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Abstract  Author of this paper tries to apply Heisenberg Uncertainty Principle in time series analysis. After implementing 
the Heisenberg Uncertainty principle and making a connection between quantum mechanics and time-series analysis, notion 
of Gabor atom has been introduced. Gabor atom is a concept also taken from quantum physics and it is characterized by the 
minimal time-spread in time frequency plane. After developing the theory characteristic to Gabor atom, it was shown that the 
original time series can be reconstructed from Gabor’s resonance coefficient by using double integral. At the same time, it is 
proved that there is no problem with the time-frequency localization of Gabor frames at the critical density. It is shown that 
from a practical point of view the issue of time-frequency concentration still exist, but only in the form of numerical 
instabilities or bad condition numbers for critically sampled Gabor frames. 
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1. Introduction 
When considering uncertainty, the following concept must 

be applied: 
Schroeder said that one of the fundamental consequences 

of uncertainty is the very size of atoms, which, without it, 
would collapse to an infinitesimal point. [1]. Uncertainty is 
defined as lack of certainty, not being able to make a decision 
on a safe basis. 

In order to approach Heisenberg uncertainty principle, 
firstly we must define Heisenberg uncertainty principle in 
quantum mechanics. Uncertainty principle is defined as any 
variety of mathematical equations that provide limited 
knowledge of certain pairs of physical properties of 
complementary variables that can be known pertaining in 
that sense to complementary variables like position x  and 
momentum ρ  [1]. 

The uncertainty principle states the main characteristic of 
quantum systems. 

2. Theoretical Background 
Heisenberg principle applied in risk management and 

time-series analysis can be formulated in the following way 
[2]: 
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The Uncertainty principle asserts that there are no time 
series with finite risk which is compactly supported both in 
the time and frequency domains [2]. 

In order to prove the following assertion, we will compare 
two approaches. One approach is classical quantum 
approach, where we will try to establish analogy between 
quantum physics and time series analysis and the other one is 
classical econometrical approach [3]. 

Firstly, we will demonstrate classical econometrical 
approach taken from Cornelis Los [2]. 

We define equivalent time duration DΤ  of ( )x t  by 

0

1 ( )DT x t dt
x

∞

−∞
= ∫             (1) 

where (0) 0x ≠  

At the same time, we define the spectral bandwidth BW  
of ( )x t  by 

1 ( )
(0)BW F w dw

F

∞

−∞

=  ∫      (2) 

where (0) 0F ≠ . 
Uncertainty principle by Heisenberg states that the 

product of equivalent spectral bandwidth and time duration 
of a time series ( )x t  cannot be less than a certain minimum 
value, which is given by the following equation. 

2B DW T π≥               (3) 
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The proof is the following: 
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Similarly, if we do the same for BW , we have 
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Using these two equations, we obtain the following: 

2 (0)(0) (0) 2D B D
B

xx T F W T
W
π π≥ ≥ ⇒ ≥    (6) 

The conclusion is that Uncertainty principle in time-series 
analysis holds and the following equation proves it: 

2B DW T π≥                  (7) 

If we want to compare it to Heisenberg principle of 
uncertainty in quantum physics, we use the equation given 
by Earle Hesse Kennard and Herman Weyl. 

2p xσ σ
π

≥


                (8) 

where pσ  represents the standard deviation of momentum 

while xσ  denotes the standard deviation of position of a 
particle. 

The two equations look very similar, except that here 
Plack constant plays its role because of quantum 
phenomenon. 

In order to continue our analysis, we will repeat the 
uncertainty principle which states that there is no finite risk 
time series ( )x t  which is supported in time and frequency 
domains. In other words, according to Cornelis A. Los [2] 
the risk spread of variable and Fourier time-frequency cannot 
be simultaneously small. In order to surmount the 
aforementioned problem, we will take idea from Hungarian 
physicist Gabor who defined, inspired by quantum physics, 
elementary time-frequency ‘atoms’ or ‘kernels’ that have 
minimal time-spread in the time-frequency plane. 

Gabor atoms [4] are given by the following form and are 
constructed by time translation by period τ  and frequency 
modulation (frequency ε ) of the original time window 

( )g t : 

, ( ) ( ) j tg t g t e ξ
τ ξ τ= −           (9) 

such that  

2 ( ) 2g t dtdτ τ π
∞

−∞
− =∫         (10) 

Gabor’s atom [4] is a product of sinusoidal wave 
j te ξ

 
with a finite risk symmetric window. The risk of , ( )g tτ ξ  is 
dependable and simmetrically concentrated in the time 
neighborhood of τ  over an interval size tσ , measured by 

the standard deviation of 2g  and with a frequency center 

ξ . Gabor atoms can be seen as changing analyzing filters 
which adapt to frequency in time series ( )x t  associated 
with frequency ξ  in the neighborhood of time horizon τ . 

The Fourier transform of the Gabor atom is a frequency 
translation by ξ : 
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The equation above proves that the risk of , ( )G wτ ξ  is 

localised near the frequency ξ  over an interval of size w , 
so it measures the domain where Gabor resonance 
coefficient ( )G w  is non-negligible. 

How can this be applied to time-series analysis? 
The original Fourier transform[5] represents a time series 

as the sum of sinusoidal waves in which resonance 
coefficients are correlation coefficients. The aforementioned 
sinusoidal waves are because of Uncertainty principle, very 
well localized in frequency, but not in time, since their 
support has infinite length. But we want to analyse time 
series that are very well localized both in time and freqency 
something that is similar to Gabor atoms. 

If we take for example Heisenberg box. Gabor’s 
Heisenberg Box is centered at ( , )u ξ  and has a time 

dispersion tσ  and a frequency dispersion ωσ . The 
Uncertainty principle proves that Heisenberg box satisfies 
the following inequality: 

1
2t ωσ σ ≥             (12) 

What the following inequality proves is that there cannot 
exist an instantaneous frequency analysis for finite risk time 
series. Therefore time-frequency localization is achievable 
only in the mean squares sense as visualized by Heisenberg 
box. To be more thorough we can say that if the  time series 

( )x t  is non-zero with compact support, then its Fourier 
transform in the frequency domain cannot be zero on a whole 
frequency interval. At the same time, if Fourier transform is 
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compactly supported, then the time series cannot be zero on a 
whole time interval. 

So the definition or better axiom is the following: 
If the Heisenberg constraint is satisfied, it is impossible to 

have a function in 2L  space, which is compactly supported 
both in time and frequency domain. 

In order to finalize, we will show how original time series 
( )x t  can be reconstructed from Gabor’s resonance 

coefficients by the following double integral. 
Firstly, we represent Gabor’s Transform as a scalar 

function, with two arguments, time horizon τ  and 
frequency ξ . 

Gabor’s Transform correlates the time series ( )x t  with 

each Gabor atom , ( )g tτ ξ  to produce the following 
resonance coefficients: 
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The last equation is a consequence of Parseval’s Formula: 
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If we put in Parseval’s formula h x= , we obtain: 
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again using Parseval’s formula. 
As a final result, we would like to present a formula 

demonstrating the reconstruction of original time series 
( )x t  from Gabor’s resonance coefficient by the following 

double integral. The formula is the following: 
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The above given equation represents a time series as a sum 
of localized waves weighted by the profile of the chosen 
taper or window. This shows that Gabor’s Transform has a 
constant time-frequency resolution. This resolution can be 
changed by rescaling the window g . This is easy to model 
and represents the complete, stable and redundant 

representation of the systematic part of time series. 
In order to conclude, we will introduce a spectrogram 

which can be used to measure the risk of financial time series 
( )x t  in the time frequency neighborhood of ( , )τ ξ  that is 

given by the Heisenberg box. This implies that it is possible 
to measure and visualize the localized risk of a financial time 
series, instead of average risk. 

The formula is given below: 
2
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where  
( )x t  is a spectral line 
( , )S τ ξ  is a windowed Fourier resonance coefficient 
( )tξ  is a frequency that depend on the time τ . 

3. Theoretical Results 
The results we obtained are based on the following 

Heisenberg hypothesis: 
If the Heisenberg constraint is satisfied, it is impossible to 

have a function in 2L  space, which is compactly supported 
both in time and frequency domain. 

It is known that on R , Gabor frames at the critical 
density are not an appropriate tool for time –frequency 
analysis. The proof of that is based on Balian-Low theorem 
[6]. 

Balian-Low theorem states the following: 

If a Gabor system { }2
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where  2( ) ( ) i tg g t e dtπ γγ
∞

−

−∞

= ∫  is the Fourier 

transform of g , R  is the real line and Z  is the set of 
integers. 

The Balian-Low theorem proved the square-integrability 
of the partial derivatives of the function, but it didn’t imply 
continuity of the function itself in two dimensions and 
higher. 

As with the Uncertainty principle this formulation cannot 
be extended to arbitrary local compact abelian groups 
because of lack of differentiation operators and lack of 
canonical weights. 
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However we will be considering groups containing compact open subgroup. 
Proposition. If G  is a local compact abelian group containing a compact open subgroup K, then there exist a window 

2 ( )g L G∈  and a discrete set 


X G G⊆ ×  such that { }( , )dM T g d Xλ λ ∈  is an orthonormal basis for 2 ( )L G  and 



1( )gV g L G G∈ × . 

Proof of the aforementioned proposition can be found in Grochenig paper [6]. 
Whereas on R the short Fourier transform is obviously not in 1L , and the corresponding (orthonormal basis) ONB is badly 

localized in frequency, it is really interesting to see the window g  constructed on G . 
We will want to show that the Fourier transform of compact open subgroup is in the Fourier algebra. 
We have the following: 
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So we get the following: 
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Since we have 

( )( ) ( ) ( ) ( ) ( ) ( )K K K K K x K
G G

x y x y dy y dy K K xχ χ χ χ χ λ χ∩ +∗ = − = =∫ ∫        (21) 

 
the following result is obtained: 

 
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K

χ χ
λ
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If we integrate both sides, the following is obtained: 

 
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1 2
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This proved that 

1( )gV g L G G∈ × . 

This result proved that in discrete and compact groups 
which are used for numerical simulation- there is no problem 
with the time frequency localization of Gabor frames at the 
critical density [6]. 

4. Conclusions 
This paper presented a novel approach to time-series 

analysis by using tools of quantum physics. Quantum 
finance is a slowly developing subject, but this paper made a 
little contribution to its development. It introduced 
Heisenberg Uncertainty Principle in time series analysis and 
at the same time introduced the notion of Gabor atom which 
enabled the reconstruction of original time series. It proved 
that Heisenberg Uncertainty principle in time- series analysis 
can be surmounted by using Gabor atom by proving that 

discrete and compact groups which are used for numerical 
simulation exhibit no problem with the time frequency 
localization of Gabor frames at the critical density. The given 
approach is interesting and has further application in time 
series analysis. 
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