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Abstract  The motion of a fluid in an elastic tube when subjected to a pressure-gradient which is a periodic function of 
time is modeled and analyzed. This was done by considering the equations of the motion of the fluid and those of the motion 
of the tube. We obtained the average velocity across the tube and also a better approximation for the rate of flow was 
obtained. 
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1. Introduction 
The problem of determining the motion of a liquid in an 

elastic tube when subjected to a pressure-gradient which is a 
periodic function of time, arises in connection with the flow 
of blood in the large arteries [1]. Performance modeling and 
analysis of blood flow in elastic arteries was investigated by 
G.C. Sharma et al. They estimated the effect of magnetic 
field on rheological model of blood. One of these models, is 
the Power-Low model and the other is generalized Maxwell 
model [2]. Thurston [8] attempted to study all of the 
rheological properties of blood with a model including 
non-Newtonian Viscosity, viscoelasticity and thixotropy. 

J. C. Misra and G. C. Shit studied the effect of magnetic 
field on blood flow through an artery, using a numerical 
model. Blood consisting of a suspension of red blood cells 
containing hemoglobin which contains iron oxide, it is quite 
apparent that blood is electrically conducting and exhibits 
magnetohydrodynamic flow characteristics [3]. P.N. Habu  
et al [12] and [13] investigated the effect of Magnetic Field 
in an Oscillatory flow and particle suspension in a fluid 
through an elastic tube:- An application to blood flow in 
arteries and also Oscillatory flow and particle suspension in a 
fluid through an elastic tube, respectively. 

Erica M. Cherry et al [4] studied Magnetic Drug Targeting 
Applications (MDTA) is a promising proposed technique for 
treating localized disease such as cancer [4]. In the present 
study, we investigated the Oscillatory motion of a viscous 
fluid in a thin-walled elastic tube with induced magnetic  
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field. This can be considered as a proposed therapy for 
treating localized diseases such as cancer. 

The equations of motion of the tube are: 
𝜕𝜕2𝜁𝜁
𝜕𝜕𝜕𝜕 2 = 𝜌𝜌0𝜐𝜐

𝜌𝜌ℎ𝑅𝑅
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑅𝑅 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑦𝑦 = 1� � + 𝐵𝐵
𝜌𝜌
�𝜕𝜕

2𝜁𝜁
𝜕𝜕𝜕𝜕 2 + 𝜎𝜎

𝑅𝑅
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�   (1) 

𝜕𝜕2𝜉𝜉
𝜕𝜕𝜕𝜕 2 = 𝑃𝑃

ℎ𝜌𝜌
− 𝐵𝐵

𝜌𝜌
�𝜎𝜎
𝑅𝑅
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜉𝜉
𝑅𝑅2�             (2) 

with the boundary conditions for the motion of the fluid 

𝑢𝑢 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  at 𝑦𝑦 = 1              (3) 

𝑤𝑤 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  at 𝑦𝑦 = 1              (4) 

The equations of motion of the fluid are [12] 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑤𝑤
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
1
𝜌𝜌0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

+ 𝜐𝜐 �𝜕𝜕
2𝑢𝑢
𝜕𝜕𝑟𝑟2 + 1

𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑧𝑧2 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟2� − 𝜎𝜎ℯ𝐵𝐵0

2u     (5) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑤𝑤 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 1
𝜌𝜌0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜐𝜐 �𝜕𝜕
2𝑤𝑤
𝜕𝜕𝑟𝑟2 + 1

𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕2𝑤𝑤
𝜕𝜕𝑧𝑧2 � (6) 

together with the continuity equation as  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢
𝑟𝑟

+ 𝑤𝑤 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0              (7) 

Since the fluid is subjected to a pressure-gradient which is 
a periodic function of time, we can make the following 
assumptions as in [12] 

𝑃𝑃 = 𝑃𝑃1 exp[𝑖𝑖𝑖𝑖(𝑡𝑡 − 𝑧𝑧 𝑐𝑐⁄ )]   (8) 
𝑢𝑢 = 𝑢𝑢1 exp[𝑖𝑖𝑖𝑖(𝑡𝑡 − 𝑧𝑧 𝑐𝑐⁄ )]   (9) 
𝑤𝑤 = 𝑤𝑤1 exp[𝑖𝑖𝑖𝑖(𝑡𝑡 − 𝑧𝑧 𝑐𝑐⁄ )]        (10) 

with the Womersley Number 𝛼𝛼2 = 𝑛𝑛
2𝑅𝑅
𝜐𝜐

 and  

� 𝑌𝑌 = 𝑟𝑟
𝑅𝑅
�       (11) 

and 𝐵𝐵0
2 is a constants. 
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Neglecting the inertia terms in eqn (5) and (6) and 
substitute (8) to (10) into (5) and (6) respectively, we obtain 
𝜕𝜕2𝑢𝑢1
𝜕𝜕𝑦𝑦2 + 1

𝑦𝑦
𝜕𝜕𝑢𝑢1
𝜕𝜕𝜕𝜕

+ 𝑖𝑖3𝛼𝛼2𝑢𝑢1 −
𝑢𝑢1
𝑦𝑦2 = 1

𝑅𝑅
. 𝑅𝑅

2

𝜌𝜌
𝜕𝜕𝜌𝜌1
𝜕𝜕𝜕𝜕

−  𝜎𝜎ℯ𝐵𝐵0
2𝑢𝑢1 (12) 

𝜕𝜕2𝑤𝑤1
𝜕𝜕𝑦𝑦2 + 1

𝑦𝑦
𝜕𝜕𝑤𝑤1
𝜕𝜕𝜕𝜕

+ 𝑖𝑖3𝛼𝛼2𝑤𝑤1 = 𝑖𝑖𝑖𝑖
𝑐𝑐

. 𝑅𝑅
2

𝜇𝜇
𝜌𝜌1       (13) 

where 𝛼𝛼2 = 𝑛𝑛2𝑅𝑅
𝜐𝜐

 

where the terms in 𝜕𝜕
2𝑤𝑤
𝜕𝜕𝑧𝑧2 , 𝜕𝜕𝜕𝜕

𝜕𝜕𝑧𝑧2 have been omitted, since 𝑛𝑛
2𝑅𝑅
𝐶𝐶2  

is small. 
Similarly, the equation of continuity (7) becomes 

 1
𝑦𝑦
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑢𝑢1𝑦𝑦) = 𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐
𝑤𝑤1             (14) 

If now it is assumed that  where k is to be 
determined, the equation of motion can be integrated as in 
[13], to give 

       (15) 

      (16) 

where 𝛾𝛾2 = 𝑖𝑖3𝛼𝛼2𝛽𝛽2 and  
𝐶𝐶1 and 𝐶𝐶2 are arbitrary constants. If these values of 𝑢𝑢1 

and 𝑤𝑤1 are inserted in the equation (7) it should reduce to an 
identity, i.e from (15) and (16), using (7), we get 

 

  (17) 

  (18) 

For the equation of continuity (14) to be satisfied, (17) and 
(18) must be identical, i.e  

  (19) 

Using (19), equating coefficients of  and 
𝙹𝙹0(𝑘𝑘𝑘𝑘), we obtain 

            (20) 

and 

     (21) 

From (20) we have 

 𝑐𝑐1
𝑐𝑐2

= 𝑖𝑖𝑖𝑖𝑖𝑖

𝑐𝑐𝑐𝑐 𝑖𝑖
3

2�
                (22) 

From (21) 𝑘𝑘2 = 𝑖𝑖2𝑛𝑛2𝑅𝑅3𝐴𝐴
𝑅𝑅𝐴𝐴1𝑐𝑐2 = 𝑖𝑖2𝑛𝑛2𝑅𝑅2𝐴𝐴1

𝐴𝐴1𝑐𝑐2  

𝑖𝑖2𝑛𝑛2𝑅𝑅2

𝑐𝑐2   ⇒ 𝑘𝑘 = 𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐

            (23) 

From [1] we use the approximations, 

 

 inserting these approximations into  

(15) and (16) we get 

         (24) 

        (25) 

At the inner surface of the tube, i.e at 𝑦𝑦 = 1, 

𝑤𝑤1 = 𝑐𝑐2 + 𝐴𝐴1
𝜌𝜌0𝑐𝑐

               (26) 

𝑢𝑢1 = 𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐1
2𝑐𝑐

𝐹𝐹10(𝛾𝛾) + 1
2
𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐

𝐴𝐴1
𝜌𝜌0𝑐𝑐

         (27) 

where                (28) 

The value of 𝜕𝜕𝑤𝑤1
𝜕𝜕𝜕𝜕

 at 𝑦𝑦 = 1 , is also needed to be 
substituted in the equation of motion of the tube. 

Using eqn (16) 
𝜕𝜕𝑤𝑤1
𝜕𝜕𝜕𝜕

= − 𝑐𝑐1
2
𝑖𝑖3𝛾𝛾2𝐹𝐹10(𝛾𝛾) + 1

2
𝑛𝑛2𝑅𝑅2𝐴𝐴1
𝑐𝑐2𝜌𝜌0𝑐𝑐

  at 𝑦𝑦 = 1    (29) 

If it is now assumed that 

𝜉𝜉 = 𝐷𝐷1 exp �𝑖𝑖𝑖𝑖 �𝑡𝑡 − 𝑧𝑧
𝑐𝑐
��     (30) 

𝜁𝜁 = 𝐸𝐸1 exp �𝑖𝑖𝑖𝑖 �𝑡𝑡 − 𝑧𝑧
𝑐𝑐
��     (31) 

where 𝐷𝐷1  and 𝐸𝐸1  are arbitrary constants, the boundary 
condition for 𝑢𝑢1 and 𝑤𝑤1 becomes  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷1𝑖𝑖𝑖𝑖 exp �𝑖𝑖𝑖𝑖 �𝑡𝑡 − 𝑧𝑧
𝑐𝑐
�� = 𝑢𝑢 at 𝑦𝑦 = 1   (32) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐸𝐸1 exp �𝑖𝑖𝑖𝑖 �𝑡𝑡 − 𝑧𝑧
𝑐𝑐
�� = 𝑤𝑤 at 𝑦𝑦 = 1     (33) 

From eqn (32) and (33) 

𝐷𝐷1𝑖𝑖𝑖𝑖 = 𝑢𝑢1 = 1
2
𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐
𝐹𝐹10(𝛾𝛾)𝑐𝑐1 + 𝐴𝐴1

𝜌𝜌0𝑐𝑐
      (34) 

and similarly, 

𝑖𝑖𝑖𝑖𝐸𝐸1 = 𝑐𝑐2 + 𝐴𝐴1
𝜌𝜌0𝑐𝑐

              (35) 
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and the equation of motion of the tube can be written as  

−𝑛𝑛2𝐷𝐷1 = 𝐴𝐴1
ℎ𝜌𝜌
− 𝐵𝐵

𝜌𝜌
�𝜎𝜎
𝑅𝑅
�−𝑖𝑖𝑖𝑖𝐸𝐸1

𝑐𝑐
� + 𝐷𝐷1

𝑅𝑅2�  and                             (36) 

−𝑛𝑛2𝐸𝐸1 = 𝜌𝜌0𝜐𝜐
𝜌𝜌ℎ𝑅𝑅

�− 𝑐𝑐2
2
𝑖𝑖3𝛾𝛾2𝐹𝐹10(𝛾𝛾) + 1

2
𝐴𝐴1
𝜌𝜌0𝑐𝑐

 𝑛𝑛
2𝑅𝑅2

𝑐𝑐2 � + 𝐵𝐵
𝜌𝜌
�−𝑛𝑛

2𝐸𝐸1
𝑐𝑐2 + 𝜎𝜎

𝑅𝑅
�−𝑖𝑖𝑖𝑖

𝑐𝑐
�𝐷𝐷1�                (37) 

Eqns (34), (35), (36) and (37) are four homogeneous equations in the arbitrary constants 𝐴𝐴1, 𝑐𝑐2, 𝐷𝐷1 and 𝐸𝐸1. 
Eliminating them will give a “frequency equation” which will determine the wave-velocity, c, in terms of the elastic 

properties of the tube and the non-dimensional parameter 𝛾𝛾. From [12], the result of the elimination will give 

�

�

1
𝜌𝜌0𝑐𝑐      

                               1
𝑖𝑖𝑖𝑖𝑖𝑖

2𝑐𝑐2𝜌𝜌0
                            𝐹𝐹10 (𝛾𝛾)𝑖𝑖𝑖𝑖𝑖𝑖

2𝑐𝑐

0            −𝑖𝑖𝑖𝑖
−𝑖𝑖𝑖𝑖               0

1
ℎ𝜌𝜌

                        0
−𝜌𝜌0𝜐𝜐

2𝜌𝜌
1

ℎ𝑅𝑅𝜌𝜌0𝑐𝑐
. 𝑛𝑛

2𝑅𝑅2

𝑐𝑐2     −𝑖𝑖 2𝜌𝜌0⁄ 𝜐𝜐𝜐𝜐 2𝐹𝐹10 (𝛾𝛾)
𝜌𝜌ℎ𝑅𝑅

     𝑛𝑛2 − 𝐵𝐵
𝜌𝜌𝑅𝑅2

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐𝑐𝑐

−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐𝑐𝑐

𝑛𝑛2 �1 − 𝐵𝐵
𝜌𝜌𝑐𝑐2�

�

�
= 0                 (38) 

Operating on the columns and row of equation (38) several times we obtain 

�
1 − 𝐹𝐹10(𝛾𝛾) 2 1

1 𝑥𝑥 1 + 𝜎𝜎𝜎𝜎
1
2
𝐹𝐹10(𝛾𝛾)𝑅𝑅 −𝜎𝜎𝜎𝜎 (𝑘𝑘 − 𝑥𝑥)

� = 0                              (39) 

where 𝑘𝑘 = ℎ𝜌𝜌
𝑅𝑅𝑅𝑅0

, 𝑥𝑥 = 𝑘𝑘𝑘𝑘
𝜌𝜌0𝑐𝑐2  

(39) becomes, 

(1 − 𝜎𝜎2)�1 − 𝐹𝐹10(𝛾𝛾)�𝑥𝑥2 − 𝑥𝑥 �2 + 𝑘𝑘�1 − 𝐹𝐹10(𝛾𝛾)� + 𝐹𝐹10(𝛾𝛾) �1
2
− 2𝜎𝜎�� + 𝐹𝐹10(𝛾𝛾) + 2𝑘𝑘 = 0            (40) 

 

Hence the roots of (40) are given by [12] 
(1 − 𝜎𝜎2)𝑥𝑥 = 𝑃𝑃 ± [𝑃𝑃2 − (1 − 𝜎𝜎2)𝐻𝐻]       (41) 

where      𝑃𝑃 =
1+1

4−𝜎𝜎

1−𝐹𝐹10 (𝛾𝛾) + �𝑘𝑘
2

+ 𝜎𝜎 − 1
4
�        (42) 

𝐻𝐻 = 1+2𝑘𝑘
1−𝐹𝐹10 (𝛾𝛾) − 1              (43) 

Now the details of the motion of the fluid at a particular 
value of Z, i.e over a short length of artery, will be studied. If 
the origin of Z is taken at the midpoint of this short length, 
the longitudinal velocity will be [1] 

       (44) 

where the value of 𝑐𝑐3 is to be determined from the boundary 
conditions. From (34), (35) and (36), 𝐷𝐷1  and 𝐸𝐸1  can be 
eliminated. If in the resulting equation, ɧ is written for the 
ratio of 𝑐𝑐3 to 𝐴𝐴1

𝜌𝜌0𝑐𝑐
, the value of ɧ is given by [1] 

ɧ = 2
x(𝐹𝐹10 (𝛾𝛾)−2σ)

− 1−2σ
𝐹𝐹10 (𝛾𝛾)−2𝜎𝜎

         (45) 

where 𝑥𝑥 is the root of eqn (40), since 𝑐𝑐3 = 𝐴𝐴𝑛𝑛
𝜌𝜌0𝑐𝑐

  it follows 
that  

        (46) 

The first point to be noted is that for a given 
pressure-function, pressure gradient is inversely proportional 

to the wave-velocity, so that the velocity of the fluid and 
there the amount of flow, will be proportionately greater, in 
that which is more elastic. 

The constant 𝐴𝐴
𝜌𝜌0𝑐𝑐

 may be written as [1] 

−𝑖𝑖𝑖𝑖
𝜌𝜌0𝑐𝑐

�−1
𝑖𝑖𝑖𝑖
� 𝐴𝐴                (47) 

and since 𝛼𝛼2 = 𝑛𝑛𝑅𝑅2

𝜐𝜐
, this may be written as 

𝐴𝐴
𝜌𝜌0𝑐𝑐

= 𝐴𝐴′ 𝑅𝑅2

𝑖𝑖3𝛼𝛼2𝜇𝜇
                (48) 

where 𝐴𝐴′  is the quantity that will be given by Fourier 
Analysis of the observed pressure-gradient. The average 
velocity across the tube is  

𝑤𝑤� = 𝐴𝐴
𝜌𝜌0𝑐𝑐

�1 + ɧ𝐹𝐹10(𝛾𝛾)�ℯ𝑖𝑖𝑖𝑖𝑖𝑖         (49) 

This can be put in the form 

𝑤𝑤� = 𝐴𝐴′ 𝑅𝑅2

𝜇𝜇
𝑀𝑀10
′′

𝛼𝛼2 sin�𝑛𝑛𝑛𝑛 − 𝜑𝜑ɛ10�       (50) 

For a pressure-gradient  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑛𝑛𝑛𝑛 − 𝜑𝜑) and the values of 
𝑀𝑀10
′′  and ɛ10

′′
  compared with those of 𝑀𝑀10

′  and ɛ10

′
 for the 

right tube. That is [1] 

𝑤𝑤� = 𝐴𝐴
𝜌𝜌0𝑐𝑐

�1 + ɧ𝐹𝐹10(𝛾𝛾)�ℯ𝑖𝑖𝑖𝑖𝑖𝑖   

= 𝐴𝐴
𝜌𝜌0𝑐𝑐

𝑀𝑀ℯ𝑖𝑖(𝑛𝑛𝑛𝑛−𝜑𝜑), now express in terms of phase. 

= 𝐴𝐴
𝜌𝜌0𝑐𝑐

𝑀𝑀[𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝑛𝑛 − 𝜑𝜑) + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛 − 𝜑𝜑)]       (51) 

∴   Expressing 𝑤𝑤�  in real form, means 

 



100 P. N. Habu et al.:  Oscillatory Motion of a Viscous Fluid in a Thin-Walled Elastic Tube with  
Induced Magnetic Field: A Proposed Therapy for Cancer and Hypertension Treatment 

𝑤𝑤� = 𝐴𝐴
𝜌𝜌0𝑐𝑐

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑛𝑛𝑛𝑛 − 𝜑𝜑)         (52) 

where              𝑀𝑀 = 1 + ɧ𝐹𝐹10(𝛾𝛾)            (53) 

for 𝜎𝜎 = 1
2
 and  𝜎𝜎 = 0 

ɧ𝐹𝐹10(𝛾𝛾) are; when 

𝜎𝜎 = 1
2
,  ɧ = 2

x(𝐹𝐹10 (𝛾𝛾)−1)
− (1−1)

(𝐹𝐹10 (𝛾𝛾)−1)
 

∴                                  ɧ = 2
x(𝐹𝐹10 (𝛾𝛾)−1)

             (54) 

1 + ɧ𝐹𝐹10(𝛾𝛾) = 1−2𝐹𝐹10
x�1−𝐹𝐹10 (𝛾𝛾)�

       (55) 

when             𝜎𝜎 = 0, ɧ =
�1−2

x�

𝐹𝐹10 (𝛾𝛾)             (56) 

1 + ɧ𝐹𝐹10 = 2
x
               (57) 

Using these formulae and the corresponding one for 
𝜎𝜎 = 1

4
 , the values of  𝑀𝑀10

′′  and ɛ10

′′
 have been calculated 

by Womersley [1] for 𝜎𝜎 = 1
2

, 1
4

, 0  for the first four 
harmonics at the femoral artery. The formula for the rate of 
flow might at first sight be written as [1] 

𝑄𝑄 = 𝐴𝐴
𝜌𝜌0𝑐𝑐

𝜋𝜋𝑅𝑅2�1 + ɧ𝐹𝐹10(𝛾𝛾)�ℯ𝑖𝑖𝑖𝑖𝑖𝑖         (58) 

But this is only an approximation, since at any time the 
value of the radices is not R, but (R+𝛏𝛏), and varies with the 
time. Therefore we obtained the approximation as 

𝑄𝑄 = 𝐴𝐴
𝜌𝜌0𝑐𝑐

𝜋𝜋 �1 + 2 ξ 
𝑅𝑅
�

2
𝑅𝑅2�1 + ɧ𝐹𝐹10(𝛾𝛾)�ℯ𝑖𝑖𝑖𝑖𝑖𝑖  ,  

which agrees with [1]            (59) 

2. Conclusions 
We have shown that the flow rate, 𝑄𝑄, contains    𝐹𝐹10(𝛾𝛾), 

showing that 𝜎𝜎ℯ𝐵𝐵0
2  the applied magnetic field affects the 

flow rate. Also the longitudinal velocity, contains a function 
of 𝛾𝛾,  thereby pointing out that over a short length of the 
artery, the velocity is affected by the applied magnetic field. 
Magnetic Field Therapy (MFT) is one of the world’s oldest 
forms of healing. The first documented references to MFT in 
Medicine were made over 6,000 years ago (Google). For the 
study of Magnetic Field in the treatment of Cancer and 
hypertension, see [16] and [17] respectively. We therefore 
consider our model as a proposed therapy for Cancer and 
Hypertension treatment. 
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