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Abstract  A nonlinear dynamical system and qualitatively analysis of HIV/AIDS epidemic model with treatment is 
investigated. The model allows for some infected individuals to move from the symptomatic phase to the asymptomatic phase 
by all sorts of treatment methods. Mathematical analyses establish that the global dynamics of the spread of the HIV 
infectious disease are completely determined by the basic reproduction number R0. If R0 ≤ 1, the disease free equilibrium is 
globally stable, where as the unique infected equilibrium is globally asymptotically stable if R0 ≤ 1. Finally, numerical 
simulations are performed to illustrate the analytical results. 
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1. Introduction 
HIV/AIDS is one of the most deadly diseases humankind 

has ever faced, with profound social, economic and public 
health consequences. It has gradually over the decades 
become a global pandemic with Ghana not an exception. The 
number of people living with HIV rose from around 8 
million in 1990 to 34 million by the end of 2011(USAID, 
2012). The increasing trends of HIV pose a significant public 
health concern. Although there have been several attempts to 
curb the spread of HIV, the continual spread of the disease 
has persisted and there has been reported cases worldwide. 

Mathematical models have been extensively used over the 
years in researching into the epidemiology of HIV/AIDS, to 
help improve our understanding of major contributing 
factors in a given epidemic (Naresh et al., 2006). 

(Lima et al. 2008) developed a mathematical model to 
analyse the potential impact of scaling up highly active 
antiretroviral therapy (HAART) as a strategy to decrease 
HIV load at the population level on the spread of HIV. 
Results indicated that a higher HAART coverage 
consistently leads to decrease in the number of individuals 
testing newly positive for HIV. 

Other researchers have sought to study the effects of 
various factors that can affect the transmission of the disease. 
In particular, (Anderson and May, 1998) developed a HIV 
transmission dynamics model using difference equations in 
the deterministic case and state transition probabilities in the 
stochastic case that represents the progression from  
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HIV+ status to AIDS where the population is divided into 
categories of progressive infectious stages. Patterns of HIV 
have been studied extensively for over half a century. 
(Simwa et al. 2003) formulated a deterministic mathematical 
model for HIV epidemic transmission through heterosexual 
contact and vertically from an infected mother to her unborn 
child with three stages of disease progression among infected 
patients using two systems of ordinary differential equations. 

With regard to the spread of disease, it has been 
established that the disease becomes more endemic due to 
immigration therefore the focus on infective immigrants is 
inevitable and comes in to ensure that the endemicity of the 
disease is practically reduced (Issa et al. 2011).  

In terms of HIV treatment, (Montaner et al. 2006) 
established from their study on universal HIV testing, the use 
of antiretroviral (ARVs) for prevention of mother-to-child 
transmissions (PMTCT) and through post-exposure 
prophylaxis for sexual assaults and needle-stick injuries. In 
this paper, we seek to develop a nonlinear deterministic 
system to study the dynamics of the HIV disease at four 
compartments of the populations with treatment. 

2. Model Formulation 
In order to derive the model equations, the total population 

(N) is assumed to be constant and categorised into four 
compartments namely susceptible , infective 

, treated class  and AIDS class . The 
detailed transition between these four compartments is 
depicted in Figure 1. There is an inflow of newly recruited to 
the susceptible population at a rate . Moreover, with the 
introduction of infectives and homogeneous mixing in the 
population, an individual become infected at rate . It is 
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assumed that some people are not aware of their HIV status 
and thus do not seek medical attention. The treated class 
represents people who seek medical attention. Treatment is 
the process of offering the HIV positive individual with a life 
prolonging drug/medicine known as antiretroviral (ARV) 
medicine or antiretroviral treatment (ART). ART drugs are 
the main types of treatment for HIV/AIDS. New recruits into 
the treated class occur at a rate . Again, people who are 
ignorant of their HIV status in the infective class are 
recruited into the AIDS class at rate . Natural death at the 
various compartments occurs at a rate . 

With the assumptions given and the illustrations in Figure. 
1, the systems of initial value nonlinear differential equation 
for the SITA model are formulated as follows: 

   (1) 

   (2) 

    (3) 

  (4) 

Where
. 

The total population, N is given by the formula: 

 
From equation (1)-(4)  

    (5) 

In order to express the systems of equations in equations 
(1)-(4) as a fraction of the total population, and since the 
state variable A does not appear in the first three equations 
of system (1)-(4), we use the following substitutions: 

 

Hence resulting systems of equations shall be based on 

        (6) 

    (7) 

        (8) 

3. Basic Properties of the Model 
3.1. Positivity of the Solutions 

Since the model monitors human population we need to 
show that all the state variables remain non-negative for all 
times. 

Theorem 1: Let  

then the solutions of  of the system 

(6)-(8) are positive for all . 

 
Figure 1.  Schematics of the Susceptible-Infective-Treated-Aids (SITA) model 
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Proof: 
Taking the first equation, we have 

 

From the second equation we have 

 

Finally, from the third equation, we have 

 

3.2. Invariant Region 

The system (6)–(8) has solutions, which are contained, in 
the feasible region . 
Proof 

Let  be any solution of the system with 

non negative initial conditions then Adding the equations of 
the system (6)-(8), we have 

 

Hence  

 
Thus the considered region for the system (6)-(8) is  

 
The vector field points to the interior of  on the part of 

the boundary when  for and is positively 

invariant.   

4. Equilibria 
Lemma 4.1. The disease-free equilibrium of system 

(1)-(4) is given by 

 
and the endemic equilibrium by 

 

where 

 
With the natural mortality rate,  considered constant 

throughout the model, the duration spent in the infectious 

class is given by . 

4.1. Basic Reproductive Ratio  

One of the fundamental questions of mathematical 
epidemiology is to find threshold conditions that determine 
whether an infectious disease will spread in a susceptible 
population when the disease is introduced into the population. 
It is defined as the average number of susceptible who can be 
infected by a typical infective in a population in which 
everybody is considered as susceptible (Diekmann et. al., 
1990). If the basic reproductive ratio is found to be greater 
than one, the disease will spread throughout the entire 
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population and also if it is less than one the disease 
eventually die off. Thus, the basic reproductive ratio 
determines the direction of the disease. 

Although there have been several theories proposed by 
various researchers in the estimation of the basic 
reproductive ratio, we use the Next Generation Matrix 
approach (van der Driessche et. al. 2002, Diekmann et. al. 
2000). It is given mathematically as 

 
where  is defined as the spectral radius of the Next 

Generation Matrix ,  is the rate of appearance 

of new infections in compartment and  is the transfer 
of individuals out of compartment  by all other means. 

Given the DFE,  is calculated as the largest 
eigenvalue (spectral radius) of the matrix of partial 
derivatives: 

 

where 

 (9) 

and 

 

  (10) 

 
Therefore, 

 
The spectral radius of the next generation matrix is 

             (11) 
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(b) 

Figure 2.  Phase plane portrait for the classic HIV endemic model with treatment rate σ = 0.01 

4.2. Local Stability of the Disease-Free Equilibrium 
(DFE) 

Lemma 4.2: The disease-free equilibrium is locally 
asymptotically stable whenever . We shall use the 
linearization approach to proof the local stability of the 
disease-free equilibrium (DFE). The Jacobian matrix 
associated with the system (6)-(8) is: 

 

At the DFE, which is given by , we have 

 

Clearly the eigenvalues at the DFE are given by: 

 

For the positive parameters  and , it 
can be seen that eigenvalues of the DFE are all negative and 
hence the DFE is stable. 

Since , we have 

    (12) 

Note that  implies that the inequality (12) also 
holds and thus we have proved Lemma 4.2. 

4.3. Global Stability of the Disease-Free Equilibrium 
(DFE) 

Lemma 4.3: If  then the disease-free equilibrium 

 is globally asymptotically stable in . 
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Proof: Given that , then there exist only the 

disease free equilibrium 

Considering that Lyapunov function candidate
defined as  

 

Differentiating  with respect to time yields 

 

 
Substituting the system (6)-(8), we have 

 

It is important to note that, only when . However, substituting  into the equations for  and  in 

(6)-(8) shows that  and  as . Therefore, the maximum invariant set in  is 

the singleton set . Hence, the global stability of  when  follows from LaSalle’s invariance principle 

(Lasalle, 1976 and Tewa et. al. 2009). 

4.4. Local Stability of Endemic Equilibrium (EE) 

Lemma 4.4: The endemic equilibrium is locally asymptotically stable if . 

Proof. The Jacobian equilibrium is locally asymptotically stable if . 

 

The eigenvalues of  are  

,  

Hence, if , then  and . 

4.5. Global Stability of the Endemic Equilibrium (EE) 

Lemma 4.5: For , system (6)-(8) is globally asymptotically stable, if  and , and 

unstable . 

X Y<
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Proof. Using the constructed Lyapunov function by (Cai, L. and Li, Z., 2010), the global stability of the endemic 
equilibrium is proved. By defining the Lyapunov function as follows.  

 
By direct calculating the derivative of  along the solution of system (6)-(8) we have; 

 

 
It implies that  
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Rearranging the positive and negative terms in (13) leads to 

                                      (14) 
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Figure 3.  Population dynamics of the HIV/AIDS epidemic model 

Hence if then we obtain . Noting that 

 if and only if therefore 

the largest compact invariant set 

 is the singleton , 

where  is the endemic equilibrium. Hence by the 
LaSalle’s invariant principle, it implies that  is globally 
asymptotically stable in  if .   

5. Numerical Analysis 
We now present numerical simulations for the nonlinear 

and chaos HIV model using parameter values in Table 1. 
Some values assigned to the parameters have been derived 
from epidemiological literature and WHO database while 
other parameters have been allowed to vary within the 
possible intervals. All simulations are performed using 
Matlab and Mathematica. It is worthy to note that although 

carefully chosen our parameter values are theoretical and 
may not be biologically realistic. 

Table 1.  Parameter values used for the HIV/AIDS epidemic model 

Variables / 
Parameters Description Values 

s Susceptible Class 200 

i Infective Class 25 

z Treated Class 20 

 Recruitment rate 120 

 Contact rate 0.005 

 Rate at which infected individuals 
develop full blown AIDS 0.36 

 
Rate at which infected individuals 

move to the treated class 0.3 

 treatment rate 0.01 

 Natural mortality rate 0143 

The results show a sharp decrease in the number of 
susceptible class corresponding to an increase in the 
infective class during the initial stages of the epidemic before 
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settling to a steady state solution (disease-free or endemic 
equilibrium). 

Figure (4a and 4b) below, illustrates the invariance 
properties of the model. Precisely, for varying initial 
conditions the model solutions either converges to the 
disease-free or the endemic state. It can be observed from 
these figures that for any initial starting point, the solution 
curves tend to the endemic equilibrium point . The phase 
portrait in figure (4a) indicates that the trajectories for any 

initial populations result in a situation where there are no 
infective individuals, that is, the disease-free equilibrium. 
From figure (4b) the phase portrait indicates that for any 
starting initial value, the solution curves tend to the 
equilibrium . Hence, we infer that the system (6)-(8) is 

globally stable about the endemic equilibrium point  for 
the set of parameters chosen. 

 

Figure 4a.  Phase portrait of the dynamics of susceptibles class and the infective class 

 

Figure 4b.  Phase portrait of the dynamics of susceptibles class and the treated class 

 



 Applied Mathematics 2014, 4(3): 86-96 95 
 

 

Figure 5.  Disease prevalence in treated class as the rate of treatment increases. 

To investigate the effect of treatment on the dynamical 
behaviour of HIV/AIDS infection we simulate the model 
over different values of the treatment rate . 
These values depict the result in figure (5) and show that, 
increasing treatment rate has the effect of reducing the 
number of secondary cases and subsequently reduce the 
HIV/AIDS epidemic. The results further show that 
increasing the treatment rate decreases the severity of the 
epidemic as seen by gradual decrease in the peaks and time 
lags between peaks, as  increases. 

6. Conclusions 
In this paper, an SITA epidemic HIV/AIDS model with a 

nonlinear dynamics and chaos is designed and analysed. The 
model consisted of nonlinear ordinary differential equations 
for a population with variable size structure and studied the 
effect of treatment dynamics of HIV/AIDS transmission. 
Some of the theoretical and epidemiological findings of the 
study are as follows. 

(1) The dynamics behavior of the nonlinear chaos 
HIV/AIDS treatment model (6)-(8) such as the basic 
reproduction number  were derived and it was 
shown that the disease can be eradicated if the basic 
reproduction is less or equal to unity. 

(2) The model (6)-(8) has a locally stable disease-free 
equilibrium whenever the associated reproduction 
number is less than unity. 

(3) The DFE of the model (6)-(8) is shown to be globally 
asymptotically stable when . 

(4) The endemic equilibrium of the reduced model (6)-(8), 

is shown to be globally asymptotically stable, when 
. 

To explain that treatment may result in the disease 
persisting or in the disease dying out, depending on 
parameter value, we simulated the model over different 
values of the treatment rate . The results 
shows that increasing the treatment rate decreases the 
severity of the epidemic as seen by gradual decrease in the 
peaks and time lags between peaks, as  increases. 

We conclude that treatment as an intervention strategy can 
help to contain the HIV/AIDS epidemic but can lead to 
evolution of drug resistance, which can reverse the benefits 
of treatment. Although, treatment may lead to evolution of 
drug resistance, it helps to reduce the proportion of vertically 
infected and prolongs the lives of all infected individuals. 
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