct C t
t t t tt t t t t

D C C D C DD t t t t
tt t t t t

λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− + + − + + − + − −  ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ 

   ∂ ∂ ∂ ∂ ∂ ∂
+ − + − + + − + −      ∂∂ ∂ ∂ ∂ ∂   

22
2 21

12

(0) ( , , , , )

D u
t t

f a b c d t

λ
 ∂ ∂  + + ∂ ∂   

= −

      (5) 

where ( ) ( ) ( )0
0 0 0 0, , , , , , ,f a b c d t f x x x x=     and 0 ( ) cos ( )sinx a ct t b dt tλ λ= + + +  

Now, expanding the function (0)f  in the Taylor’s series (see also Sattar [21], Alam [22], Alam and Sattar [23] for details) 
with respect to the origin in power of .t  

As a result, we get 

         { }(0)
, 1 , 1

0 0

cos( 1) sin( 1)q
q q r q r

q r

f t E F r t G r tλ λ
∞ ∞

+ +
= =

 
= + + + + 

  
∑ ∑                          (6) 

Here, , 1 , 1, ,q q r q rE F G+ +  are functions of , , ,a b c d  and ,q r  are vary from 0  to ,∞  but for a particular problem they 
have some fixed values. Thus, with the help of equation (6), equation (5) becomes 
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3 2 2 2 3
2 2 21 1 1 1 1 1 1 1 1

13 2 2 2 3

2 3 2 2 3
2 21 1 1 1 1 1

12 3 2 2 3

cos 4 4 4 8 12 sin 4 4 12

4 8 cos 4 4 sin 4 4

A A B C D A B B Ct C t
t t t tt t t t t

D C C D C DD t t t t
tt t t t t

λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− + + − + + − + − −  ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ 

   ∂ ∂ ∂ ∂ ∂ ∂
+ − + − + + − + −      ∂∂ ∂ ∂ ∂ ∂   

{ }

22
2 21

12

, 1 , 1
0 0

cos( 1) sin( 1)q
q q r q r

q r

D u
t t

t E F r t G r t

λ

λ λ
∞ ∞

+ +
= =

 ∂ ∂  + + ∂ ∂   
 

= − + + + + 
  

∑ ∑

     (7) 

It should be noted that, following the KBM method, Murty et al. [16], Sattar [21], Alam and Sattar [23] impose the 
condition that 1u  must not contains the fundamental terms of (0) .f  So, equation (7) can be separated for unknown functions 

1 1 1 1, , ,A B C D  and 1u  as follows: 

         

3 2 2 2 3
2 2 21 1 1 1 1 1 1 1

13 2 2 2 3

2 3 2 2 3
2 21 1 1 1 1 1 1

12 3 2 2 3

cos 4 4 4 8 12 sin 4 4

12 4 8 cos 4 4 sin 4 4

A A B C D A B Bt C t
t t tt t t t t

C D C C D C DD t t t t
t tt t t t t

λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− + + − + + − + −  ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ 
   ∂ ∂ ∂ ∂ ∂ ∂ ∂

− + − + − + + − + −      ∂ ∂∂ ∂ ∂ ∂ ∂   

{ }

2 1

1

,1 ,1
0

cos sinq
q q

q

D
t

t F t G tλ λ
=

∂ 
∂ 

= − +∑

           (8) 

           { }
22

2
1 , 1 , 12

0 1

cos( 1) sin( 1)q
q q r q r

q r

u t E F r t G r t
t

λ λ λ
∞ ∞

+ +
= =

  ∂ + = − + + + +  
∂      

∑ ∑                                        (9) 

Now, contrasting the coefficients of cos , sin , cost t t tλ λ λ  and sint tλ  from both sides of equation (8), we get 

                 
3 2 2

2 21 1 1 1 1
1 0,13 2 24 4 4 8 12

A A B C DC F
t tt t t

λ λ λ λ
∂ ∂ ∂ ∂ ∂

− + + − + = −
∂ ∂∂ ∂ ∂

                       (10) 

                 
2 3 2

2 21 1 1 1 1
1 0,12 3 24 4 12 4 8

A B B C D D G
t tt t t

λ λ λ λ
∂ ∂ ∂ ∂ ∂

− + − − + − = −
∂ ∂∂ ∂ ∂

                          (11) 

                 
3 2

21 1 1
1,13 24 4

C C D F
tt t

λ λ
∂ ∂ ∂

− + = −
∂∂ ∂

                                                   (12) 

                
2 3

21 1 1
1,12 34 4

C D D G
tt t

λ λ
∂ ∂ ∂

− + − = −
∂∂ ∂

                                                (13) 

Now, for determining the unknown functions 1 1 1 1, , , ,A B C D  we have four equations (10) to (13). Therefore, in order to 
obtain the unknown functions 1 1 1 1, , , ,A B C D  we are compelled to use some widely known operator method. From 
equations (12) and (13) we can determine the unknown functions 1C and 1,D  then substitute them into the equations (10) 
and (11) we can find out the other two unknown functions 1A  and 1.B   

Since , , ,a b c d 

   are proportional to the small parameter ,ε  they become slowly varying functions of time t  and, for 
first approximate solution, we may consider them as constants which are in the right hand side. It should be noted that Murty 
and Deekshatulu [5], and Murty et al. [16] first made this assumption. Therefore, the solution of the equation (4) becomes 

                      

( )

( )

( )

( )

0 1
0

0 1
0

0 1
0

0 1
0

, , , ,

, , , ,

, , , ,

, , , ,

t

t

t

t

a a A a b c d t dt

b b B a b c d t dt

c c C a b c d t dt

d d D a b c d t dt

ε

ε

ε

ε

= +

= +

= +

= +

∫

∫

∫

∫

                                     (14) 

It should be pointed out that equation (9) is an inhomogeneous linear ordinary differential equation. Thus, it can be solved by 
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the widely known operator method. 
Now, substituting the values of , , ,a b c d  and 1u  in the equation (3), we obtain the complete solution of (1). Thus, the 

determination of the first approximate solution is complete. 

3. Example 
An example has been worked out here using the aforementioned method. Let us consider the Duffing type equation of 

fourth order nonlinear differential system 
( ) 3

1 2 3 4
ivx k x k x k x k x xε+ + + + = −                                     (15) 

Comparing (15) with (1), we get  
3( , , , )f x x x x x=  

 
Thus  ( ) ( ){ } ( ){(0) 3 2 2 3 2 23 3cos sin 3 2 cos

4 4
f a ab t a b b t t a c b c abd tλ λ λ= + + + + + +  

( ) } ( ){ ( ) }
({ ) ( ) } ( ){ ( ) }
( ){ ( ) } )({

( )

2 3 2 2 2 2 2

3 3 2 2 3 3 2 2 3

2 2 2 2 2 2 2

2 2

32 3 sin 3 2 cos 2 3 sin
4

3 1cos sin 3 cos3 3 sin 3
4 4
3 32 cos3 2 sin 3 2 cos3
4 4

2 sin 3

abc a d b t t ac bcd ad t bc acd bd t

t c cd t c d d t a ab t a b b t

t a c b c abd t abc a d b d t t ac bcd ad t

bc bd acd

λ λ λ

λ λ λ λ

λ λ λ

λ

+ + + + + + + + +

+ + + + + − + −

+ − − + + − + − −

+ − + } ( ) ( ){ }3 3 2 2 31 3 cos3 3 sin 3
4

t t c cd t c d d tλ λ+ − + −

          (16) 

For equation (15), the equations (9) to (13) respectively become 

( ){ ( ) } ( ){

( ) } ( ) ({ ) ( ){
( ) ( ){ ( )

22
2 2 2 2 2 2 3 3 2

12

2 3 3 2 2 3 2 2

2 2 2 2 2 2 2

3 3 2 cos 2 3 sin cos
4

1sin 3 cos3 3 sin 3 2 cos3
3

2 sin 3 2 cos3 2 sin 3

1
3

u t ac bcd ad t bc acd bd t t c cd t
t

c d d t a ab t a b b t t a c b c abd t

abc a d b d t t ac bcd ad t bc bd acd t

λ λ λ λ

λ λ λ λ

λ λ λ

 
=

∂ + + + + + + + +  ∂ 

+ + + − + − + − −

+ + − + − − + − +

+

−

( ){ ( ) }3 3 2 2 33 cos3 3 sin 3t c cd t c d d tλ λ − + − 

        (17) 

            ( )
3 2 2

2 2 3 21 1 1 1 1
13 2 2

34 4 4 8 12
4

A A B C DC a ab
t tt t t

λ λ λ λ
∂ ∂ ∂ ∂ ∂

− + + − + = − +
∂ ∂∂ ∂ ∂

                                   (18) 

            ( )
2 3 2

2 2 2 31 1 1 1 1
12 3 2

34 4 12 4 8
4

A B B C D D a b b
t tt t t

λ λ λ λ
∂ ∂ ∂ ∂ ∂

− + − − + − = − +
∂ ∂∂ ∂ ∂

                            (19) 

            ( )
3 2

2 2 21 1 1
3 2

34 4 3 2
4

C C D a c b c abd
tt t

λ λ
∂ ∂ ∂

− + = − + +
∂∂ ∂

                                            (20) 

            ( )
2 3

2 2 21 1 1
2 3

34 4 2 3
4

C D D abc a d b d
tt t

λ λ
∂ ∂ ∂

− + − = − + +
∂∂ ∂

                                            (21) 

Solving equations (20) and (21), we achieve 

              { }2 2 2 2 2
1 3

3 ( 2 6 ) (6 2 )
8

C a c a d b d a c a d abd tλ
λ

= + + + + +                                                (22) 

              { }2 2
1 3

2 223 ( (
1

3 ) 2 )3
6

abc a d b d t a c b cD abdλ
λ

+ + + += −                                             (23) 

Inputting the values of 1C  and 1D  from equations (22) and (23) into the equations (18) and (19), and solving them, we get 
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{

}

2 2 2 33 2 2 2
4

2 2 2 2

1 2 ) (3 (3 ) 4 2 6 )
32
(6 2 4 )

2 2 (2 2A a c b c abd a b b a a abc a d b d t

a c b c abd

b

t

λ λ λ λ
λ

λ

= + + + + −

+ +

+ −

−

+ −
                (24) 

        
{

}

2 2
4

2 2

2 2 3 2 2 3
1

2 2

2 6 )

(

3 ( ( ) ( 2 )
16

2 3 )

a c bB abc a d b d a ab a b b

abc

c

a d

abd

td

t

b

λ λ λ
λ

λ

λ= + + − + + + + + +

− + +
                  (25) 

The solution of the equation (17) becomes 

          1 11 12 13 14cos sin cos3 sin 3u u t u t u t u tλ λ λ λ= + + +                                               (26) 

where      2 3 2 2 3 2 2 2
11 7 6

3 3(9 9 15 5 5 ) (15 15 3 )
128 128

tu c d d ac bcd ad c cd bc acd bdλ λ λ λ λ λ
λ λ

= + + + + + + − − −  

           

2 3
2 3 2 2 2 2 3 2

5 4

4 3
2 3 2 2 3 2

3 2

9 (2 2 3 2 9 ) ( 8 12 9 9 )
64 64

3(3 3 3 2 ) ( )
64 320

t tc d d ac bcd ad bc acd bd c cd

t tc d d ac bcd ad c cd

λ λ λ λ λ λ
λ λ

λ λ
λ λ

− + + + + + + + − −

+ + + + + + +

 

           

2 2 3 2 2 3 2 2
12 7 6

2 3
3 2 2 2 2 3 2 2

5 4

4 5
2 2 3 2 2 3

3 2

3 3(5 10 15 9 9 ) (15 15 24 16 8 )
128 128

9 (2 2 2 3 ) (9 9 3 )
64 64

3( 2 3 3 3 ) ( )
64 320

tu bc acd bd c cd c d d ac bcd ad

t tc cd bc acd bd c d d ac bcd ad

t tbc acd bd c cd c d d

λ λ λ λ λ
λ λ

λ λ λ λ λ λ
λ λ

λ λ λ
λ λ

= + + − − + + + + +

+ + − − − − + + + +

+ + + − − + +

 

           

2 3 2 2 2 2 2 2 2 3 3
13 7

2 3 3 2 2 2 2 2 2 2 2
6

2 3
2 3 2 2 2

5 4

1 (162 54 69 138 69 72 36 36 8
2048

324 ) (23 69 24 48 24 8 8 16 )
2048

3 (2 4 3 2 9 ) (3
512 256

u c d d ac bcd ad abc a d b d a

tab c cd bc acd bd a c b c abd

t tad bcd d ac c d cd c

λ λ λ λ λ λ
λ

λ λ λ λ λ λ λ
λ

λ λ λ λ
λ λ

= − + − − − − + −

+ + − − − + − + +

+ + + − − + − 3 )

 

           

2 3 2 2 2 2 2 2 2
14 7

2 3 3 3 2 3 2 2 2 2 2
6

2 3
2 2 3 2 2 2 3 2

5 4

1 (162 54 69 138 69 36 36 72
2048

324 8 ) (69 69 24 48 24 12 8
2048

38 ) (3 9 2 4 2 ) ( 3
512 256

u cd c bc acd bd a c b c abd

ta b b c d d ac bcd ad abc a d

t tb d c cd bc acd bd d c

λ λ λ λ λ λ
λ

λ λ λ λ λ λ λ
λ

λ λ λ λ
λ λ

= − + + − + − −

− + + − + − − − −

+ + − − − + + − )d

 Substituting the values of 1 1 1 1, , ,A B C D  from equations (24), (25), (22) and (23) respectively into equation (4), we get 

          

{
}

2 2 2 33 2 2
4

2

2

2 2 2

2 ) (2 2 (2 23 (3 ) 4 2 6 )
32
(6 2 4 )

a abc a da c b c abd a b d t

a c b c

b b a ab

abd t

ε λ λ λ λ
λ

λ

+ + + + += − − −

+

+

− +



 

          

{
}

2 2 2
4

2 3 2 2 3

2 2 2 2

3 ( ( )2 6 )

(2

( 2 )
16

)3

b a c b c abdabc a d b d a ab a b b

abc a d

t

tb d

ε λ λλ λ
λ

λ

= − + + + ++

− +

++ +

+



                 (27) 

          
{ }2 2 2 2 2

3
3 ( 2 6 ) (6 2 )

8
c a c a d b d a c a d abd tε λ

λ
= + + + + +

 

          
{ }2 2

3
2 223 ( (3

1
3 ) 2 )

6
abc a d b d t a c b cd abd

λ
λ= + + +−+

 
Finally, we discover that all of the equations of (27) have no exact solutions. Nonetheless, since , , ,a b c d 

   are 
proportional to the small parameter ,ε  they are slowly varying functions of time .t It is, therefore, possible to replace 

, , ,a b c d  by their respective values obtained in linear case (i.e., the values of , , ,a b c d  obtained when 0ε = ) in the right 
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hand side of equation (27). This type of substitution was first introduced by Murty et al. [16], and Murty and Deekshatulu [5] 
to solve similar type of nonlinear equations. Thus, the solution of (27) becomes 

                     
{

}

2 2 2 3 2
0 0 0 0 0 0 0 0 0 0 0 0

3
0 4

2 2 2 2 2 2 3
0 0 0 0 0 0 0 0 0 0 0

0

0 0 0

2 ) (2 23 (3 )
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Consequently, we obtain the first approximate solution of the equation (15) as 

                     ( ) { } 1, ( ) cos ( )sinx t a ct t b dt t uε λ λ ε= + + + +                          (29) 

where , , ,a b c d  are given by the equation (28) and 1u  is given by (26). 
 

4. Results and Discussion 
In order to test the accuracy of our analytical solution 

obtained by certain perturbation method, we contrast the 
perturbation results to the numerical results obtained 
using Mathematica 9.0 for the different sets of initial 
conditions. Here, ( , )x t ε  is computed by equation (29), 
where , , ,a b c d  are calculated from equation (28); and 
(26) is used to obtain 1u  when 0.1,ε =  together with the 
different sets of initial conditions. We get the results from 
(29) for different values of t  and figure out the 
corresponding numerical solution using Mathematica 9.0. 
Figure 1 to Figure 4 represent all the results, which show 
the perturbation results and numerical results coincide 
satisfactorily. 

 

 

Figure 1.  Comparison between perturbation and numerical results for 
2λ π=  and 0.1ε =  with the initial conditions 0 0.35,a = 0 0.40,b =

  
 

0 0.05,c = 0 0.25d =  

 

Figure 2.  Comparison between perturbation and numerical results for 
3 4λ π= and 0.1ε =  with the initial conditions 0 0.50,a = 0 0.40,b =  

0 0.15,c = 0 0.20d =  

 

Figure 3.  Comparison between perturbation and numerical results for 
3 2λ π=  and 0.1ε =  with the initial conditions 0 0.40,a = 0 0.35,b =  

0 0.10,c = 0 0.20d =  
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Figure 4.  Comparison between perturbation and numerical results for 
4 3λ π=  and 0.1ε =  with the initial conditions 0 0.35,a = 0 0.40,b =  

 
0 0.05,c = 0 0.25d =  

5. Conclusions 
In conclusion, it can be said that we have modified the 

Krylov-Bogoliubov-Mitropolskii (KBM) method in this 
paper, which is regarded as one of the most widely used 
methods to study the transient behaviour of oscillating 
systems. Subsequently, we have successfully applied the 
modified KBM method to the fourth order critically 
nonlinear oscillatory systems. In relation to the fourth order 
critically nonlinear oscillatory systems, we have obtained the 
solutions in such circumstances where in the eigenvalues are 
pairwise equal and imaginary. It should be noted here that 
much error generally occurs in the KBM method in the case 
of rapid changes of x with respect to time t. Nevertheless, all 
the above figures reveal that, with respect to the different sets 
of initial conditions, the perturbation solutions of the modified 
KBM method correspond completely to the numerical solutions. 
It is, therefore, suggested that the modified KBM method 
gives highly accurate results which can be applied for 
different types of nonlinear differential systems. 
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