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Abstract  We studied the rate of returns on investment as the net gain in wealth over the cumulative investment in 
continuous time. Dynamic asset allocations are continuously rebalanced so as to always keep a fixed constant proportion of 
wealth invested in various assets at each point in time play a fundamental role in the theory of optimal portfolio strategy. We 
proved that: (i) the limiting distribution of this measure of return is gamma distribution if the returns follow a geometric 
Brownian motion; (ii) if returns follow Weibull distribution, then it results to asymptotic power-law behavior of assets returns. 
For example, the mean return on investment is maximized by the same strategy that maximizes logarithm utility which is also 
known to minimize the exponential rate at which wealth grows and the return from this policy turns out to have stochastic 
dominance properties as well. We consider the logistic function in large market financial crashes corresponding to values of 
packing dimension of 𝑅𝑅𝑛𝑛  𝑜𝑜𝑜𝑜 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚  by the fractal dispersion of Hausdorff measure prior to market signal with constraint of a 
zero heat capacity, the existence of a unique solution to the associated Hausdorff is established and optimal policy is 
characterized. Also advocated is a procedure for locating optimal market crises signal relative to the heat equation to give an 
early warning. 
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1. Introduction 
Ethier et al, [2] studied the rate of return on investment in 

discrete time gambling method, where the total return on the 
individual gambler is assumed to follow a random walk. 
They also showed that the asymptotic distribution of the 
return, as the mean increment in the random walk goes to 
zero is a gamma distribution. Also Kelly (1956) in Thorp, 
[11] observed the relationship between the logarithm of 
wealth and expected asymptotic rate at which wealth 
compounds. The object is to let one know how one should 
invest in each equities of ones highly diversified stocks 
portfolio to maximize the capital growth. In finance, the rate 
of return (ROR) which is known as return on investment 
(ROI) is the ratio of money gained or lost whether realized or 
unrealized on an investment, relative to the amount of money 
invested. The amount of money gained or lost may be 
referred to as interest, profit/loss, gain/loss or net 
income/loss. There are several ways to determine ROI, but  
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the most frequently used method is net gain divided by total 
assets. Constant proportions investment strategies also play a 
fundamental role in portfolio theory. Under these policies, an 
investor follows a dynamic trading strategy that continually 
rebalances the portfolio so as to always allocate fixed 
constant proportions of the investor’s wealth across the 
investment opportunities. These strategies are widely used in 
practice and are also referred to as continuously rebalanced 
strategy [9]. Given the fundamental nature of policies in 
theoretical portfolio practice, it is of interest to know what 
the stochastic behavior of the rate of return on investment 
(RROI), defined as the net of gain over the cumulative 
investment [3]. Merton, [5] introduced the setting in the 
continuous time financial model as used in Black-Scholes, 
[1]. 

In this paper, we obtain some limit theorems for RROI 
which allows us to compare and derive some specific 
optimality properties for certain portfolio strategies. We also 
established and proved that the return on investment for such 
policies converges to a limiting stochastic distribution and 
the result provides a basis upon which to compare different 
strategies on Hausdorff measure prior to the heat equation to 
locate market crises and give early warning. 
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2. The Rate of Return from Total 
Investment 

The rate of return on investment is defined as the ratio of 
net gain in wealth over the cumulative investment. Our 
interest here is the rate of return from the total investment 
(RROI), which for the fixed policy will be denoted by the 
process (𝑝𝑝𝑝𝑝(𝑡𝑡): 𝑡𝑡 ≥ 0) 

Hence 

𝑝𝑝𝑝𝑝(𝑡𝑡) = 
𝑋𝑋𝑡𝑡
𝑓𝑓−𝑋𝑋0

∫ 𝑋𝑋𝑠𝑠
𝑓𝑓𝑡𝑡

𝑠𝑠 𝑑𝑑𝑑𝑑
,  𝑡𝑡 ≥ 0,       (2.1) 

which is equivalent to the least square estimator 𝜙𝜙𝑡𝑡  𝑜𝑜𝑜𝑜 𝜙𝜙  
studied by Hu, et al [4] on the continuous parametric 
estimation of observed fractional Ornstein-Uhlenbeck 
process 𝑋𝑋 = �𝑋𝑋𝑡𝑡 ,𝑡𝑡 ≥ 0 � defined as 

𝑋𝑋0 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜙𝜙𝑋𝑋𝑡𝑡𝑑𝑑𝑑𝑑 + 𝑑𝑑𝐵𝐵𝑡𝑡𝐻𝐻 , 𝑡𝑡 ≥ 0.    (2.2) 

𝐵𝐵𝐻𝐻 = {𝐵𝐵𝑡𝑡𝐻𝐻 , 𝑡𝑡 ≥ 0} is a fractional Brownian motion with 
Hurst parameter 𝐻𝐻𝐻𝐻(1

2
, 1)given as  

𝜙𝜙𝑡𝑡 = ∫ 𝑋𝑋𝑠𝑠
𝑡𝑡

0 𝑑𝑑𝑋𝑋𝑠𝑠

∫ 𝑋𝑋𝑠𝑠2
𝑡𝑡

0 𝑑𝑑𝑑𝑑
   𝑡𝑡 ≥ 0,          (2.3) 

Where 𝑝𝑝𝑝𝑝(𝑡𝑡)  is a measure of the wealth it takes to 
finance a gain. If 𝑝𝑝𝑝𝑝(𝑡𝑡) is large; it means that the investor is 
accumulating gains at a faster rate than if it is small. Note 
that if we divide the numerator and the denominator by t in 
equation (2.1) we also interpret  𝑝𝑝𝑝𝑝(𝑡𝑡) as the average net 
gain over the average wealth level. 

Theorem 2.1 

If the returns of contingent claim 𝑝𝑝𝑝𝑝(𝑡𝑡) =  
𝑋𝑋𝑡𝑡
𝑓𝑓−𝑋𝑋0

∫ 𝑋𝑋𝑠𝑠
𝑓𝑓𝑡𝑡

𝑠𝑠 𝑑𝑑𝑑𝑑
𝑓𝑓𝑡𝑡 ,  

   𝑡𝑡 ≥ 0  follow geometric Brownian motion 𝑋𝑋𝑡𝑡
𝑓𝑓 =

𝑋𝑋0𝑒𝑒𝑒𝑒𝑒𝑒��𝑟𝑟 + 𝑓𝑓𝜇𝜇� − 1
2𝑓𝑓

2𝜎𝜎2�𝑡𝑡 + 𝑓𝑓𝑓𝑓𝑊𝑊𝑡𝑡� , then the resulting 
distribution is Gamma distribution, that is, 𝑝𝑝𝑝𝑝(𝑡𝑡)
𝑑𝑑
→ 𝑝𝑝𝑝𝑝~𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 �2(𝑟𝑟+𝑓𝑓𝜇𝜇�)

𝜎𝜎2𝑓𝑓2 − 1, 2
𝜎𝜎2𝑓𝑓2�  𝑎𝑎𝑎𝑎 𝑡𝑡 → ∞. 

Proof 

Recall that 𝑋𝑋𝑡𝑡
𝑓𝑓 = 𝑋𝑋0𝑒𝑒𝑒𝑒𝑒𝑒�(𝑟𝑟 + 𝑓𝑓𝜇𝜇�)𝑑𝑑𝑑𝑑 + 𝑓𝑓𝑓𝑓𝑋𝑋𝑡𝑡

𝑓𝑓𝑑𝑑𝑊𝑊𝑡𝑡� then 

∫ 𝑋𝑋𝑡𝑡
𝑓𝑓𝑑𝑑𝑑𝑑𝑡𝑡

0 = 𝑋𝑋0 ∫ 𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡
0 �(𝑟𝑟 + 𝑓𝑓𝜇𝜇�)𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑓𝑓𝑓𝑓𝑋𝑋𝑠𝑠

𝑓𝑓𝑑𝑑𝑊𝑊𝑠𝑠�ds  (2.4) 

From geometric Brownian motion, 

𝑋𝑋𝑡𝑡
𝑓𝑓 = 𝑋𝑋0𝑒𝑒𝑒𝑒𝑒𝑒��𝑟𝑟 + 𝑓𝑓𝜇𝜇� − 1

2� 𝑓𝑓2𝜎𝜎2�𝑡𝑡 + 𝑓𝑓𝑓𝑓𝑊𝑊𝑡𝑡�  (2.5) 

and 

∫ 𝑋𝑋𝑡𝑡
𝑓𝑓𝑑𝑑𝑑𝑑𝑡𝑡

0 = 𝑋𝑋0 ∫ 𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡
0 ��𝑟𝑟 + 𝑓𝑓𝜇𝜇�−1

2� 𝑓𝑓2𝜎𝜎2�𝑠𝑠 + 𝑓𝑓𝑓𝑓𝑊𝑊𝑠𝑠�𝑑𝑑𝑑𝑑 (2.6) 

Substitute (2.5) and (2.6) in (2.1) to get 

𝑝𝑝𝑝𝑝(𝑡𝑡) = 
𝑋𝑋0𝑒𝑒𝑒𝑒𝑒𝑒 ��𝑟𝑟+𝑓𝑓𝜇𝜇�−1

2� 𝑓𝑓2𝜎𝜎2�𝑡𝑡+𝑓𝑓𝑓𝑓𝑊𝑊𝑡𝑡�−𝑋𝑋0

𝑋𝑋0 ∫ 𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡
0 ��𝑟𝑟+𝑓𝑓𝜇𝜇�−1

2� 𝑓𝑓2𝜎𝜎2�𝑠𝑠+𝑓𝑓𝑓𝑓𝑊𝑊𝑠𝑠�𝑑𝑑𝑑𝑑
, 

which implies 

  𝑝𝑝𝑝𝑝(𝑡𝑡) = 
𝑋𝑋0�𝑒𝑒𝑒𝑒𝑒𝑒 ��𝑟𝑟+𝑓𝑓𝜇𝜇�−1

2� 𝑓𝑓2𝜎𝜎2�𝑡𝑡+𝑓𝑓𝑓𝑓𝑊𝑊𝑡𝑡�−1�

𝑋𝑋0 ∫ 𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡
0 ��𝑟𝑟+𝑓𝑓𝜇𝜇�−1

2� 𝑓𝑓2𝜎𝜎2�𝑠𝑠+𝑓𝑓𝑓𝑓𝑊𝑊𝑠𝑠�𝑑𝑑𝑑𝑑
, 

and simplifies to 

𝑝𝑝𝑝𝑝(𝑡𝑡) = 
𝑒𝑒𝑒𝑒𝑒𝑒 ��𝑟𝑟+𝑓𝑓𝜇𝜇�−1

2� 𝑓𝑓2𝜎𝜎2�𝑡𝑡+𝑓𝑓𝑓𝑓𝑊𝑊𝑡𝑡�−1

∫ 𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡
0 ��𝑟𝑟+𝑓𝑓𝜇𝜇�−1

2� 𝑓𝑓2𝜎𝜎2�𝑠𝑠+𝑓𝑓𝑓𝑓𝑊𝑊𝑠𝑠�𝑑𝑑𝑑𝑑
     (2.7) 

If 𝑓𝑓 = 0 we have that from equation (2.7) it shows that 
for that policy under which the total wealth is always 
invested in the risk-free asset is  

𝑝𝑝0(𝑡𝑡) = 𝑒𝑒𝑛𝑛−1

∫ 𝑒𝑒𝑟𝑟𝑟𝑟𝑡𝑡
0 𝑑𝑑𝑑𝑑

. 

But ∫ 𝑒𝑒𝑟𝑟𝑟𝑟𝑡𝑡
0 𝑑𝑑𝑑𝑑 = 1 𝑟𝑟� 𝑒𝑒𝑟𝑟𝑟𝑟 |0

𝑡𝑡 , so that 

𝑝𝑝0(𝑡𝑡) = 1 𝑟𝑟� (𝑒𝑒𝑟𝑟𝑟𝑟 − 1)  

= 𝑒𝑒𝑛𝑛−1
1 𝑟𝑟� (𝑒𝑒𝑟𝑟𝑟𝑟 −1)

. 

If 𝑛𝑛 = 𝑟𝑟𝑟𝑟 then 𝑝𝑝0(𝑡𝑡) = 𝑟𝑟  is the risk free interest rate as 
expected but if 𝑓𝑓 ≠ 0 , the rate of return on investment 
(RROI) process 𝑝𝑝𝑝𝑝(𝑡𝑡) = 𝑡𝑡 > 0 is complicated and does not 
yield to a simple direct analysis. 

NOTE: a random variable X~ gamma (𝛼𝛼,𝛽𝛽) means that X 
is a random variable with density function 

𝜑𝜑(𝑥𝑥) = 𝑒𝑒−𝛽𝛽𝛽𝛽 𝑥𝑥𝛼𝛼−1𝛽𝛽𝛼𝛼

𝛾𝛾(𝛼𝛼)
, 

with 𝐸𝐸(𝑥𝑥) = 𝛼𝛼
𝛽𝛽�  and the 𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥) = 𝛼𝛼

𝛽𝛽2� . 

And for any fixed proportion that satisfies 𝜋𝜋𝑡𝑡𝑏𝑏(𝛿𝛿) =
𝛿𝛿𝑓𝑓∗ 𝑓𝑓𝑓𝑓𝑓𝑓 all   𝑡𝑡 ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝛿𝛿 > 0 , the (RROI) process 
𝑝𝑝𝑝𝑝(𝑡𝑡) = 𝑡𝑡 > 0  converges (𝑎𝑎𝑎𝑎 𝑡𝑡 → ∞)  in distribution to 
random variable which has a gamma distribution, where 𝑓𝑓∗ 
is the constant vector given by  

𝑓𝑓∗ = ∑(𝜇𝜇 − 𝑟𝑟)−1 (𝜇𝜇 − 𝑟𝑟) ≡ ∑𝜇𝜇�−1. 
If 𝜋𝜋𝑡𝑡  is a constant vector for all 𝑡𝑡 ≥ 0 such a policy is 

called constant proportion policy which is the optimal 
investment policy for any interesting objective function. A 
constant vector is also optimal policy for other objective 
criteria, such as minimizing the expected time t to reach a 
given level of wealth as well. 

Specifically, as 𝑡𝑡 → ∞ we have 

𝑝𝑝𝑝𝑝(𝑡𝑡)
𝑑𝑑
→ 𝑝𝑝𝑝𝑝~𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(2(𝑟𝑟+𝑓𝑓𝜇𝜇  � )

𝜎𝜎2𝑓𝑓2 − 1, 2
𝜎𝜎2𝑓𝑓2),   (2.8) 

where 
𝑑𝑑
→ denotes convergence in distribution. 

Therefore to get the expectation of 𝐸𝐸(𝑝𝑝𝑝𝑝) we have  

𝐸𝐸(𝑝𝑝𝑝𝑝) =

2(𝑟𝑟 + 𝑓𝑓𝜇𝜇 �)
𝜎𝜎2𝑓𝑓2 − 1

, 2
𝜎𝜎2𝑓𝑓2

 

  = 𝑟𝑟 + 𝑓𝑓𝜇𝜇 � −   𝜎𝜎
2𝑓𝑓2

2  
.            (2.9) 

The expectation in (2.9) should not be confused with the 
ratio of the expected gain to the expected total investment 
which for any 𝑡𝑡 > 0, is equal to 
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𝐸𝐸(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)
𝐸𝐸(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

=
𝐸𝐸(𝑋𝑋𝑡𝑡

𝑓𝑓 − 𝑋𝑋0)
𝐸𝐸(∫ 𝑋𝑋𝑡𝑡

𝑓𝑓𝑑𝑑𝑑𝑑)𝑡𝑡
0

 

= 𝑋𝑋𝑜𝑜𝑒𝑒−𝑋𝑋0

𝐸𝐸(∫ 𝑋𝑋𝑡𝑡
𝑓𝑓𝑑𝑑𝑑𝑑)𝑡𝑡

0
= (𝑟𝑟 + 𝑓𝑓𝜇𝜇 �)𝑡𝑡 

= 𝑋𝑋𝑜𝑜𝑒𝑒−𝑋𝑋0

𝐸𝐸(∫ 𝑋𝑋𝑡𝑡
𝑓𝑓𝑑𝑑𝑑𝑑)𝑡𝑡

0
= (𝑟𝑟 + 𝑓𝑓𝜇𝜇 �)𝑡𝑡 

=  𝑋𝑋𝑜𝑜(𝑒𝑒−1)
𝑋𝑋0

1
𝑟𝑟+𝑓𝑓𝜇𝜇 �(𝑒𝑒(𝑟𝑟+𝑓𝑓𝜇𝜇 � )𝑡𝑡−1)

 

= 𝑟𝑟 + 𝑓𝑓                    (2.10) 

Theorem 2.2 
If the returns 𝑝𝑝𝑝𝑝(𝑡𝑡) as defined in (2.1) follow Weibull 

randomvariates 𝐹𝐹(𝑥𝑥) , then the resulting distribution 
𝑝𝑝𝑝𝑝 = 𝛼𝛼

𝛾𝛾[𝑝𝑝𝑝𝑝 (𝑡𝑡)]𝛾𝛾−1 follows asymptotic power-law. 

Proof 

Let 𝑝𝑝𝑝𝑝(𝑡𝑡) = 
𝑋𝑋𝑡𝑡
𝑓𝑓−𝑋𝑋0

∫ 𝑋𝑋𝑠𝑠
𝑓𝑓𝑡𝑡

𝑠𝑠 𝑑𝑑𝑑𝑑
,    𝑡𝑡 ≥ 0 be distributed according 

to the following probability density function 

𝐹𝐹�𝑝𝑝𝑝𝑝(𝑡𝑡)� = �
𝛽𝛽
𝛼𝛼

(𝑝𝑝𝑝𝑝(𝑡𝑡)))𝛽𝛽−1𝑒𝑒−(|𝑝𝑝𝑝𝑝 (𝑡𝑡)|)𝛽𝛽 , 𝑝𝑝𝑝𝑝(𝑡𝑡)) ≥ 0
𝑜𝑜                                           𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒           ,

� (2.11) 

where 𝛼𝛼,𝛽𝛽 > 0 are the mean and the shape parameters of 
the Weibull distribution (2.11). 

If 𝑝𝑝𝑝𝑝(𝑡𝑡))  has the Weibull density function, then 

𝑍𝑍 = �𝑋𝑋𝑡𝑡
𝑓𝑓−𝑋𝑋0

∫ 𝑋𝑋𝑠𝑠
𝑓𝑓𝑡𝑡

𝑠𝑠 𝑑𝑑𝑑𝑑
�
𝛾𝛾

, has the exponential density function with 

𝛼𝛼 = 1 as (using the formula in [7]); 

𝑓𝑓𝑍𝑍(𝑧𝑧) = � 𝑒𝑒𝑒𝑒𝑒𝑒 �−�𝑋𝑋𝑡𝑡
𝑓𝑓−𝑋𝑋0

∫ 𝑋𝑋𝑠𝑠
𝑓𝑓𝑡𝑡

0 𝑑𝑑𝑑𝑑
�
𝛾𝛾

� , 𝑝𝑝𝑝𝑝(𝑡𝑡) ≥ 0

0                                         , 𝑝𝑝𝑝𝑝(𝑡𝑡) < 0

�.   (2.12) 

Thus the optimal investment strategy is (see [8]); 

𝐻𝐻�𝑓𝑓𝑍𝑍(𝑧𝑧)� = ∫ 𝑓𝑓𝑍𝑍(𝑧𝑧)𝑑𝑑∞
0 𝑓𝑓𝑍𝑍(𝑧𝑧).         (2.13) 

That is  

𝐻𝐻�𝑓𝑓𝑍𝑍(𝑧𝑧)� = ∫ 𝑒𝑒𝑒𝑒𝑒𝑒 �−�𝑋𝑋𝑡𝑡
𝑓𝑓−𝑋𝑋0

∫ 𝑋𝑋𝑠𝑠
𝑓𝑓𝑡𝑡

0 𝑑𝑑𝑑𝑑
�
𝛾𝛾

�∞
0 𝑑𝑑𝑋𝑋𝑡𝑡

𝑓𝑓 .    (2.14) 

But 𝑑𝑑𝑋𝑋𝑡𝑡
𝑓𝑓 = 𝜑𝜑(𝑓𝑓)𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) (where 𝜑𝜑(𝑓𝑓) is as in (2.4) or 

(2.6)), so that 

𝐻𝐻�𝑓𝑓𝑍𝑍(𝑧𝑧)� = ∫ 𝑒𝑒𝑒𝑒𝑒𝑒�−�𝑝𝑝𝑝𝑝(𝑡𝑡)�𝛾𝛾�∞
0 𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡). 

Hence the optimal strategy is the asymptotic power-law; 

𝐻𝐻 = 𝜑𝜑(𝑓𝑓)
𝛾𝛾

(𝑝𝑝𝑝𝑝(𝑡𝑡))1−𝛾𝛾 ,                (2.15) 

where𝛾𝛾 is the fractal exponent given by (see [6]) 𝛾𝛾 = 𝑎𝑎𝑞𝑞𝑛𝑛2

2
,  

with 𝑞𝑞𝑛𝑛 > 0 a Bessel function given as 𝐽𝐽𝑛𝑛
2−2(𝑥𝑥)

 and 𝑎𝑎 the 

singularity strength �0 ≤ 𝑎𝑎 ≤ 4
𝑞𝑞𝑛𝑛2
�. 

3. Optimal Growth Policy and Stochastic 
Dominance 

Here we can see that the quantity (2.8) is maximized by 
the strategy that invests as much as possible in the risky asset. 
The mean of (2.7), is maximized at a finite value  

  𝑓𝑓∗ = 𝜇𝜇  �
𝜎𝜎2,                (3.1) 

which is the same policy that is optimal for maximizing 
logarithmic utility of wealth at a fixed terminal time and 
hence for maximizing exponential rate of growth. Notice that 
the mean of the limiting distribution of (RROI) process is 
maximized at the value 𝑓𝑓∗ = 𝜇𝜇  �

𝜎𝜎2  with resulting mean 
 𝐸𝐸(𝑝𝑝∗) = 𝑟𝑟 + 𝛾𝛾, for this strategy the RROI, 𝑝𝑝∗(𝑡𝑡), satisfies 

 𝑝𝑝∗(𝑡𝑡)
𝑑𝑑
→𝑝𝑝∗~𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (𝑟𝑟+𝛾𝛾

𝑟𝑟
, 1
𝑟𝑟
).       (3.2) 

In fact, the distribution characterization of the limiting 
RROI allows for some-what stronger statement, in terms of 
stochastic orderings. Suppose that for two random variables, 
X,Y we say that 𝑋𝑋 ≤ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖  

𝐸𝐸(𝑋𝑋 − 𝑥𝑥)∗ ≤ 𝐸𝐸(𝑌𝑌 − 𝑥𝑥)∗,∀𝑥𝑥. 

This is equivalent to say that 𝐸𝐸(𝑔𝑔(𝑥𝑥)) ≤ 𝐸𝐸(𝑔𝑔(𝑦𝑦)) for all 
increasing convex function 𝑔𝑔,  and is referred to as the 
increasing convex ordering. We also say that (provided the 
expectations are finite) this is equivalent to saying that 
𝐸𝐸(ℎ(𝑥𝑥)) ≤ 𝐸𝐸(ℎ(𝑌𝑌)) for all increasing concave function ℎ, 
and is hence referred to as the increasing concave ordering. 

We let𝑝𝑝∗denote the RRIO obtained from using the policy 
𝑓𝑓∗ defined in (2.9) and let 𝑝𝑝𝑝𝑝 be the RROI. From any other 
constant proportion strategy 𝑓𝑓 = 𝑐𝑐𝑓𝑓∗, where c is an arbitrary 
constant, the following hold 

                     𝑝𝑝𝑝𝑝 ≤ 𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝∗ 𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶 ≤ 1       (𝑎𝑎) 

                     𝑝𝑝𝑝𝑝 ≤ 𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝∗ 𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶 ≥ 1       (𝑏𝑏) 
Equation (a) is in effect for investor with greater relative 

risk aversion while equation (b) is in effect for an investor 
with less relative risk aversion. Then for a proportional 
strategy 𝑓𝑓 = 𝐶𝐶𝑓𝑓∗,𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑐𝑐 ≠ 0  
where 𝑓𝑓∗  is the optimal policy of (2.7), the relationship 

 𝑝𝑝𝑝𝑝 ≤𝑠𝑠𝑠𝑠 𝑝𝑝∗ holds if and only if C satisfies  1 −�𝑟𝑟 + 𝛾𝛾
𝑟𝑟� <

𝐶𝐶 < −𝑟𝑟 𝑟𝑟 + 2𝛾𝛾� . 
Showing that the only type of constant proportion policy 

(other than 𝑓𝑓∗) for which RROI is stochastically dominated 
by the optimal growth policy is one that is shorting the stock 
to the degree required by (𝑓𝑓). To establish equation (2.1) in 
section 1 above, we have that the process 𝑝𝑝𝑝𝑝(𝑡𝑡), 𝑡𝑡 ≥ 0 does 
not admit a simple direct analysis, there is a related markov 
process amenable to analysis which holds the key for the 
limiting behavior of 𝑝𝑝𝑝𝑝(𝑡𝑡),  specifically the 𝑅𝑅𝑅𝑅(𝑡𝑡), 𝑡𝑡 ≥
0defined by  
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 𝑅𝑅𝑓𝑓(𝑡𝑡) = 
𝑋𝑋𝑡𝑡
𝑓𝑓

𝑋𝑋0+∫ 𝑋𝑋𝑠𝑠
𝑓𝑓𝑑𝑑𝑑𝑑𝑡𝑡

0
.          (3.3) 

If t = 0 we have 𝑅𝑅𝑅𝑅(0) = 1, also we will first show that 
the limiting behavior of 𝑝𝑝𝑝𝑝(𝑡𝑡) is equivalent to the limiting 
behavior of 𝑅𝑅𝑅𝑅(𝑡𝑡) . But our interest here is to show the 
limiting behavior of the RROI process 𝑝𝑝𝑝𝑝(𝑡𝑡). We show that 
the diffusion process 𝑅𝑅𝑅𝑅(𝑡𝑡) whose limiting behavior can be 
analyzed. 

Suppose that for random variable 𝑅𝑅𝑅𝑅,  we have 𝑅𝑅𝑅𝑅(𝑡𝑡)
𝑑𝑑
→ 𝑅𝑅𝑅𝑅 𝑎𝑎𝑎𝑎 𝑡𝑡 → ∞. Then for any 𝑓𝑓 𝑎𝑎𝑎𝑎 𝑡𝑡 → ∞ we have  𝑝𝑝𝑝𝑝(𝑡𝑡)
𝑑𝑑
→ 𝑅𝑅𝑅𝑅 

  𝑝𝑝𝑝𝑝(𝑡𝑡) = 𝑅𝑅𝑅𝑅(𝑡𝑡)
(𝑋𝑋𝑡𝑡

𝑓𝑓 − 𝑋𝑋0)
𝑋𝑋𝑡𝑡
𝑓𝑓 �

𝑋𝑋0 + ∫ 𝑋𝑋𝑡𝑡
𝑓𝑓𝑑𝑑𝑑𝑑𝑡𝑡

0

∫ 𝑋𝑋𝑠𝑠
𝑓𝑓𝑑𝑑𝑑𝑑𝑡𝑡

0

� 

= 𝑅𝑅𝑅𝑅(𝑡𝑡)(1 − 𝑒𝑒−𝐵𝐵𝑡𝑡) �1 + 1

∫ 𝑒𝑒𝐵𝐵𝑠𝑠𝑡𝑡
0 𝑑𝑑𝑑𝑑

�,     (3.4) 

where 𝐵𝐵𝑠𝑠,𝑠𝑠 ≥ 0 is the linear Brownian motion defined by 
𝐵𝐵𝑠𝑠 = �𝑟𝑟 + 𝑓𝑓𝜇𝜇�−1

2� 𝑓𝑓2𝜎𝜎2� + 𝑓𝑓𝑓𝑓𝑊𝑊𝑠𝑠, 𝐵𝐵0 = 0. 
Note that 𝐵𝐵𝑠𝑠 hasa positive drifts which implies that 

lim𝑡𝑡→∞ 𝑒𝑒−𝐵𝐵𝑡𝑡 = lim𝑡𝑡→∞
1
𝑒𝑒𝐵𝐵𝑡𝑡

= 0 𝑎𝑎. 𝑠𝑠 as well as  

lim𝑡𝑡→∞(∫ 𝑒𝑒𝐵𝐵𝑠𝑠𝑑𝑑𝑑𝑑)−11
0  = lim𝑡𝑡→∞

1

∫ 𝑒𝑒𝐵𝐵𝑠𝑠𝑑𝑑𝑑𝑑1
0

= 0     𝑎𝑎. 𝑠𝑠. 

Equation (2.1) will be completely establish if we can 
prove that 𝑅𝑅𝑅𝑅(𝑡𝑡)

𝑑𝑑
→ 𝑅𝑅𝑅𝑅, for some random variable 𝑅𝑅𝑅𝑅 with 

𝑅𝑅𝑅𝑅 = 𝑝𝑝𝑝𝑝. 
Lemma 3.1: For some fixed proportion investment policy 

𝑓𝑓 , the process 𝑅𝑅𝑅𝑅(𝑡𝑡)  follows the stochastic differential 
equation 

𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) = [(𝑟𝑟 + 𝑓𝑓𝜇𝜇�)𝑅𝑅𝑅𝑅(𝑡𝑡) − 𝑅𝑅2𝑓𝑓(𝑡𝑡)]𝑑𝑑𝑑𝑑 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡)𝑑𝑑𝑊𝑊𝑡𝑡(3.5) 

𝑅𝑅𝑅𝑅(𝑡𝑡)  is a temporary homogeneous diffusion process 
with drift function  

𝑏𝑏(𝑥𝑥) = (𝑟𝑟 + 𝑓𝑓𝜇𝜇�)𝑥𝑥 − 𝑥𝑥2 
and diffusion function 

𝑉𝑉2(𝑥𝑥) = 𝑓𝑓2𝜎𝜎2𝑥𝑥2. 
Proof 

Let 𝐴𝐴𝑡𝑡 = ∫ 𝑋𝑋𝑠𝑠𝑡𝑡𝑑𝑑𝑑𝑑
𝑡𝑡

0  be the cumulative wealth investment 
process, also let  

𝑅𝑅𝑅𝑅(𝑡𝑡) = 𝑋𝑋𝑡𝑡
𝑓𝑓(𝑋𝑋0 + 𝐴𝐴𝑡𝑡). 

Since 𝐴𝐴𝑡𝑡  is a process of bounded variation, its Ito’s rule 
show that 𝑑𝑑𝐴𝐴𝑡𝑡 = 𝑋𝑋𝑡𝑡

𝑓𝑓𝑑𝑑𝑑𝑑  so applying Ito’s rule to 𝑅𝑅𝑅𝑅(𝑡𝑡) 
gives  

𝑑𝑑
𝑋𝑋𝑡𝑡
𝑓𝑓

𝑋𝑋0 + 𝐴𝐴𝑡𝑡
=

1
𝑋𝑋0 + 𝐴𝐴𝑡𝑡

𝑑𝑑𝑋𝑋𝑡𝑡
𝑓𝑓 −

𝑋𝑋𝑡𝑡
𝑓𝑓

(𝑋𝑋0 + 𝐴𝐴𝑡𝑡)2 𝑑𝑑𝐴𝐴𝑡𝑡  

which upon substitution gives  

𝑑𝑑 𝑋𝑋𝑡𝑡
𝑓𝑓

𝑋𝑋0+𝐴𝐴𝑡𝑡
= 𝑋𝑋𝑡𝑡

𝑓𝑓

𝑋𝑋0+𝐴𝐴𝑡𝑡
(𝑟𝑟 + 𝑓𝑓𝜇𝜇�)𝑑𝑑𝑑𝑑 + 𝑋𝑋𝑡𝑡

𝑓𝑓

𝑋𝑋0+𝐴𝐴𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑊𝑊𝑡𝑡 − ( 𝑋𝑋𝑡𝑡

𝑓𝑓

𝑋𝑋0+𝐴𝐴𝑡𝑡
)2𝑑𝑑𝑑𝑑. (3.6) 

The result is equivalent to (3.5). Here, the policy is 
maximized by a strategy that invests as much as possible in 
the risky asset and the total return from this policy turns out 

to have stochastic dominance property as well. This 
continuous stochastic process can be used for modeling 
random behavior that evolves over time like fluctuation in an 
asset price. 

4. Application on Logistic Financial 
Fractal Dispersion Function of the 
Hausdorff Priorto Crash Market 
Signal 

One of the several distinct techniques of investigating the 
size of subsets of zero market in 𝑅𝑅𝑛𝑛  is the notion of packing 
dimension due to Taylor and Triort, [10]. 

Packing dimension is defined via the packing measure as a 
class φ of monotone functions h ℎ: (0, 𝛿𝛿) → (0,1) which is 
non decreasing, right continuous satisfying h(0+) = 0 and for 
which there is a constant. 

C >0 such that h(2s) = Ch(s) for 0<s <𝛿𝛿
2
   (4.1) 

We obtain the packing dimension by two definitions. First, 
we defined a pre-measure  

ℎ − 𝑝𝑝(𝐸𝐸) = 𝐿𝐿𝐿𝐿𝐿𝐿 𝑠𝑠𝑠𝑠𝑠𝑠∑ ℎ(2𝑟𝑟):𝐵𝐵𝑟𝑟∞
𝑖𝑖=1 (𝑋𝑋)   (4.2) 

disjoint 𝑋𝑋 ⊆ 𝐸𝐸. 𝑟𝑟. 
Where 𝐵𝐵𝑟𝑟(𝑋𝑋) denotes the open ball centered on X radius 

r Eq(4.2) is not an outer measure because it is not count ably  
Sub-additive. However it leads to an outer measure by 
defining 
ℎ − 𝑝𝑝(𝐸𝐸) = lim𝑠𝑠→𝑛𝑛 𝐼𝐼𝐼𝐼𝐼𝐼 ∑ ℎ − 𝑝𝑝(𝐸𝐸):𝐸𝐸 ⊂ ⋃ 𝐸𝐸1

∞
𝑖𝑖=1 𝐵𝐵𝑟𝑟∞

𝑖𝑖=1 (𝑋𝑋)(4.3) 
which can be thought of as a generalization of Hausdorff 
measure using maximal packing of E by balls, so that if h(s) 
= 𝑆𝑆𝑛𝑛  then h –p( ) on 𝑅𝑅𝑛𝑛  is n-dimensional Hausdorff 
measure. Thus to measure the Borel subset of E ⊂𝑅𝑅𝑛𝑛  we 
need 

 lim𝑠𝑠→𝑛𝑛
𝑆𝑆𝑛𝑛

ℎ(𝑠𝑠)
= 0 ⇒ 𝑝𝑝𝑓𝑓(𝑡𝑡) = 𝑋𝑋𝑡𝑡

𝑓𝑓−𝑋𝑋0

∫ 𝑋𝑋𝑠𝑠
𝑓𝑓𝑡𝑡

𝑠𝑠 𝑑𝑑𝑑𝑑
𝑓𝑓𝑟𝑟  𝑡𝑡 ≥ 0 from (2.1) (4.4) 

So that if h(s) = 𝑆𝑆𝑛𝑛  then 𝛼𝛼 > 0, there is a unique value of 
𝛼𝛼 for which the packing measure h- P(E) drops from infinity 
to zero. 

This in turn means that E is less occupied than if it were 
𝛼𝛼 − 𝜀𝜀 dimensional. For 𝜀𝜀 > 0. We define the next Dim E as  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑖𝑖𝑖𝑖𝑖𝑖{𝛼𝛼 > 0: 𝑆𝑆𝑛𝑛 − 𝑃𝑃(𝐸𝐸) = 𝑜𝑜} = inf 𝜇𝜇 (𝐵𝐵𝑡𝑡(𝑥𝑥))
ℎ(2𝑟𝑟)

= 𝑉𝑉 (4.5) 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑠𝑠𝑠𝑠𝑠𝑠{𝛼𝛼 > 0: 𝑆𝑆𝑛𝑛 − 𝑃𝑃(𝐸𝐸) = ∞} = sup 𝜇𝜇�𝐵𝐵𝑡𝑡(𝑥𝑥)�
ℎ(2𝑟𝑟) =  ℎ𝑠𝑠(4.6) 

which denotes the packing dimension E. 
The underlying assets is paying nontrivial continuous 

dividends with an annualized yield 𝐷𝐷 ≥ 0. A holder of the 
underlying asset receives a dividends yield 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷over any 
time interval with length𝑑𝑑𝑑𝑑. Paying dividends leads to the 
asset price decrease 

𝑑𝑑𝑆𝑆 = (𝜇𝜇 − 𝐷𝐷)𝑆𝑆𝑆𝑆𝑆𝑆 + 𝜎𝜎�𝑆𝑆𝑆𝑆𝑆𝑆.             (4.7) 
Comparing equations (3.5) and (4.7) implies that𝑅𝑅𝑅𝑅(𝑡𝑡) =

𝑆𝑆, 𝜇𝜇 = 𝜇𝜇�𝑓𝑓,𝐷𝐷 = 𝑟𝑟 − 𝑅𝑅𝑅𝑅(𝑡𝑡),𝜎𝜎𝜎𝜎 = 𝜎𝜎�. After an elapse of time 
∆𝑡𝑡  the value of the portfolio will change by the rate 
ℎ(∆𝑆𝑆 + 𝐷𝐷∆𝑡𝑡) − ∆𝑉𝑉 in view of the dividend received on h 
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units held. Using Ito’s lemma for 𝑑𝑑𝑑𝑑 we conclude with the 
equation 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ (𝑟𝑟 − 𝐷𝐷)𝑆𝑆 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 1
2
𝜕𝜕2𝑉𝑉
𝜕𝜕𝑆𝑆2 𝜎𝜎2𝑆𝑆2 − 𝑟𝑟𝑟𝑟 = 0.     (4.8) 

Using a new function 𝑉𝑉(𝑆𝑆, 𝜏𝜏) = 𝐾𝐾𝐾𝐾−(𝛼𝛼𝛼𝛼+𝛽𝛽𝛽𝛽 )𝑢𝑢(𝑥𝑥, 𝜏𝜏) , 
(where 𝛼𝛼,𝛽𝛽 ∈ 𝑅𝑅are some constants) and the transformation 

𝑥𝑥 = ln 𝑆𝑆 𝐾𝐾� , 𝜏𝜏 = 𝑇𝑇 − 𝑡𝑡  we have; 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑆𝑆 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2 =

𝑆𝑆2 𝜕𝜕2𝑉𝑉
𝜕𝜕𝑆𝑆2 + 𝑆𝑆 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝑆𝑆2 𝜕𝜕2𝑉𝑉

𝜕𝜕𝑆𝑆2 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, which is substituted in (4.8) 
to get ; 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐴𝐴
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
1
2
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2 𝜎𝜎

2 + 𝐵𝐵𝐵𝐵 = 0,  

𝑢𝑢(𝑥𝑥, 0) = 0, 𝐸𝐸𝑒𝑒𝛼𝛼𝛼𝛼max⁡(𝑒𝑒𝑥𝑥 − 1,0),       (4.9) 

where 𝐴𝐴 = 𝛼𝛼𝜎𝜎2 + 𝜎𝜎2

2
− 𝑟𝑟 + 𝐷𝐷  and 𝐵𝐵 = (1 + 𝛼𝛼)(𝑟𝑟 − 𝐷𝐷) −

𝛽𝛽 − 𝛼𝛼2𝜎𝜎2+𝛼𝛼𝜎𝜎2

2
. By setting 𝛼𝛼 = 𝑟𝑟−𝐷𝐷

𝜎𝜎2 − 1
2

, 𝛽𝛽 = 𝑟𝑟+𝐷𝐷
2

+ 𝜎𝜎2

8
+

(𝑟𝑟−𝐷𝐷)2

2𝜎𝜎2  we 𝐴𝐴 = 𝐵𝐵 = 0, so that (4.9) reduces to finding the 
solution of the Cauchy problem 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
1
2
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2 𝜎𝜎

2 = 0 ,𝑢𝑢(𝑥𝑥, 0) = 𝑢𝑢0(𝑥𝑥), 

 −∞ < 𝑥𝑥 < ∞, 𝜏𝜏 ∈ [0,𝑇𝑇].             (4.10) 
Consider a market comprising of ℎ unit of wealth in 

long position (expected) and 𝑢𝑢 unit of the wealth in short 
position (actual), at time 𝜏𝜏 the market value is assumed to 
be ℎ − 𝑢𝑢 after an elapse the value changes by the amount 
and the Hausdorff measure in this case is to determine 
which subsets of 𝑅𝑅𝑛𝑛+1(𝑅𝑅𝑛𝑛  is the n-dimensional Euclidean 
space) are of zero heat capacity (that is where there is no 
market signal and hence market crash) with respect to the 
heat equation   

∑ 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥𝑗𝑗

2 =  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑛𝑛
𝑗𝑗 .            (4.11) 

A solution 𝑢𝑢(𝑥𝑥, 𝜏𝜏) to the Cauchy problem (4.10) is given 
by the Green’s formula 

𝑢𝑢(𝑥𝑥, 𝜏𝜏) = 1
�2𝜎𝜎2𝜋𝜋𝜋𝜋

∫ 𝑒𝑒−
(𝑥𝑥−𝑆𝑆)2

2𝜎𝜎2 𝑢𝑢(𝑆𝑆, 0)𝑑𝑑𝑑𝑑∞
−∞ .   (4.12) 

Equation (4.12) gives us the idea that the transition density 
of the Brownian motion in 𝑅𝑅𝑛𝑛  is just the heat kernel (for 
𝜎𝜎2 = 2); 

𝑢𝑢(𝑥𝑥, 𝜏𝜏) = � (4𝜋𝜋𝜋𝜋)−𝑛𝑛 2� 𝑒𝑒𝑒𝑒𝑒𝑒 �‖𝑥𝑥−𝑠𝑠0‖2

4𝜏𝜏
� , 𝜏𝜏 > 0

0,                                             𝜏𝜏 ≤ 0
�, 

which satisfies the heat equation (4.11). The measure zero is 
equivalent to the heat capacity zero on the hyper plane. It 
therefore follows that the solution of (4.8) is given as; 
𝑉𝑉(𝑆𝑆,𝑇𝑇 − 𝑡𝑡) 

= 𝐸𝐸𝐸𝐸−�𝛼𝛼 𝑙𝑙𝑙𝑙𝑆𝑆 𝐾𝐾� +𝛽𝛽𝛽𝛽 ��4𝜋𝜋(𝑇𝑇 − 𝑡𝑡)�−
𝑛𝑛

2� 𝑒𝑒𝑒𝑒𝑒𝑒 �
�𝑙𝑙𝑙𝑙 𝑆𝑆 𝐾𝐾� − 𝑠𝑠0�

2

4(𝑇𝑇 − 𝑡𝑡) �, 

  𝑇𝑇 − 𝑡𝑡 > 0.                                 (4.13) 
The market crash (bubble) source gives rise to a 

 𝑉𝑉:𝑅𝑅𝑛𝑛+1 → 𝑅𝑅which assigns a value to a portfolio 𝑉𝑉(𝑆𝑆, 𝜏𝜏) to 

each point of (𝑥𝑥, 𝜏𝜏) ∈ 𝑅𝑅𝑛𝑛+1  through a generating kernel  
𝑢𝑢(𝑥𝑥, 𝜏𝜏) so that on a positive market strategy 𝜋𝜋 on 𝑅𝑅𝑛𝑛+1 is 
the portfolio growth rate if it is finite on a dense subset of 
𝑅𝑅𝑛𝑛+1. 

5. Conclusions 
Equations (2.8) and (2.15) reveal that: (i) if assets returns 

follow a geometric Brownian motion, then the limiting 
distribution is gamma distribution, conversely (ii) if returns 
follow Weibull distribution, then it results to asymptotic 
power-law behavior. Furthermore the optimal strategy (2.15) 
depends on 𝛾𝛾 which in turn depends on 𝑎𝑎 (the singularity 
strength). 𝛾𝛾 → 0  as 𝑎𝑎 → 0  and 𝐻𝐻 (the optimal claims) 
increases without bound. As 𝑎𝑎 → 4

𝑞𝑞𝑛𝑛2
, 𝛾𝛾 → 2  and 𝐻𝐻 

decrease constantly with 𝑡𝑡. Given (3.1), we have 𝜇𝜇 = �𝜇𝜇�
𝜎𝜎
�

2
 

(the square of the correlation coefficient) and 𝜎𝜎� = 𝜇𝜇�
𝜎𝜎
. 

The policy is maximized by a strategy that invest as much 
as possible in the risky asset and the total return from this 
policy turns out to have stochastic dominance property as 
well. This continuous stochastic process can be used for 
modeling random behavior that evolves over time like 
fluctuation in an asset price and With Hausdorff measure and 
the heat equation via packing dimension  ℎ(𝑠𝑠) −  𝑉𝑉  and 
ℎ(𝑠𝑠)
𝑠𝑠𝑛𝑛

 there is no market signal as it tends to zero hence the 
market is likely to crash at that point indicating shortfall on 
the wealth investment. The exact packing dimension is 
determined for subset of 𝑅𝑅𝑛𝑛 .𝑛𝑛 ≥ 3  for which 𝑢𝑢(𝑋𝑋, 𝑡𝑡 ) is 
unbounded for (𝑥𝑥, 𝑡𝑡)⊂ 𝑅𝑅𝑛𝑛+1 . Where 𝑅𝑅𝑛𝑛  is n-dimensional 
Euclidean space. (size of the market) 

And for analysis of subset of B of 𝑅𝑅𝑛𝑛  of Zero Hausdorff 
measure, it is appropriate to assume that  

ℎ(𝑠𝑠)
𝑆𝑆𝛼𝛼

→ ∞ 𝑎𝑎𝑎𝑎 𝑆𝑆 → 0 

So that if  ℎ(𝑆𝑆) = 𝑆𝑆𝛼𝛼  𝛼𝛼 > 0 but  ℎ −  𝑃𝑃(𝐸𝐸) turns out to 
be either zero or infinity. 
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