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Abstract  We study the linear stability of a steady displacement of an Oldroyd-B fluid by air in a Hele- Shaw cell. We 
obtain the perturbations equations from the full basic flow equations and we perform a depth-average procedure (across the 
Hele-Shaw gap) in the dynamic boundary condition at the interface. The new element is an exact formula of the growth 
rate (in time) of perturbations, obtained in the range of small Deborah numbers which appear in the constitutive relations. 
If the Deborah numbers are equal, then our growth rate is quite similar to the Saffman-Taylor formula for a Newtonian 
liquid displaced by air. We prove the destabilizing effect of the elasticity properties of the Oldroyd-B fluid, in agreement with 
some previous numerical results is this field. 
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1. Introduction 
Some fluids, as polymeric liquids, biological liquids, 

magma, are described by non-linear relations between the 
Cauchy stress tensor and strain-rate tensor and are called 
non-Newtonian fluids. The viscous and elastic properties of 
the non-Newtonian fluids are studied in a large number of 
papers - see [1-5]. 

The Oldroyd-B model was introduced by J. Oldroyd [6] in 
1950. Such models of rate type, as Maxwell upper convected 
and Oldroyd-B, can be used to describe the polymeric flows, 
often related with the secondary oil recovery process in a 
porous medium, approximated by the Hele-Shaw model. In 
this field we refer to [7-9]. 

Numerical simulations of an Oldroyd-B flow in pipes are 
given in [10], [11]. Some results related with the stability of a 
thin film flow with visco-elasticity effect are given in [12]. 

In this paper we consider the steady displacement of an 
Oldroyd-B fluid by air in a horizontal Hele-Shaw cell and 
study the interface stability. The Hele-Shaw plates are parallel 
with the xOy plane; the gap between is denoted by b. The Oz 
axis is orthogonal on the plates. We use the constitutive 
equations (2). The perturbations equations (14), (15), (24), 
(25) are derived from the basic equations (8), (11), (12). A 
scaling procedure allows us to neglect the vertical component 
w of the perturbed velocity - see relations (18) and (19). We 
use the Fourier mode decomposition (22) with amplitude f (z) 
for the perturbed velocities (u, v). An approximate formula 
of the amplitude f is given in formula (46), by using the 
particular flow geometry (a very “thin” Hele-Shaw cell). This 
allows us to perform a depth-average procedure in the   
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dynamic boundary conditions (33) - (34) (i.e. Laplace law) as 
a final step, and we obtain the dispersion relation (52), given 
by a ratio. This explicit formula for the growth rate (in time) 
of perturbations in terms of the problem data is the novelty of 
our paper. 

The denominator of the ratio (52) contains a term 
depending on (a1 − a2), where a1, a2 are the relaxation and 
the retardation (time) constants appearing in the constitutive 
relations (2) of the Oldroyd-B fluid. When a1 = a2, our 
formula (52) is quite similar with the Saffman-Taylor formula 
[13] for a Newtonian liquid displaced by air (see the last part 
of section 5). 

Our dispersion relation shows us that the displacement 
process of an Oldroyd-B fluid by air can be more unstable, 
compared with the displacement of a Newtonian liquid by air, 
so the elasticity properties have a destabilizing effect - see 
section 6, in agreement with some numerical previous results 
(see [7] below). 

Wilson [7] considered a different scaling procedure and 
numerically solved a quite similar set of perturbation 
equations from which he obtained numerical values of the 
growth rate σ, for Deborah numbers near 1. 

Mora and Manna [8], [9] studied the linear stability of the 
displacement of a Maxwell upper-convected fluid and 
generalized non-Newtonian fluids in a Hele-Shaw cell and 
obtained numerical values for the growth rate of 
perturbations, in the range of large Deborah numbers. 

The growth rate (52) can be unbounded in the range of 
small Deborah numbers. The possible singularities may be 
related with the fractures observed in the flows of some 
complex fluids in Hele-Shaw cells - see [14-18]. 

The paper is laid out as follows. The constitutive equations 
for the Oldroyd-B fluid are given in section 2. In section 3 we 
describe the basic flow and we obtain the equations of 
perturbations. In section 4 we describe the kinematic and 
dynamic boundary conditions on the interface air-liquid, that 
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means the Laplace law, used also in [7]. The dispersion 
relation (52) is given in section 5. We conclude in section 6, 
where some plots are given, proving the destabilizing effect 
of the elasticity properties of the Oldroyd-B fluid. 

2. The Oldroyd-B Fluid 
We consider the following definitions. The extra-stress 

tensor, the fluid viscosity, the relaxation and retardation 
(time) constants and the pressure are denoted by τ, η, a1, a2, 
p. 

The 3 × 3 matrix containing the partial derivatives of the 
velocity components u, v, w is denoted by L and the 
strain-rate tensor is denoted by D: 

D = (L + LT), (Lij)T = Lji. 

The flow equations are: 
−∇p + ∇ · τ = 0.              (1) 

The partial x derivative of the components τij are denoted 
by τij,x etc. 

We have the following constitutive relations between τ and 
D 

τ + a1τ ∇ = η[D + a2D∇], a1 > a2 > 0,  (2) 

where τ ∇ and D∇ are the upper convected derivatives 

τ ∇ = τt + v∇τ − (Lτ + τ LT), 
D∇ = Dt + v∇D − (LD + DLT), 

where τt, Dt are partial time derivatives. As we consider a 
steady displacement, these time derivatives will be 
neglected. 

We consider an incompressible fluid, then we have the 
free divergence condition: 

ux + vy + wz = 0.             (3) 

The boundary conditions are: 

i)  the non-slip condition for the velocity components 
on the plates; 

ii)  the Laplace’s law on the air-fluid inter- face - see 
relations (33) - (34) below. 

3. Basic Steady Flow and Perturbations 
We first consider the flow driven by the constant pressure 

gradients in the x, y directions and two velocities u, v 
depending only on z. The elements of this basic flow are 
denoted by the superscript 0. The subscripts denote the 
partial derivatives with respect to x, y, z. The basic pressure 
and velocity are denoted by 

( ) ( )

0 0 0

0 0 0

( ( ), ( ),0),
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The steady state basic solution depends only on z and is 
verifying the following constitutive relations 

τ0 − a1(L0τ0 + τ0L0T) = η[D0 − a2(L0D0 + D0L0T)], (5) 
where only two elements of L0 are non-zero: 

0 0 0 0
13 23,z zL u L u= =              (6) 

0 0 0 .TD L L= +               (7) 

Then the components 0
ijτ  of the basic extra-stress tensor 

are given in terms of the basic velocity components by the 
equations 
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An immediate consequence of the above relation is 0
33τ  

= 0. Other components of the basic extra-stress tensor are 
0 0 0 0
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           (11) 

As 0
ijτ  are depending only on z, we have 

0 0 0 0 0
13, 23,, , 0.x z y z zp p pτ τ= = =       (12) 

From the equations (11)-(12) it follows 
0 0 0

13, ,x z zzp G uτ η= = =         (13) 

where G is a negative constant. 
The perturbations of the basic steady flow are denoted by 

τ, D, p, u, v, w, dropping the super index 0. In the following 
we will refer only to the perturbed quantities, then no 
confusion is possible with the notations of the previous 
section 2. 

The basic relations (11) are giving us 

13 23
0
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0 0

12 1 2 1 2

0
22 1 2

, ,

2 4 ,

2
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2 4 .
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(14) 

We can see that only the perturbations τ12, τ22 are 
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depending on v0. If w = 0 (see the basic flow (16)) we get 
33τ  = 0 - see the justification (21) below.  
The perturbed flow equations are 

11, 12, 13,

21, 22, 23,

31, 32, 33,

,
,

.

x x y z

y x y z

z x y z

p
p

p

τ τ τ
τ τ τ

τ τ τ

= + +
= + +

= + +
         (15) 

Consider now the flow driven by constant pressure 
gradient only in the x direction and velocity u depending 
only on z: 

0 0

0 0

( ( ),0,0),

v ( ( ), ,0).
xp p x

u z

∇ =

=
            (16) 

The first three perturbations (14) are not depending on v0. 
Then we follow Mora and Manna [8], [9] and consider that 
formulas (14)1 - (14)3 still hold. Only (14)4 and (14)5 become  

0
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22

( ) 2( ) ,

2 .
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y

u v a a u v

v

τ µ η

τ η

= + + −

=
   (17) 

Let l, b be the width and gap of the Hele-shaw cell. We 
introduce the scaling 

3 2

/ , / , / ,

/ , / 10( ,10 )i i

x x l y y l z z b

u u U b l − −

′ ′ ′= = =

′ = = ∈
     (18) 

where the characteristic velocity U will be defined latter in 
the formula (30). 

We use the free-divergence condition, the above scalings 
and get w = 0. Indeed, we have 

{ } 0x y z
U Uu v w
l b′ ′ ′′ ′ ′+ + =  

and because   = b/l ∈ (10−3, 10−3) we can conclude 

0, 0x y zu v w′ ′ ′′ ′ ′+ = =           (19) 

therefore we obtain wz = 0, 

0x yu v+ =                (20) 

and from non-slip conditions on the Hele-Shaw plates we get 
w = 0. 

As w = 0, we insert the perturbations in equations (8) and 
conclude that in this case 

33 0.τ =                 (21) 

The following Fourier mode decomposition for velocities 
is considered 

( ) ( ) ( )
( ) ( ) ( )

,
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then the free divergence condition (20) is giving 
.nα = −                 (23) 

The free-divergence condition is also giving 
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Then from the formulas (14), (15), (17)1, (22) it follows 
0

11, 12, 13, 1 2  ( ,)2x x y z z zx zzp a a u u uτ τ τ η η= + + = − +  (24) 

11, 12, 13,

0
1 2 13,( ) ( .)2
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− = +

= + + − +
 (25) 

From (14), (15), (20), (21) it follows 

 0.zp =                 (26) 

4. The Laplace Law 
We consider non-slip conditions for the velocities on the 

Hele-Shaw plates, then from the relations (13) we get 

( )0 2 / 2,Gu z bz
η

= −            (27) 

which are positive: 0 0xp <  and ( ) 0z z b− <  in the range 

( )0,z b∈ . 
We follow Wilson [7], then the pressure can depend on the 

time t: 

( )0 0 0, .p G x u t x u t= − < > > < >
  

  (28) 

This is equivalent with formula (7) given in Wilson [7]. 
We average across the plates in the above relation and obtain 

2
0 0

0

1 ;
12

b Gbu u dz
b η

< >= = −∫          (29) 

this last relation is used to introduce the characteristic 
velocity U 

2
0 .

12
GbU u

η
= < > = −           (30) 

Even if our basic velocity is depending on z, we follow 
Wilson [7] and consider the kinetic and dynamic boundary 
condition on the steady air-liquid interface given by the 
straight line 

0 .x u t=< >  
The perturbed interface is 

0 ;x u tψ = − < >             (31) 

as the interface is material, we have 
0.t u perturbation of uψ = =         (32) 

From (28) we get the Laplace law on the air-liquid 
interface 

( ) { }11 ,yy zzG pψ τ γ ψ ψ+ − = ⋅ +       (33) 

where γ  is the surface tension on the interface air-liquid 
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and ψ  is the perturbation of the straight initial interface 
(31). The relation (32) is giving 

/ .uψ σ=                 (34) 

The total curvature of ψ  in the plane xOy is 

approximated by { }yy zzψ ψ+ . 

The relations (31) - (34) are used also in Wilson [7]. 

5. The Dispersion Relation 
We use the notation 

exp( )cos( ).I x t nyα σ= +          (35) 

As the derivative with respect to x is equivalent with 
multiplication with (−n), the relations (22), (14)3, (31) are 
giving 

( )
( )

( )
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( / ) ,

( / ) ,

2 / .
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zz

n f z I

n f z I

I
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ψ σ
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=

          (36) 

Recall the partial derivative with respect to x is equivalent 
with multiplication with (−n), then from the relation (25) it 
follows 

{ }2 0
1 2

1 2 2 ( )u z z zzp n f n a a f f I
n

τ η η η − = − − + − + 
 

(37) 

The relations (33) and (37) are giving 

( )
3

2 0
1 22 2 2 2 .z z
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σ σ σ

 −
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 
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The last step is to average across the plates in the above 
relation. We need the expression of the amplitude function 

( )f z  appearing in the Fourier modes decomposition (11). 
For this we use our particular flow geometry and obtain the 
approximate formula (46) below. 

We introduce the dimensionless quantities 

1 , ,p p n nl
Gl

′ ′=     =           (39) 

1 1 2 20, 0.Gl GlQ a Q a
µ µ

= <     = <       (40) 

Recall (2), 1 2 0a a− > , then 

1 2 0.Q Q− <              (41) 
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z
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then the last two relations and (24) are giving 
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In the left part of the above relation we put G = −12µU/b2 

(see the relation (30)), we simplify with U, then it follows 

( )( ) 2
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Recall (26), then 0, 0z zp p ′′= =  the above relation (43) 
is giving 

( )( )1 2
2 1 0( ) 2 1 z z z z zQ Q

n
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′
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where 

( ) ( ) ( ) ( )1 exp cos ,u z f bz n x t n y
U

σ′ ′ ′ ′ ′ ′ ′ ′ ′= − +  

( )0,1 , t ,z tl U′ ′∈      =  
and σ ′  is given in the relation (48) below. 

We can see that: 

- if ( )0
1 2 ,Q Q O− ≈   then 0z z zf ′ ′ ′ =  is verifying 

equation (44) with the precision order ( )2O  ; 

- if ( )1 2
1 ,Q Q O −− ≈  , then 0z z zf ′ ′ ′ =  is verifying 

equation (44) with the precision order ( )O  . 

We consider the following condition: 

( )1 2
1 ;Q Q O −− ≈             (45) 

the non-slip conditions on the Hele-Shaw plates are giving 
the ( )O   approximate solution 

( ) ( ).f z z z b= −             (46) 

We perform the average across the plates, we use (27), (30) 
and obtain 

( ) ( ) ( ) 21 / / 6,f z b z z b dz b= − = −∫  

( )
2

20 2 / 2 2 .
6z z

G Gbu f z b U
η η

= − = = −  

From (38) and the last two above relations it follows the 
dispersion relation 

( )( ) ( )
( )

2 3

2 2
1 2

12
.

1 2 6

Un b n n

a a Un b n

γ η γ η
σ

− −
=

− − +
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We introduce the following dimensionless quantities, 
denoted with the superscript ': 

1; ; ;l n nl
U U

σ σ γ γ
η

′ ′ ′=    =    =       (48) 

1 1 2 20, 0.U UD a D a
l l

= >     = >       (49) 

The dimensionless quantities D, D1 are the Deborah or 
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Weissenberg numbers associated to our problem. 
We compute now the order of the term ( )1 2a a Un−  in 

the denominator of the ratio (47). From (30) we have 
2

0
12

U Gl
l η

= − >
            (50) 

therefore (see also (40)) 

( ) ( )1 2 1 2 ,a a Un D D n′− = −  

( ) ( )1 2 1 2

2

12
a a Un Q Q n′− = − −

  

and the condition (45) is giving 

( ) ( )1 2 .D D n O n′ ′− ≈            (51) 

The last above relation and (47)-(48)-(49) are giving the 
dimensionless growth constant 

( )
( )

3

2
1

2

2
2

12

1 2 6

n n n

D D n n

γ γ
σ

′ ′ ′ ′ ′− −
′ =

′ ′− − +




        (52) 

If 1 2a a=  (that means 1 2D D= ) we obtain an 
expression quite similar with the Saffman-Taylor formula for 
air displacing a Newtonian fluid with viscosity η , but we 
have three new terms as follows: 

-  the new term nγ ′ ′  in the numerator, due to the 
meniscus curvature across the plates; 

-  the new term ( )12 D D n′−  in the denominator, due 
to the non-Newtonian effect; 

-  the new term 2 2 6n′  in the denominator, due to the 
fact that Fourier mode decomposition (22) does not 
allow us to neglect the derivatives with respect to x . 

6. Conclusions 

We obtained an exact dispersion formula for the linear 
stability of an Oldroyd-B fluid displaced by air in a Hele-Shaw 
cell. The perturbations of the basic flow are verifying the very 
simple equations (14), (15), (17), (24), (25), (26). 

When a1 = a2, the obtained dispersion relation (52) is 
quite similar with the well-known Saffman-Taylor formula 
for a Newtonian fluid displaced by air in a Hele-Shaw cell: 

2 3( / 12) .ST n nσ γ′ ′ ′ ′= −          (53) 

In the Figures 1 - 4 we compare our dispersion formula (52) 
with the Saffman-Taylor formula (53) (the curve appearing 
unchanged in all figures) in the case   = 0.06, γ ′  = 0.1. 
Then our formula (52) becomes 

3

2
(1 0.1) (0.0003)(0.1) .

1 0.0006
x x

Mx x
σ − −′ =

− + ⋅
     (54) 

where x, M stands for n′  and 2(D1 − D2). 
In Figure 2 we used the following values of order O (  ) 

(in agreement with the estimate (51)): 

M = 0.01, 0.02, 0.03, 0.04, 0.041, 0.042. 

We can see the non-Newtonian destabilizing effects. 
In Figures 3, 4 we used the values 

M = 0.045, 0.048. 

For M = 0.05 we get a blow-up of the growth rate (52), 
that means we have two real roots of the denominator in the 
ratio (54), because 

∆ = (0.05)2 − 4(0.0006) = 0.0001 > 0. 

These roots are giving a blow-up of the growth rate, which 
can be related with the fractures observed in the flows of 
some complex fluids in Hele-Shaw cells [14, 15, 17, 18], as 
we mentioned in Introduction. This phenomenon exceeds the 
linear stability frame and should be better analyzed by using 
a nonlinear theory. 

 

Figure 1.  Saffman-Taylor formula (53): γ ′  = 0.1,   = 0.06 
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Figure 2.  Eq. (54): γ ′  = 0.1,   = 0.06, M = 0.01, 0.02, 0.03, 0.04, 0.041, 0.042 

 

Figure 3.  Formula (54): γ ′  = 0.1,   = 0.06, M = 0.045 

 

Figure 4.  Formula (54): γ ′  = 0.1,   = 0.06, M = 0.048 
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We used twice the particular flow geometry due to the 
Hele-Shaw approximation: 

-  first, we obtained w = 0 - see the dimensionless 
quantities (18) and the relation (19), where we 
neglected the terms of order O (  ). 

-  second, we considered the hypothesis (45) and 
neglected the terms of order O (  ) in the relation 
(44). 

Then from this point of view, our dispersion formula (52) 
can be considered as an O (  ) approximation of the growth 
rate. 

We emphasize that in the formula (52) we not neglected 
the terms of order O (  ) and O ( 2 ) which are multiplied 
with the dimensionless wave number n′ , 2n′  or 3n′ . We 
can see that, only for very small values n′  of the wave 
numbers, our formula (52) is quite close to the 
Saffman-Taylor formula (53). 
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