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1. Introduction

Domination in graphs has become an important area of
research in graph theory,as evidenced by the many results
contained in the two books by Haynes,Hedetniemi and
Slater(1998)[6].Vernold Vivin J(2010) have studied the
harmonious coloring of line graph, middle graph, central
graphs of certain special graphs[12]. Venketakrishnan and
Swaminathan (2010)[15] have studied the colorclass
domination number of middle graph and central graphs of
K;, C,and P,. In this paper we discuss (1,2)-domination in
the middle and central graphs of K; ,, C, and P,,.

By a graph G =(V,E) we mean a finite ,undirected
graph without loops or multiple edges. A subset D of V'
is a dominating set of G if every vertex of V' —D is
adjacent to a vertex of D . The domination number of G ,
denoted by y ( G ), is the minimum cardinality of a

dominating set of G .

A (1,2) - dominating set in a graph G is a set S having the
property that for every vertex v in V' —.S there is atleast
one vertexin S at distance 1 from v and asecond vertex
in S atdistanceatmost2 from v.The order ofthe smallest
(1,2) - dominating set of G is called the (1,2) - domination
numberof G denoted by Vo).

For a given graph G = (V,E) of order n.the central
graph C(G)is obtained, by subdividing each edge in E
exactly once and joining all the nonadjacent vertices of
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G . The central graph C(G) of a graph G is an

example ofa split graph, where a split grah is a graph whose
vertex set V can be partitioned into two sets, V; and V,,
where every pairofvertices in V; are adjacent, and no two
vertices in V, are adjacent.

The middle graph M (G) of a graph G, is the graph
whose vertexsetis V' (G) U E(G) where two vertices are

adjacent if and only if they are either adjacent edges of Gor
oneis avertexand the other is an edge incident with it. That

is, two vertices x and y in the vertex set of M (G) are
adjacentinif x,y arein E(G) and x,y areadjacent in
Gor x isin V(G) ,yisin E(G),andx is incident to y

in G .The related ideas regarding these graphs can be seen
in[3,12,13,14].

2.1 %2 - domination in Middle Graphs
of X;,, C,, and P,,.

Theorem 2.1
Forany stargraph K,,,7 [M(K,,)]=n.
Proof:
and

Let V(K,,)={V,VysV, }

E(G)={e,,e,,.......,e,} By the definition of middle
graph, we have
VIM(K, )]={viUle /1<i<njU{v,/1<i<n}

in which the vertices €;,€,,....., €,,V induces a clique of

order n+1 Hence J[M (K, )]=n But

{V/»V;y5eeee,V, } is an independent set and each e; is

adjacent to V;.
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Therefore Y[M (K, ,)]<n
Hence, 7 [M(Kl,n )=n.

Star graph K, ,

Theorem 2.2

For any star graph Kl,,, , (1,2)- domination number
Va2 [M(Kl,n )=n
Proof:

Let V(K,,)={v,V,Vy5esV, } and

E(G)={e,,e,,......,e,} By the definition of middle
graph, we have

VIM(K, )]={vle /1<i<njU{v,/1<i<n}

in which the vertices ¢,,e,,....., e,,V induces a clique of

order n+1. I M(K,,) the vertex v is adjacent to
{e,/1<i<mn}and {v,v,,....,v,}is an independent set
and eache, is adjacentto v,.So {e,/1<i < n}will form
a (1,2)- dominating set. Thatis, y, ,, [M (K|, )]=n
Since { e¢,e,,....., €,,v } induces a clique, Ya
[M(K,,)]<n.
Therefore , ,, [M(K,,)]=n

Theorem 2.3

Foranycycle C,, Y[(M(C,)]= lrg—l+l..

Proof:
Let V(C,)={v,,Vy e VY, } and
E(C))={e,e,,....... ,e, where

e, =vyv,,(1<i<n-1),e, =v v, By the definition of
middle graph , M(C,) has
V(C,)UE(C,) in which each e; is adjacent with

the vertex set

145

i ‘2 "".
Middle graph of Star graph K, ,,

=1,2,....,n—1) and e, is adjacent with - In
1

M(C)) , v,,e,v,,e,,...,e,,,V, induces a cycle of
length 2,

n
But we know that for n>3, 7 ( C,)= ’75—‘ (Theorem

2.1[51]).

Thus itis clear that, y [(M( C,)]= ’72—‘ +1..
Theorem 2.4

Forany cycle C,, 7u2[M(C,)]1= lrg—l +1.
Proof:

Let V(C,) =1, VyseeeesV, } and
E(C))={e,e,,........ ,e, where

(I1<i<n-l),e, =v, v, By the definition of
middle graph , M(C,) has
V(C,)UE(C,) in which each e, is adjacent with

e, (i=L2,..,n—1) and e, is adjacent with v, In

€ =VViy

the wvertex set

M(C)) , v,,e,v,,e,,...,e,,,V, induces a cycle of
length 24
We have by theorem 3.1 in[ 10 ], for any cycle Cn,

n+2
( )J Hence a2 [ M(C,) 1] =

v(1,2)( Cn ) ={ 3

i

Theorem 2.5
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Forany path P ,y(M(P))) = lrg—‘

Proof:

Let P :v,v,,v,,..,v,, be a path of length 7 and let

n+l

v,v,,, = e, . By the definition of middle graph, A (P,)has the
vertexset V(P)UE(P)={v,/1<i<n+1}Ufe /1<i<n}
in which each v, is adjacent to ¢; and e, is adjacent to

v, -Also e, is adjacentto e,

Case 1: |V(Pn )| =2k

Then. The vertices v,,e,,V,,€,,...,
path of length 4k.

Case 2: |V(Pn )| =2k+1
V(M (P)| =4k +1

€5, 5V, induces a path oflength 4k.

€,,_,,V, induces a

Then The vertices

V5€15V55,€5 5

Inboththecases, M (P,) isa pathof length4k. Thatis,

n=4k.

But we have for n2>3, 7 ( Pn) = lrg—‘ (Theorem

2.1,[5]). Therefore, y(M(P,))= Irg—l
Theorem 2.6
2n
Forany path P, V) (M(P)) = ? )

Proof:

Let P :v,,v,,V;,...,V,, be a path of length ; and let

v.v., =e.

i7i+l it

By the definition of middle graph M (P,) has the vertex
set V(P)UE(P)={v/1<i<n+1l}u{e /1<i<n} in

. V. . . e.
which each "7 is adjacent to ‘and

e, is adjacentto V,,,.Also ¢, is adjacent to e

i+l

i+l

Case 1:

V(M (P,))|=4k-1

V5€5V5,€5 5

Then The vertices

€,,_1,V, induces a path oflength 4k.
=2k +1

V(M (P,))| =4k +1

V15€1,V5,€5 5.,

Case 2:

Then The vertices

€, >V, induces a path of length 4k.

Inboththecases, M (P,) isapathoflength 4 Thatis,

n=4k-

Then by theorem 2.1 in[10] we have

(1,2) - domination in Middle and Central Graph of X ,, C, and P,

Yon (M(P,)) = [?ﬂ

3.(1,2)- domlnatlon in Central Graph of
,and P,,.

Lns
3.1.(1,2)-domination in C(K; )
Theorem 3.1

For any star graph Kl,n ) 7(C(K1,n ) =2
Proof:

Let V(K,,)=1{v,v,v
definition of central graph of K| we denote the vertices of

v,} where deg v = n. By the

subdivision by u,,u,,...,u, . That is, vv; is subdivided by
u(1<i<n) . Let and e =vu,(1<i<n)

Therefore V(C(K,,))={v,:1<i<njUfu, :1<i<njU{v}.
By the definition of central graph the subgraph induced by
the vertexset {v,v,,..,v,} is K and let ¢; be the edge of

€ =V,

C(K,,),connecting the vertexv; and v; (i < j).
E(C(K,,))={e:1<i<n}Ufe :1<i<n}

1<i<n—-Li+1<j<n}

Since in the central graph of a star, the central vertex v
together with any one of v;’s form a dominating set.

Therefore we have 7(C(K,,))=2 .

C(K, )

U le;

Central Graph of Star Graph K, ,
Theorem 3.2

Forany stargraph K, 7.2 (C(Kl,n ) =2

Proof:
Let V(K,,)={v,v,v,,..c.,

the definition of central graph of KL,, we denote the

V,,} where deg v = n. By
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vertices of subdivision by U,,U,,...,u, . That is, Vv, is
subdivided by u,(1<i<n) .
e, =vu,(1<i<n) Therefore
V(C(K,,)) = {v:1<i<niu{u, 1<i<nju{v}

By the definition of central graph the subgraph induced by
the vertexset {V,,V,,...,V, } is Kn and let eij be the edge of

Let € =vu, and

C(K,,), connecting the vertex vi and vj (i < j). Then

147

E(C(K,,))=1e:1<i<n}
Ule i1<i<njUfe,:1<i<n—Li+1< j<n}

Since in the central graph of a star, the central vertex of the
star is adjacent to every vertex in the central graph the vertex

v together with any one of the vetices u,(1 <7< n) will
forma {(1,2)-dominating set. Hence 7 (C(Kl,n ) =2.

3.2.(1,2)-domination in C(C,): Consider the Following Examples

V1

Cs:

w3 V3

{vi,uy} is a dominating set and also (1,2)-dominating set.

7(C(Cy)=2=7y,, (C(Cy)

. V1 V4
Cy: » *

v
{vi,uz,u3} is a (1,2)-dominating set.

7(C(C)=3=7, (c(C,)

C'S:
V1
R
4
v ®yy

{vi,uz,us ws} is a (1,2)-dominating set.

y(C(Cy)) =4= V.2 (C(Cs)

C(C3):
vl
u 113
Rl ]_t} vy
C(Ca): N
W] » W
u & o113

V2 1?3 v3

C(Cs):

V3
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Cs
V]

-
a3
Ln

V4

{vi,uz,u3 ws,us} is a (1,2)-dominating set.

7(C(Cy)) =5= V.2 (C(Cy)

Theorem 3.3

Forany cycle C,,7(C(C,))=n-1
Proof:

Let C, be any cycle of length »n and let
V(C,)=1{V,,Vyseere,V, } and

E(C))={e,ey,....... ,e
By the definition of central graph C(C,) has the

vertexset V(C, )U{u, :1<7<n} whereu;is a vertexof
subdivision ofthe edge v;v;+; (1 <i <n-1) and u, is avertex of
subdivision of the edge v,v; In C(Cn) we can note that the
vertex v; is adjacent with all vertices except the vertices v;4;
andv;; for [<i<n-I.v;isadjacent with all vertices except
v,.; and v;.The total number of edges incident with v; is (n-1)
for every

i=1,2,...nand { u; (I <i<n)}is an independent set.So
(viUiu, /2<i<n-1}

will be a dominating set.So the dominating set will consist
of (n-1) vertices.

Hence y(C(C,))=n-1
Theorem 3.4

Forany cycle C, 72 (C(C,))=n-1

Proof:
Let C, be any cycle of length »n and Ilet
V(C,)={v,,Vyseueee. VY, b and

E(C))={e,e,,....... ,e,}.
By the definition of central graph C(Cn) has the
vertexset V(C,)U{u, :1<i<n} whereu; is a vertexof

subdivision ofthe edge v;v;+; (1 <i <n-1) and u, is avertex of

(1,2) - domination in Middle and Central Graph of X ,, C, and P,

C(Cg)-

AL

subdivision of the edge v,v; In C(Cn) we can note that the
vertex v; is adjacent with all vertices except the vertices v;+;
andv;; for [<i<n-1.v;isadjacent with all vertices except
v,.; and v;.The total number of edges incident with v; is (n-1)
for every
i=1,2,....,nand {u; (I <i <n)}is an independent set.So

(viulu,/2<i<n-1}

will be a dominating set. But every minimum card inality
dominating set is also a (1,2)-dominating setin C(C))

Hence y,, (C(C,))=n-1
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3.3.(1,2)-domination in C(P,)

Py C(P3)
* . . u
V] V3 V3
VI
“ .
1z v3
v,y } is a dominating set and also (1,2)-dominating set.
y(C(R))=2= V.2 (C(R).
]
V1
L & & »
V1 VI Vi V4
uz
V3
u3
V4
{vi,uz,u3} is a (1,2)-dominating set.
7(C(F))) =3=7,,(C(F,)
V]
P
uj
* T * * ® v2 Ve
V] V2 Vi V4 VS i
e Ly
v u: Vi

{viuz,u3 us} is a (1,2)-dominating set.

y(C(Fy)) =4 =y, (C(Fs)
Theorem 3.5

For any path P, v (C(P,)) =n-1
Proof.

Let P, be any path of length n-1 with vertices v;,v,,

........... ,vp. On the process of centralisation of P, let u; be the vertex of
subdivision of the edges v;v;; (1 <i <n).
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Also let viu;=e; and wv; ;= e;. (1 <i<n-1).

(1,2) - domination in Middle and Central Graph of X ,, C, and P,

By the definition of central graph the non-adjacent vertices v; and v; of P,are adjacent inC(P,) by the edge e;. Therefore
V(C(P,)) = {vi/l <i<n}U{u/l <i<n-1}and E(C(P,))={e; :1<i Sn—]}u{e; A<isp-1} Ufe:1<i<n-2,i+2<j<n}. In

C(P,) we can see that the vertexv; is adjacent with all vertices except the vertices v;;and v;; for [ <i<n-1.v;is adjacent

with all vertices
Ufu,/2<i<n-1}

will be a dominating set.

NC(P,))=n-1.
£,
Y
_."‘Vn
.'-I v“
!:_vuvf
L-:?
..._-_"'—‘-- -------
Y
Path P,
Theorem 3.6
For any path P,y 2) ((C(Pn))=n-1.
Proof:
Let P, be any path of length n-1 with vertices
VIV2eeienennn ,Vn- On the process of centralisation of Py, let u;

be the vertex of subdivision of the edges vivi,; (1<i<n).

Also let vyu;=e; and wv;4 ;= e; (1<i<n-1).

By the definition of central graph the non-adjacent
vertices v; and v; of P are adjacent inC(P,) by the edge e;;.
Therefore V(C(P,)) = {v{/1<i<n} U {u/1 <i<n-1} and
E(C(P))={e;:1<i<n-1}uU { e A<isn-1} U {e;:1<i<n-2,

1
it2<j<n}.In C(P,) we can see that the vertexv; is adjacent
with all vertices except the vertices v;,;and v;; for 1<i<
n-1.v, is adjacent with all vertices exceptv, {u;,(1<i<

n)} is an independent set So { v;} U{u, /2<i<n-1} So

Y O 12<i<n-1

will be a dominating set.

Y(C(Pn))=n-1.

But every minimum cardinality dominating set of the
central graph of a path is also a (1,2)- dominating set. Hence

Ya2) (C(Py)) =n-1.

4. Relation between Domination
Number and (1,2)-domination
Number in Middle and Central Graph
of Stars, Cycles and Paths

except v2. { w;, (I <i <n)} is an independent set So { v;} U{u,/2<i<n—1} So { v}

Central Graph of Path P,

Theorem 4.1

In the middle graph of a star, [M(K )] .the
domination number equals the (1,2)-domination number.
Proof:

This result is obvious fromtheorem 2.1 and 2.2.
Theorem 4.2

In the middle graph of cycles,[ M(Cn )].the domination
number equals the (1,2)-domination number.
Proof:

This result is obtained by theorem 2.3 and theorem 2.4.
Theorem 4.3

In the middle graph of paths, M (P,) the domination
number is less than orequal to the (1,2)- domination number.
Proof:

This result is obtained by theorem 2.5 and theorem 2.6.
Theorem 4.4

In the central graph of any star, C(X;,),the domination
number equalsthe (1,2)-domination number.
Proof:

This is clear from theorem 3.1 and 3.2.
Theorem4.5

In the central graph of cycles, C(C,), the domination
number equals the (1,2)- domination number.
Proof:
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This result is due to the theorem3.3 and 3.4.

Theorem 4.6

In the central graph of paths,C(P,) ,the domination number

equals the (1,2)- domination number.
Proof:

This result is obtained from theorem 3.5 and 3.6.

5. Conclusions

In this paper we have extended (1,2)- domination to the
middle graph and central graph of stars, cycles, and paths and
discussed both domination and (1,2)- domination number of
these graphs. In all cases it is important to see that the
domination number is less than or equal to the (1,2)-

domination which coincides

the result established in[8].
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