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Abstract  Th is paper presents a new extension for free convection flow with variable v iscosity from a porous vertical plate 
in presence of heat generation. The governing  boundary layer equations are first transformed into a non dimensional form 
and the resulting non linear system of part ial d ifferential equations are then solved numerically using finite difference method 
together with Keller-Box scheme. The numerical results show that the variable viscosity affects the surface shear stress and 
the rate of heat transfer, which are here in terms o f skin friction coefficient and local Nusselt number. It  affects velocity as 
well as temperature profiles also. These are shown  graphically  and tabular form for a selection of parameters set of 
consisting of viscosity variation parameter γ, heat generation parameter Q, Prandtl number Pr. 
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1. Introduction 
The study of heat generation or absorption in moving 

flu ids is important in problems dealing with chemical 
reactions and those concerned with dissociating fluids. 
Possible heat generation effects may alter the temperature 
distribution; consequently the particle deposition rate in 
nuclear reactors, electronic ch ips and semiconductor wafers. 

Free convection flow with variable viscosity from porous 
vertical plate in p resence of heat generation has been drawn 
forth not only for its fundamental aspects but also for its 
s ign ificance in  the contexts  o f space technology  and 
processes involving high temperature. In  the presence of heat 
generation, variable viscosity free convection boundary layer 
flow from a porous vertical p late of a steady two dimensional 
viscous incompressible fluid and the radiated heat transfer 
has been investigated. In this analysis consideration had been 
given to grey gases that emit and absorb but do not scatter 
thermal rad iat ion. Over the work it  is assumed that  the 
surface temperatu re o f the porous vert ical p late, Tw , is 
constant, where Tw>T∞. Here T∞  is the ambient temperature 
of the flu id, T is the temperature of the flu id in the boundary 
layer, g  is the accelerat ion  due to g rav ity, the flu id  is  
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assumed to be a grey emitting and absorbing, but non 
scattering medium.  

Merkin[1] concluded free convection with blowing and 
suction. Lin and Yu[2] studied free convection on a 
horizontal plate with b lowing and suction. Hossain et al[3] 
studied the effect of radiation on free convection flow with 
variable v iscosity from a porous vertical plate. Hossain et 
al.[4] performed  flow of viscous incompressible fluid  with 
temperature dependent viscosity and thermal conductivity 
past a permeable wedge with variab le heat flux. Hossain and 
Takhar[5] studied radiation effect on mixed convection 
along a vertical plate with uniform surface temperature. 
Molla et al.[6] studied natural convection flow along a 
vertical wavy surface with uniform surface temperature in 
presence of heat generation/absorption. Akhter[7] studied 
the effect of radiations on free convection flow on sphere 
with isothermal surface and uniform heat flux. A li[8] studied 
the effect of radiation on free convection flow on sphere with 
heat generation. Hossain et al.[9] studied the effect of 
radiation on free convection flow from a porous vertical 
plate. They[9] analyzed a full numerical solution and found 
an increase in Radiat ion parameter Rd causes to thin the 
boundary layer and an increase in surface temperature 
parameter causes to thicken the boundary layer. The 
presence of suction ensures that its ultimate fate if vert ically 
increased is a layer of constant thickness. Vajravelu and 
Hadjinicolaou[10] perfomed the heat transfer in a v iscous 
flu id over a stretching sheet with viscous dissipation and 
internal heat generation In this study, they considered that 
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the volumetric rate of heat generation, 3[ / ]mq W m should be  
( )0

0

Q T T for T Tmq
for T T

− ≥ ∞ ∞= < ∞
 

where 0Q  is the heat generation constant. The above 
relation exp lained is valid as an approximation of the state of 
some exothermic process and having T∞  as the onset 
temperature. When the inlet  temperature is not less than T∞  
they used ( )0Q T T− ∞ . Molla et al.[11] studied the 
Magnetohydrodynamic natural convection flow on a sphere 
with uniform heat flux in  presence of heat generation. The 
physical property, variable viscosity may  change 
significantly with temperature. Accordingly, Gary et al.[12]  
and Mehta and Sood[13] have concluded that when this 
effect is included, the flow characteristics substantially 
change compared to the constant viscosity case. Recently, 
Kafoussius and Williams[14] and Kafoussias and Rees[15] 
have investigated the effect of the temperature-dependent 
viscosity on the mixed convection flow past a vertical flat 
plate in the region near the leading edge using the local 
non-similarity method. In these studies, they concluded that 
when the viscosity of a fluid  is sensitive to temperature 
variations, the effect of temperature-dependent viscosity has 
to be taken into consideration, otherwise considerable errors 
may  occur in the characteristics of the heat transfer process. 
Hossain and Kabir[16] have investigated the natural 
convection flow from a vert ical wavy surface. Hossain and 
Munir[17] investigated the mixed convection flow from a 
vertical flat plate for a temperature dependent viscosity. In 
the studies[16][17] the v iscosity of the flu id has been Carey 
and Mollendorf[18] studied natural convection in liquid 
with temperature dependent viscosity. considered to be 
inversely proportional to a linear function of temperature. In 
all the above studies were confined without any heat 
generation  

None of the aforementioned studies, considered variable 
viscosity and the heat generation effects on laminar 
boundary layer flow of the fluids along porous plate.  

In the present study, we have investigated free convection 
flow with variable v iscosity from a porous vertical plate in 
presence heat generation numerically. The results will be 
obtained for different values of relevant physical parameters 
and will be shown in graphs as well as in tables. 

The governing partial differential equations are reduced to 
locally non-similar part ial differential forms  by adopting 
some appropriate transformat ions. The transformed 
boundary layer equations are solved numerically  using 
implicit fin ite difference scheme together with the Keller box 
technique[19] . Here, we have focused our attention on the 
evolution of the surface shear stress in terms of local skin 
friction and the rate of heat transfer in terms of local Nusselt 
number, velocity p rofiles as well as temperature profiles for 
selected values of parameters consisting of heat generation 
parameter Q, variable v iscosity γ, Prandtl number Pr. 

2. Problem Description and 
Mathematical Model 

We have investigated the effect of rad iation with variable 
viscosity on free convection flow from a porous plate in 
presence of heat generation. The fluid  is assumed to be a grey, 
emitting and absorbing but non scattering medium. Over the 
work it is assumed that the surface temperature of the porous 
vertical p late, Tw, is constant, where T Tw> ∞ . The physical 
configuration considered is as shown in Fig.1: 

 
Figure 1.  The coordinate system and the physical model 

The conservation equations for the flow characterized 
with steady, laminar and two dimensional boundary layer; 
under the usual Boussinesq approximation, the continuity, 
momentum and energy equations can be written as:  
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∂ ∂
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                      (1) 

2( ) ( ) 0 0
u u uu v g T T u
x y y y

ρ µ ρ β σ β
 ∂ ∂ ∂ ∂

+ = + − −  ∞∂ ∂ ∂ ∂ 
   (2) 

2
( ) 2

T T Tc u v kp x y y
ρ ∂ ∂ ∂

+ =
∂ ∂ ∂

              (3) 
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          (4) 

where ρ is the density, k  is the thermal conductivity,β is the 
coefficient of thermal expansion, ν  is the reference kinemat ic 
viscosity ν = µ/ρ , µ is the viscosity of the flu id, Cp is the 
specific heat due to constant pressure.  

The absolute viscosity μ is assumed to be vary with 
temperature according to a general functional form μ = μf 
s(T), where μ f is the absolute viscosity at the film temperature 
Tf and s(Tf) = 1. Th is form is chosen to allow definit ion of  
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the stream function based on the absolute viscosity at the 
film temperature. For liquids, all t ransport properties vary 
with  temperature. However, for many liquids , petro leum 
oils, g lycerin  , glycol, silicon fluids and some molten salt, the 
percent variation of absolute viscosity with temperature is 
much more than that of the other properties. Under the above 
conditions an analysis incorporating the above assumptions 
and describing the momentum and thermal transport within 
the flow field are more accurate than the usual assumption 
of constant properties evaluated at some reference 
temperature. It should be mentioned here that there are 
some fluids for which properties other than μ vary strongly 
with temperature. In particular, water and methyl alcohol 
exhibit  strong variation of both μ and β. The analysis 
presented here is not applicable to these liquids since we are 
considering only the variation of the absolute viscosity as a 
function of temperature. However, for the case of an 
isothermal surface (in  an unstratified  ambient fluid), the 
variation of the absolute viscosity with temperature takes 
the form μ = μ fS(θ), where θ is the dimensionless 
temperature in the boundary layer defined in equation (4), 
such that S(1/2) = 1. A wide variety of functional forms of 
S(θ) satisfying this requirement was investigated in the 
literature such as algebraic expressions, power series, 
exponential forms, etc. Following Carey  and Mollendorf 
[18] , the simplest form of the absolute viscosity is used in 
this investigation as follows: 

𝜇𝜇 = 𝜇𝜇𝑓𝑓 �1 + 1
𝜇𝜇𝑓𝑓
�𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑓𝑓

(𝑇𝑇 − 𝑇𝑇∞)�        (5a) 

This simple fo rm amounts to a linear variat ion of the 
absolute viscosity with temperature, with the slope dμ/dT , 
evaluated at film temperature. The assumed linear variation 
of viscosity with temperature gives rise to a new parameter 
γ defined by 

𝛾𝛾 = 1
𝜇𝜇𝑓𝑓
�𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑓𝑓

(𝑇𝑇 − 𝑇𝑇∞)            (5b) 

Now introduce the following non-dimensional variables: 
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    (6) 

Where, θw is the surface temperature parameter. 
Substituting (6) into Equations (1), (2) and (3) leads to the 

following non-dimensional equations 
1 21 2 3
2

2 2 20 0

f f ff f

f ff f v f

γ θ θ ξ

σ β
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ρξ ξ
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∂ ∂ 

     (7) 
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Where Pr=νCp/k  is the Prandtl number and Q=vQ0/ν2ρCp 
is the heat generation parameter . 

The boundary conditions (4) become 
0, 1 at 0

0, 0 as

f

f

θ η

θ η

′= = = =

′ = = → ∞

0, f
             (9) 

The solution of equations (6), (8) enable us to calcu late the 
nondimensional velocity  components u,v  from the 
following expressions  
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          (10) 

In practical applications, the physical quantities of 
principle interest are the shearing stress τw and the rate of 
heat transfer in terms of the skin-frict ion coefficients Cfx and 
Nusselt number Nux respectively, which can be written as 

( )( ) ,  0 0
VNu q Cx c fxV T g T

ν τη ηβ
= == =∆ ∆

     (11) 

 and   
0 0

where u Tq kw cy y
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= = −      ∂ ∂   = =

  (12) 

qc  is the conduction heat flux. 
Using the Equations (6) and the boundary condition (9) 

into (11) and (12), we get 

( )

( )

1 ,0
2

1 ,0

C f xf x

Nu xx

γξ

ξ θ

  ′′= + 
 
− ′=

            (13) 

The values of the velocity and temperature distribution are 
calculated respectively from the following relat ions: 

( )2 ( , ),     ,u f x yξ ξ η θ θ′= =            (14) 

3. Numerical Procedure 
Solution of the local non similar part ial differential 

equation (7) to (8) subjected to the boundary condition (9) 
are obtained by using implicit fin ite difference method with 
Keller-Box Scheme[19], which has been described in details 
by Cebeci[20]. 

The solution methodology of equations (7) and (8) with 
the boundary condition given in eqn. (9) for the entire ξ 
values based on Keller – box scheme is proposed here. The 
scheme specifically incorporated a nodal distribution 
favoring the vicinity of the plate, enabling accuracy to be 
maintained in this region of steep gradient. In detail 
equations (7) and (8) are solved as a set of five simultaneous 
equations.  

1 21 3 2( )
2

f ff f

f ff f f

γ θ

θ ξ ξ
ξ ξ
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    (15) 

and 
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To apply the aforementioned method, we first convert 
Equations (15)-(16) into the following system of first order 
equations with dependent variables 

( , )u ξ η , ( , )v ξ η , ( , )p ξ η and ( , )g ξ η  as 
f′′ = u, u′= v, g =θ , and θ′= p           (17) 
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where 
p1 =3, p2 = 2, p3 = 4

3
Rd  , p4 = Q and p5 = γ   (20) 

The corresponding boundary conditions are 
( , 0) 0, ( , 0) 0and ( , 0) 0
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f u g
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ξ ξ ξ
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We now consider the net rectangle on the (ξ,η) p lane and 
denote the net point by  
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We approximate the quantities (f,u,v,p) at the points 

 of the net by ( , , , )n n n nf u v pj j j j  which we call net 

function.  
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Similarly Equations (18) – (19) are approximate by 

centering about the midpoint 
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The corresponding boundary conditions (21) become  

0, 0, 1, 0, 00 0 0
n n n n nf u g u gJ J= = = = =

 
which just express the requirement for the boundary 
conditions to remain during the iteration process. Now we 
will convert the momentum and energy equations into 
system of linear Equations and together with the boundary 
conditions can be written in matrix or vector form, where the 
coefficient matrix has a block tri-d iagonal structure. The 
whole procedure, namely reduction to first order followed by 
central difference approximat ions, Newton’s quasi - 
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linearization method and the block Thomas algorithm, is 
well known as the Keller- box method.  

4. Results and Discussion 
In this exert ion variable viscosity on free convection flow 

from a porous vertical p late in presence of heat generation is 
investigated. Numerical values of local rate of heat transfer 
are calculated in terms of Nusselt number Nux for the surface 
of the porous vertical plate from lower stagnation point to 
upper stagnation point, for different values of the 
aforementioned parameters and these are shown in tabular 
form in Table 1 and Graphically in Figure 5-7. The effect for 
different values viscosity γ on local skin friction coefficient 
Cfx and the local Nusselt number Nux, as well as velocity and 
temperature profiles are displayed in Fig.2 to 7. The aim of 
these figures are to display how the profiles vary in ξ , the 
selected streetwise co-ordinate. 

Figures 2(a)-2(b) d isplay results for the velocity and 
temperature profiles, fo r different values of viscosity  
parameter γ  = -1.0, 0.5, 1.0, 1.5, 1.9 while Prandtl number 
Pr = 1.0, surface temperature parameter θw = 1.1 and heat 
generation Q = 1.0. It has been seen from Figures 2(a)-2(b) 
that as the viscosity parameter γ  increases, the velocity 
profiles decreases and the temperature profiles increase. The 
velocity is zero at the boundary wall then the velocity 
increases to the peak value as η increases and from η = 1 toη 
= 2 it is reverse and after η = 2 it is decreasing, finally the 
velocity approaches to zero (the asymptotic value).  

The changes of temperature profiles in the η direction also 
shows the typical temperature profiles for natural convection 
boundary layer flow that is the value of temperature profiles 
is 1.0 (one) at the boundary wall then the temperature profile 
decreases gradually η direct ion to the asymptotic value.  

However, in figures 3(a)-3(b) it has been shown that when 
the Prandtl number Pr = 0.7, 0.8, 0.9, 1.0 and 1.1 increases 
with θw = 1.1, Q = 1.0 and γ = 1.0 both the velocity and 
temperature profiles decrease. 

Figures 4(a) d isplay results for the velocity profiles for 

different values of heat generation parameter Q with Prandtl 
number Pr = 1.0, viscosity parameter γ = 1.0 and surface 
temperature parameter θw = 1.1. It has been seen from figure 
4(a) that as the heat generation parameter increases the 
velocity profiles increase. It is also observed from figure 4(a) 
that the changes of velocity profiles in the η direction reveals 
the typical velocity profile for natural convection boundary 
layer flow, i.e., the velocity is zero at the boundary wall then 
the velocity increases to the peak value as η  increases and 
finally  the velocity  approaches to zero (the asymptotic value). 
The maximum values of velocity are recorded to be 0.33241, 
0.29610, 0.26241, at  η = 0.99806 0.22683, 0.21692 at η  = 
0.94233 for Q =.10.0, 7.5, 5.0, 2.0, and 0.0. The velocity is 
0.33241 is the maximum at  η  = 0.99806 for Q = 10.0. Here, it 
is observed that at η = 0.99806, the velocity increases by 
53.21% as the heat generation parameter Q changes from 0 
to 10.0. 

From figure 4(b), as the heat generation parameter Q 
increases, the temperature profiles increase. We observed 
that the temperature profile is 1.0 (one) at the boundary wall 
then the temperature profile decreases gradually along η 
direction to the asymptotic value. But for Q = 10.0, 7.5 the 
temperature profile increases, at η= 0.45434 it is 1.30298, at 
η = 0.32549 it is 1.08706 then it decrease. And for other 
values it is gradually decreasing. 

Figure 5(a) shows that skin friction coefficient Cfx 
increases for increasing values of viscosity parameter γ with 
Prandtl number Pr = 1.0, surface temperature parameter θw = 
1.1 and heat generation Q =1.0. It is observed from Figure 
5(a) that the skin frict ion increases gradually from zero value 
at lower stagnation point along the ξ direct ion and from 
Figure 5(b); it  reveals that the rate of heat transfer decreases 
along the ξ direct ion for γ = -1.0, 0.5, 1.0, 1.5 and 1.9 Nux are 
along ξ axis. A hot fluid layer is created adjacent to the 
interface o f the wall due to the v iscosity mechanism and 
ultimately the resultant temperature of the fluid exceeds the 
surface temperature. Accordingly, the heat transfer rate from 
the surface decreases as shown in Fig. 5(b). 

 
Figure 2.  (a) Velocity and (b) temperature profiles for different values of viscosity parameter γ with others fixed parameters 
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Figure 3.  (a) Velocity and (b) temperature profiles for different values of prandtl number Pr with others fixed parameters 

 

 
Figure 4.  (a) Velocity and (b) temperature profiles for different values of heat generation parameter Q with others fixed parameters 

 

 
Figure 5.  (a) Skin friction and (b) rate of heat transfer for different values of viscosity parameter γ with others fixed parameters 
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Figure 6.  (a) Skin friction and (b) rate of heat transfer for different values of prandtl number Pr with others fixed parameters 

 

 
Figure 7.  (a) Skin friction and (b) rate of heat transfer for different values of heat generation   parameter Q with others fixed parameters 

Table 1.  Skin friction coefficient and rate of heat transfer against ξ for different values of heat generation parameter Q with other controlling parameters 
Pr = 1.0, θw =1.1.and γ = 1.0 

ξ Q = 10.0 Q = 7.5 Q = 5.0 Q = 0.0 
Cfx Nux Cfx Nux Cfx Nux Cfx Nux 

0.01 
0.04 
0.07 
0.10 
0.13 
0.16 
0.19 
0.22 
0.25 
0.30 

0.00720 
0.02888 
0.05099 
0.07355 
0.09718 
0.12180 
0.14826 
0.17652 
0.20768 
0.26704 

55.13324 
13.79825 
7.80701 
5.26792 
3.82412 
2.82782 
2.07681 
1.44890 
0.89959 
0.04986 

0.00720 
0.02885 
0.05083 
0.07310 
0.09619 
0.11993 
0.14502 
0.17126 
0.19953 
0.25130 

55.16505 
13.87483 
7.93056 
5.44069 
4.04967 
3.11043 
2.42278 
1.86586 
1.39780 
0.71367 

0.00720 
0.02881 
0.05068 
0.07266 
0.09523 
0.11812 
0.14193 
0.16632 
0.19201 
0.23729 

55.19684 
13.95125 
8.05345 
5.61162 
4.27106 
3.38531 
2.75536 
2.26105 
1.86216 
1.31147 

0.00720 
0.02875 
0.05037 
0.07180 
0.09337 
0.11466 
0.13615 
0.15730 
0.17866 
0.21366 

55.26042 
14.10368 
8.29724 
5.94800 
4.70216 
3.91309 
3.38241 
2.99350 
2.70136 
2.34324 

 

The variation of the local skin friction coefficient Cfx  and 
local rate of heat transfer Nux for different values of Prandtl 
number Pr while = 1.1, Q = 1.0 and γ =1.0 are shown in 
Figures 6(a)-6(b). We can observe from these figures that as 
the Prandtl number Pr increases, the skin frict ion coefficient 
decreases and rate of heat transfer increases. 

Figures 7(a)-7(b) show that skin  friction coefficient Cfx 

increase and heat transfer coefficient Nux decreases for 
increasing values of heat generation parameter Q while 
viscosity parameter γ = 1.0,. Prandtl number Pr = 1.0 and 
surface temperature parameter θw = 1.1. The values of skin 
friction coefficient Cfx  and Nusselt number Nux are recorded 
to be 0.26704, 0.25130, 0.23729. 0.22247, 0.21366 and 
0.04986, 0.71367, 1.31147, 1.95384 and 2.34324 for Q = 

0 0.1 0.2 0.3 0.4
ξ

0.0

0.1

0.2

S
ki

n
fri

ct
io

n
Pr = 1.1
Pr = 1.0
Pr = 0.9
Pr = 0.8
Pr = 0.7

Q = 1.0
θω = 1.1, γ = 1.0

0.0 0.1 0.2
ξ

0

10

20

30

40

R
at

e
of

he
at

tra
ns

fe
r

Pr = 1.1
Pr = 1.0
Pr = 0.9
Pr = 0.8
Pr = 0.7

Q = 1.0
γ = 1.0, θω = 1.1

0 0.1 0.2 0.3
ξ

0.0

0.1

0.2

0.3

S
ki

n
fri

ct
io

n

Q = 10.0
Q = 07.5
Q = 05.0
Q = 02.0
Q = 00.0

Pr = 1.0
θω = 1.1, γ = 1.0

0.0 0.1 0.2 0.3
ξ

0

6

12

18

24

R
at

e
of

he
at

tra
ns

fe
r

Q = 10.0
Q = 07.5
Q = 05.0
Q = 02.0
Q = 00.0

Pr = 1.1

γ = 1.0,θω = 1.0

wθ

b a 

b a 



114 Amena Ferdousi et al.:  Free Convection Flow of Fluid with Variable Viscosity   
from a Porous Vertical Plate in Presence of Heat Generation 

 

10.0, 5.0, 7.5.2.0, 0.0 and respectively which occur at the 
same point ξ = 0.3. Here, it observed that at ξ = 0.3, the skin 
friction increases by 39.07% and Nusselt number Nux 
decreases by 97.87% as the heat generation parameter Q 
changes from 0.0 to 10.0. It is observed from figure 7(a) that 
the skin frict ion increases gradually from zero value at lower 
stagnation point along the ξ d irection and from Figure 7(b); it 
reveals that the rate of heat transfer decreases along the ξ 
direction. 

Numerical values of rate of heat transfer Nux and skin 
friction coefficient Cfx are calculated from Equations (13) 
from the surface o f the vertical porous plate. Numerical 
values of Cfx  and Nux are shown in Table 1. 

In the above table 1 the values of skin friction coefficient 
Cfx  and Nusselt number Nux are recorded to be 0.26704, 
0.25130, 0.23729. 0.22247, 0.21366 and 0.04986, 0.71367, 
1.31147, 1.95384 and 2.34324 for Q = 10.0, 5.0, 7.5.2.0, 0.0 
and respectively which occur at the same point ξ = 0.3. Here, 
it observed that at ξ = 0.3, the skin  friction  increases by  
39.07% and Nusselt number Nux decreases by 97.87% as the 
heat generation parameter Q changes from 10.0 to 0.0. 

5. Comparison of the Results 
In order to verify the accuracy of the present work, the 

values of Nusselt number and skin friction for Q=0, 
Rd=0.05.Pr=1.0, γ = 0 and various surface temperature 

=1.1, =2.5 at  different position of  are compared 
with Hossain[9] as presented in Table 2. The results are 
found to be in excellent agreement. 

Table 2.  Comparison of present numerical results of Cfx and Nux for the 
values of prandtl number Pr = 1.0, radiation parameter Rd = 0.05, for surface 
temperature θw= 1.1 and θw= 1.5 without the effect of 
magnetohydridynamic and heat generation parameter with Hossain et al.[9] 

ξ 

θw= 1.1 

Hossain Hossain 

Cfx Cfx Cfx Cfx 

0.1 
0.2 
0.4 
0.6 
0.8 
1.0 
1.5 

0.0655 
0.1316 
0.2647 
0.3963 
0.5235 
0.6429 
0.8874 

0.0655 
0.1316 
0.2647 
0.3963 
0.5235 
0.6429 
0.8874 

0.0655 
0.1316 
0.2647 
0.3963 
0.5235 
0.6429 
0.8874 

0.0655 
0.1316 
0.2647 
0.3963 
0.5235 
0.6429 
0.8874 

ξ 

θw = 2.5 

Hossain Hossain 

Cfx Cfx Cfx Cfx 

0.1 
0.2 
0.4 
0.6 
0.8 
1.0 
1.5 

0.0709 
0.1433 
0.2917 
0.4423 
0.5922 
0.7379 
1.0613 

0.0709 
0.1433 
0.2917 
0.4423 
0.5922 
0.7379 
1.0613 

0.0709 
0.1433 
0.2917 
0.4423 
0.5922 
0.7379 
1.0613 

0.0709 
0.1433 
0.2917 
0.4423 
0.5922 
0.7379 
1.0613 

6. Conclusions 
For different values of relevant physical parameters 

including the v iscosity parameter γ , the effect of rad iation on 
natural convection flow from a porous vertical plate in 
presence of heat generation has been investigated. The 
governing boundary layer equations of motion are 
transformed into a non-dimensional fo rm and the resulting 
non-linear systems of partial differential equations are 
reduced to local non-similarity boundary layer equations, 
which are solved numerically by using implicit fin ite 
difference method together with the Keller-box scheme. 
From the present investigation the following conclusions 
may be drawn: 
• Significant effects of heat generation parameter Q and 

viscosity parameter γ  on velocity and temperature profiles 
as well as on skin frict ion coefficient Cfx and the rate of heat 
transfer Nux have been found in this investigation but the 
effect of heat generation parameter Q and viscosity 
parameter γ  on rate of heat transfer is more significant. An 
increase in the values of viscosity parameter γ  leads to the 
velocity decrease and the temperature profiles increase, the 
local skin friction coefficient Cfx increase and the local rate 
of heat transfer Nux decreases at different position of ξ for Pr 
=1.0. 
• For increasing values of Prandtl number Pr leads to 

decrease the velocity profile, the temperature profile  and the 
local skin friction coefficient Cfx but the local rate of heat 
transfer Nux increases.  
• An increase in  the values of Q leads to increase the 

velocity profiles and the temperature profiles and also the 
local skin friction coefficient Cfx increase but  the local rate 
of heat transfer Nux decreases. 

Nomenclatures 
ar    Rosseland mean absorption co-efficient 
Cf    Local skin friction coefficient  
Cp   Specific heat at constant pressure 
f     Dimensionless stream function 
g     Accelerat ion due to gravity 
k      Thermal conductivity 
Nux   Local Nusselt number 
Pr    Prandtl number 
Q     Heat generation parameter 
qw     Heat flux at the surface 
qc     Conduction heat flux 
qr     Radiation heat flux 
Rd    Radiat ion parameter 
T     Temperature of the flu id in the boundary layer 
T∞    Temperature of the ambient flu id 
Tw    Temperature at the surface 
(u,v)  Dimensionless velocity components along(x,y)axes 
V     Wall suction velocity 
(x, y)  Axis in the direction along and normal to the   

     surface Respectively 

wθ

wθ ξ
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Greek symbols 
    Equal to  

    Coefficient of thermal expansion 
    Equal to  

  Equal to  
    Similarity variable 

θ     Dimensionless temperature function 

   Surface temperature parameter 
µ     Viscosity of the flu id 

   Kinemat ic viscosity 
    Similarity variable 

ρ     Density of the fluid  
σ     Stephman-Boltzman constant 

   Scattering co-efficient 
µf    Absolute Viscosity at the film temperature 

    Coefficient of skin frict ion 
τw    Shearing stress 
ψ     Non-dimensional stream function 

Subscripts 
w     wall conditions 
∞     Ambient temperature  
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