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Abstract  The mathematical model of reaction diffusion problem with Michaelis-Menten kinetics in a solid of planar and 
spherical shape is discussed. A simple series solution for the substrate concentration is obtained as a function of the Thiele 
modulus, modified Sherwood number, and the Michaelis constant. Here the Adomian decomposition method (ADM) is used 
to find the analytical expressions for the concentration of substrate and effectiveness factor. The numerical simulation of 
non-linear equations was carried out using the Matlab program. A comparison of the analytical approximation and numerical 
simulation is also presented. A good agreement between analytical and numerical results is observed. 
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1. Introduction 
The modern theory of the nonlinear processing is an 

important field of today science. The nonlinear system and 
coherent structures represent an interdisciplinary area with 
many nonlinear applications in physics (nonlinear optics, 
nonlinear electric circuits, hydrodynamics, plasmas and 
states of solid), general relativity, chemistry (chemical 
reactions), biology (atmosphere and oceans, animal 
dispersal), random media and modern telecommunications. 
A great variety of phenomena in physics, chemistry or 
biology can be described by nonlinear PDEs and particularly 
by reaction-diffusion equations. For these reasons, the theory 
of the analytical solutions of the reaction-diffusion equations 
is considered. The general form of nonlinear parabolic 
reaction diffusion equation 
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describes density/concentration of substrate fluctuations in a 
material undergoing reaction-diffusion. A reaction-diffusion 
equation comprises a reaction term and a diffusion term. 2∆  
denotes the Laplace operator. So the first term on the right 
hand side describes the diffusion, including D as diffusion  
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coefficient. The second term, )(uf  is a smooth function 
RRf →:  and describes the processes with really 

“change” the present u , i.e. something happens to it (birth, 
death, chemical reaction), not just diffuse in the space. It is 
also possible, that the reaction term depends not only u  but 
also on the first derivative of .u  It appears in population 
dynamics, combustion theory and chemical kinetics. 
Reaction-diffusion equations are closely connected to the 
large deviation problems for diffusion processes. 

Many problems in theoretical and experimental biology 
involve the solution of the steady-state reaction diffusion 
equation with nonlinear chemical kinetics. Such problems 
arise in the formulation of substrate and product material 
balances for enzymes immobilized within particles [1, 2], in 
the description of substrate transport into microbial cells 
[3-5], in membrane transport, in the transfer of oxygen to 
respiring tissue [6, 7] and in the analysis of any artificial 
kidney system [8]. For such cases, the problem is often well 
poised as a two-point nonlinear boundary –value problem 
because of the saturation, Michaelis-Menten, or Monod 
expression used to describe consumption of the substrate.  

The Michaelis-Menten kinetics [9] is the one of the 
simplest and best-known model for the non-linear reaction 
diffusion process. It takes the form of an equation relating 
reaction velocity to substrate concentration for a system 
where the substrate S  binds reversibly to an enzyme E to 
form an enzyme-substrate complex ES , which then reacts 
irreversibly to generate a product P and regenerate to free 
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enzyme E . This system can be represented schematically 
as follows: 

on

off

cat
k

k

kE S ES E P+ ↔ → +         (2) 

For the above described scheme, onk  is the bimolecular 

association rate constant of enzyme-substrate binding; offk  

is the unimolecular rate constant of the ES complex 
dissociating to regenerate free enzyme and substrate; and 

catk  is the unimolecular rate constant of the ES  complex 
dissociating to give the free enzyme and product P . The 
Michaelis-Menten equation for this system is:    

[ ] [ ]
[ ]SK
SV

dt
Pdv

M +
== max            (3) 

Here, maxV  represents the maximum velocity achieved 
by the system, at maximum (saturating) substrate 
concentrations. MK  (The Michaelis constant; sometimes 

represented as SK  instead ) is the substrate concentration 

at which the reaction velocity is 50% of the maxV . [ ]S  is 

the concentration of the substrate S . The Michaelis-Menten 
equation has been used to predict the rate of product 
formation in enzymatic reactions for more than a century. 
Reuvei et al. [10] mathematically analyzed the effect of 
enzyme-substrate unbinding on enzymatic reactions at the 
single - molecule level.  

Tosaka et al. [11] analyzed mathematical model for 
oxygen diffusion in a spherical cell with Michaelis-Menten 
oxygen uptake kinetics by means of an integral equation 
method. Maalmi et al. [12] analyzed steady-state reactant 
diffusion followed by uptake at a small active site on a larger 
macromolecule or cell by Michaelis-Menten kinetics. 
Marchant et al. [13] described the cubic-autocatalysis with 
Michaelis-Menten kinetics in a one-dimensional 
reaction-diffusion cell. Indira et al. [14] discussed 
mathematical model based on catechol polyphenol oxidase 
as a prototype electro enzymatic system. Bucolo et al. [15] 
analyzed substrate removal from the extravascular 
compartment by Michaelis-Menten saturation type kinetics 
with negligible diffusion in the axial and instantaneous 
diffusion in the transverse directions. Do et al. [16] used the 
approximate analytical technique employing a finite integral 
transform to solve the reaction diffusion problem with 
Michaelis-Menten kinetics in a solid of general shape.  

Chapwanya and Lubuma [17] have presented the basic 
SIR epidemiological model with the Michaelis-Menten 
formulation of the contact rate. Bucolo et al. [15] analyzed 
the steady-state solution of the equations governing the 
substrate exchange between vascular and extravascular 
compartments separated by a membrane with finite, 
symmetrical substrate permeability. Napper et al. [19] 
discussed the Michaelis-Menten kinetics model of oxygen 

transport to heart tissue. A method for obtaining good 
approximate solutions to nonlinear diffusion-reaction 
boundary value problems based on the maximum principle 
are presented in [20]. Rajendran et al. [21] discussed 
mediated bioelectrocatalysis in very useful to build 
bioreactors, biofuel cells and biosensors. The purpose of this 
work is to obtain a simple closed approximate expression of 
concentration of substrate using the Adomian decomposition 
method for all values of Thiele modulus ,h  dimensionless 

Michaelis constant 1α  and modified Sherwood number 

hS .  

2. Mathematical Formulation of the 
Problem  

The problem of an enzymatic reaction occurring 
isothermally within a porous support particle will be 
considered. The shape of the particle is assumed to possess a 
sufficient symmetry to permit the composition at any point in 
space as a function of only one spatial variable (eg. slab and 
spherical enzyme support). The non-dimensional material 
balance of substrate species inside the support can be written 
as follows: 
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where 
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The exponent s characterizes the shape of the 
immobilized catalyst with s =0, 2 for slab, sphere 
respectively. The boundary conditions applicable to Eqn. (4) 
are  

00 ==
dx
dA

,x  (symmetry condition),     6) 

( )AS
dx
dAx h −== 1,1          (7) 

Where ( )DLkS mh =  is a modified Sherwood number 

and mk  is a mass-transfer coefficient. The equation (4) can 
be written for slab and spherical enzyme support as follows: 

Case (1): Planar particle ( 0=s ) 
In this case the Eqn. (4) was reduces to the following 

dimensionless form: 
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Case (2): Spherical particle ( 2=s ) 
In this case the Eqn. (4) was reduces to the following 

dimensionless form: 
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Eqn. (6) and Eqn. (7) are the boundary conditions for the 
Eqns. (8) and (9). The Effectiveness factor is given by 

1
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3. Analytical Expression of Substrate 
Concentration Using the Adomian 
Decomposition Method (ADM) 

In this paper, the Adomian decomposition method is used 
to solve nonlinear differential equations (8) and (9). The 
ADM [21-25] yields without linearization, perturbation or 
transformation, an analytical solution in terms of a rapidly 

convergent infinite power series with easily computable 
terms. The technique is based on a decomposition of a 
solution of a nonlinear operator equation in a series of 
functions. Each term of the series is obtained from a 
polynomial generated from an expansion of an analytic 
function in a power series. The Adomian technique is very 
simple in an abstract formulation, but the difficulty arises in 
calculating the polynomials and in proving the convergence 
of the series of functions. Convergence of the Adomian 
method when applied to some classes of ordinary and partial 
differential equations is discussed by many authors. For 
example, Abbaoui and Cherrault [26, 27] had proved the 
convergence of the Adomian method for differential and 
operator equation. The basic concept of the Adomian 
decomposition method is given in Appendix A. The 
analytical expression of concentration (Appendix B) of the 
substrate for planar enzyme support is as follows: 
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For spherical enzyme support, the concentration of substrate become as follows: 
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where 
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4. Discussion  
Eqn. (11) represents the new analytical expression of concentration of substrate A  for the planar enzyme support. 

Concentration of substrate depends upon the parameter Thiele modulus ,h  dimensionless Michaelis constant ,1α  and 

modified Sherwood number hS . The Thiele modulus describes the relationship between diffusion and reaction rate in 
porous catalyst pellets with no mass transfer limitations. This value is generally used in determining the effectiveness factor 
for catalyst pellets. The Thiele modulus is represented by the symbols h  as  
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The Sherwood number hS  (also called the mass transfer Nusselt number) is a dimensionless number used in 
mass-transfer operation. It represents the ratio of convective to diffusive mass transport, and is named in honor of Thomas 
Kilgore Sherwood. It is defined as follows:  

tcoefficientransfermassDiffusive
tcoefficientransfermassconvective

==
D

Lk
S m

h                        (15) 

where L  is a characteristic length (m), D  is the mass diffusivity (m2s-1), mk  is the mass transfer coefficient (ms-1). Using 

dimensional analysis, it can also be further defined as a function of the Reynolds and Schmidt numbers ( )ScfSh Re,= . 
Figures (1.a)-(1.c) represent the dimensionless concentration of substrate A  versus dimensional position X for various 
values of Thiele modulus ,h  Michaelis-Menten constant 1α  and Sherwood number hS . From the figure (1.a), it is 
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evident that the concentration of the substrate increases when h  decreases. Also, the concentration is maximum at .1=X  
From the figures (1.b) and (1.c), it is inferred that the concentration of the substrate increases when 1α  and hS  increases.  

 

Figure 1.  The influence of (a) Thiele modulus ,h (b) dimensionless Michaelis constant ,1α  (c) modified Sherwood number hS  on the concentration 

profile of the substrate A obtained in this work (equation (11)) and from the simulation result. Solid lines represent the analytical solution whereas the 
dotted lines in the numerical solution 

Eqn. (12) represents the new analytical expression of 
concentration of substrate A  for spherical enzyme support. 
Figures (2.a)-(2.c) represent the dimensionless concentration 
of substrate A  versus dimensional position X for various 
values of Thiele modulus ,h  Michaelis-Menten constant 

1α  and Sherwood number hS . From the figure (2.a), it is 
obvious that the concentration of the substrate increases 
when h  decreases. From the figures (2.b) and (2.c), it is 
evident that the concentration of the substrate increases when 
Michaelis-Menten constant 1α  and Sherwood number hS  
increases. The concentration of substrate attains the 
maximum value when 
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for planar and spherical enzyme support respectively. 
Figures (3) and (4) represent the normalized three 
dimensions substrate concentration profiles A  versus(a) 
Thiele modulus ,h  (b) dimensionless Michaelis constant 

,1α  (c) modified Sherwood number hS  calculated using 
equations (11) and (12) for slab and spherical geometry 
respectively. All the results discussed above are confirmed in 
this three dimensional figures. 

The concept of effectiveness factor is an important one in 
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heterogeneous catalysis and solid fuel. The effectiveness 
factor is widely used to account for the interaction between 
pore diffusion and reactions on pore walls in porous catalytic 
pellets and solid fuel particles. The effectiveness factor is 
defined as the ratio of the reaction rate actually observed in 
the reaction rate calculated if the surface reactant 
concentration persisted throughout the interior of the particle, 
that is, no reactant concentration gradient within the particle. 
The reaction rate in a particle can therefore be conveniently 
expressed by its rate under surface conditions multiplied by 
the effectiveness factor. Also, it is evident that the 
Effectiveness factor Ef  for various values of ,h 1α  and 

hS  is plotted in figures (5) to (7). From the figure (5), it is 

inferred that the Effectiveness factor Ef decreases when 

modified Sherwood number hS  decreases for various 

values of .1α  From the figure (6), it is evident that the 
Effectiveness factor Ef  decreases for certain value and 

then increases when modified Sherwood number hS  

decreases for various values of .h  From the figure (7. a), it 
is obvious that the Effectiveness factor Ef  decreases when 

dimensionless Michaelis constant 1α  decreases. From the 
figure (7. b), it is evident that the Effectiveness factor Ef
decreases for certain value and then increases when the 
Thiele modulus h  decreases. 

 

Figure 2.  The influence of (a) Thiele modulus ,h  (b) dimensionless Michaelis constant ,1α  (c) modified Sherwood number hS  on the 

concentration profile of substrate A  obtained in this work (equation (12)) and from the simulation result. Solid lines represent the analytical solution 
whereas the dotted lines in the numerical solution 
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Figure 3.  The normalized three dimensionless substrate concentration profiles A versus (a) Thiele modulus ,h  (b) dimensionless Michaelis constant 

,1α  (c) modified Sherwood number hS
 
calculated using equation (11) for slab geometry 

5. Conclusions 
An approximate analytical solution of the non-linear 

differential equation that arises from consideration of 
diffusion and reaction with Michaelis-Menten kinetics have 
been derived. Our analytical results are compared with the 
numerical results for various values of the Thiele modulus, 
the Michaelis constant and Sherwood number. Satisfactory 
agreement is noted. This method can be used to solve some 
nonlinear problems in physical and chemical sciences for 
various complex boundary conditions. 
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Appendix A 
Basic concepts of the Adomian decomposition method 

The Adomian decomposition method consists of 
decomposing the nonlinear differential equation  

( )[ ] 0, =xyxF               (A.1) 

into two components 

( )[ ] ( )[ ] 0=+ xyNxyL           (A.2) 

where L and N are the linear and nonlinear parts of F
respectively. The operator L  is assumed to be an invertible 
operator. Solving for ( )yL  leads to 

( ) ( )yNyL −=              (A.3) 

Applying the inverse operator to both sides of Eqn. (A.3) 
yields  

( )( ) ( )xyNLy φ+−= −1 ,        (A.4) 
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Figure 4.  The normalized three dimensionless substrate concentration profiles A  versus (a) Thiele modulus ,h  (b) dimensionless Michaelis constant 

,1α  (c) modified Sherwood number hS  calculated using equation (12) for spherical geometry 

 
 

Figure 5.  Dimensionless effectiveness factor Ef  versus Thiele modulus h  for various values of hS  and for the fixed value of (a) 1.01 =α  

and (b) .101 =α  
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Figure 6.  Dimensionless effectiveness factor Ef versus dimensionless Michaelis constant 1α  for various values of hS and for the fixed value of (a) 

1=h  and (b) .01.0=h  

 

Figure 7.  Dimensionless effectiveness factor Ef versus dimensionless (a) Thiele modulus ,h  (b) Michaelis constant 1α for various values of 1α  
and h  respectively 

where ( )xφ  is the function that satisfies the condition 

( ) 0=φL . Now suppose that the solution y can be 
represented as an infinite series of the form 

∑
∞

=

=
0n

nyy                (A.5) 

Furthermore, suppose that the nonlinear term ( )yN  can 
be written as infinite series in terms of the Adomain 
polynomials nA  of the form 

( ) ∑
∞

=

=
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nAyN              (A.6) 

where the Adomian polynomials nA of ( )yN  are 
evaluated using the formula 
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where [ ]1,0∈λ  is a hypothetical parameter. Substituting 
Eqns. (A.5) and (A.6) in (A.4) gives 

( ) 







−φ= ∑∑

∞

=

−
∞

= 0

1

0 n
n

n
n ALxy        (A.8) 

By equating the terms in the linear system of Eqns. (A.8) 
one obtains the recurrence formula 

( ) ( )nn ALyxy 1
10 , −
+ −=φ= , 0≥n    (A.9) 

However, in practice all terms of the series (A.6) cannot be 
determined, and the solution is approximated by the 
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truncated series 
0

.
N

n
n

y
=
∑  

Appendix B 
Analytical solutions of equation (8) using ADM (s=0) 

In this appendix, we derive the general solution of 
nonlinear Eqn. (8) by using the Adomian decomposition 
method. We write the Eqn. (8) in the operator form, 
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dL = . Applying the inverse operator 1−L  on 

both sides of Eqn. (B.1) yields 
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where C and D are the constants of integration. We let, 
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where  
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In view of Eqns. (B. 3-B. 5), Eqn. (B. 2) gives 
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We identify the zeroth component as 

DCx)(0 +=xU             (B.7) 

and the remaining components as the recurrence relation 
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where nU  are the Adomian polynomials of 

nAAA ,...,, 21 . We can find the first few nU  as follows: 

1
1)(

1
00 +

==
α

ANU           (B.9) 

[ ]
01

1
1 01 )(

A
AAAN

d
dU

+
=+=
α

λ
λ

  (B.10) 

The remaining polynomials can be generated easily, and 
so, 
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( ) ( ) ( )
2

1

2

1

2

1

2
1 11

2
1

)( xh
S

hhxA
h +

+










+
+

+
−=

ααα
                           (B.12) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) 













+
+











+
+

+













+















+
+











+
+

++
−















+
+











+
+

+













+
−=

4

1

2
2

1

2

1

2

2
1

1
2

1

2

1

2

1

2

2
1

1
2

1

2

1

2

1

2

2
1

1
2

2

)1(121
2

12
1

1

2

)1(31
2

11

2

)1(121
2

12
1

1

2
)(

xhx
S

hhh

h
S

hh
S

h

h
S

hhh
xA

h

hh

h

αααα

α

αααα

α

αααα

α

              (B.13) 

Adding (B. 11) to (B. 13) we get the Eqn. (11) in the text. 

Appendix C 
Analytical solution of equation (9) using ADM (s=2) 

In this appendix, we derive the general solution of nonlinear Eqn. (9) by using the Adomian decomposition method. We 
write the Eqn. (9) in the operator form, 

 

10 =A
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on both sides of Eqn. (C.1) yields  
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In view of Eqns. (C.3-B.5), Eqn. (C.2) gives  
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We identify the zeroth component as  
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and the remaining components as the recurrence relation 
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where nU  are the Adomian polynomials of 1A , 2A ,….,

nA . We can find the first few nU  as follows: 

( )
1

1
1

00 +
==
α

ANU          (C.9) 

( )[ ]
01

1
101 A

AAAN
d
dU

+
=+=
α

λ
λ

   (C.10) 

The remaining polynomials can be generated easily, and 
so, 
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Adding (C. 11) to (C. 13), we get the Eqn. (12) in the text. 

Appendix D 
Matlab program to find numerical solution of Eqns. (11) and (12)  

function pdex1 
m = 0; 
x = linspace(0,1); 
t = linspace(0,100); 
sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t); 
u = sol(:,:,1); 
%surf(x,t,u)     
%title('Numerical solution computed with 20 mesh points.') 
%xlabel('Distance x') 
%ylabel('Time t')  
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figure 
plot(x,u(end,:)) 
title('Solution at t = 2') 
xlabel('Distance x') 
ylabel('u(x,2)') 
% -------------------------------------------------------------- 
function [c,f,s] = pdex1pde(x,t,u,DuDx) 
c = 1; 
f = DuDx; 
h =0.5; 
alpha=10; 
s = -2*h^2*u/alpha+u); 
% -------------------------------------------------------------- 
function u0 = pdex1ic(x) 
u0 = 1; 
% -------------------------------------------------------------- 
function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t) 
S = 1; 
pl = 0; 
ql = 1; 
pr =-S*(1-ur); 
qr = 1;    

Appendix E 
Nomenclature 

A   Dimensionless substrate concentration (= 0SS ) 
(None) 

S    Substrate concentration(mol/cm3) 

0S   Bulk-substrate concentration(mol/cm3) 

mK   Michaelis constant (mol/cm3) 
mk    External mass-transfer coefficient (mol/cm3) 

D    Effective diffusivity inside the particle (cm2 s-1) 

mV  Maximum reaction rate (mol/s cm3) 
x     Spatial variable (cm) 
L    Half length of the particle (cm)  
h    Thiele modulus ( ) LDSVm

21
02 (None) 

1α   Dimensionless Michaelis constant 0SKm (None) 

hS    Modified Sherwood number DLkm (None) 
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