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Abstract  Th is paper models the HIV population through a Poisson distribution and obtains the expressions for the 

estimators of the average number of HIV individuals (Incidence Rate of HIV). Conventional methods for obtaining such 

estimates have used the Maximum likelihood Principle that does not take into account, any prior informat ion about the 

parameter. Bayesian perspective accommodates this missing link and hence obtains the estimators where data is refin ed using 

the prior informat ion. Three different types of prior distributions including Jeffreys non-informat ive priors have been 

considered and the corresponding estimates along with standard errors have been obtained assuming a squared error loss 

function. However, computational techniques like Markov Chain Monte Carlo (MCMC) have been avoided by using the 

Empirical Bayes Perspective. These procedures were applied on the state and year-wise data of HIV patients in India and 

relevant estimates are obtained and compared with actual figures. When year is considered as random variable, M.L.E proved 

to be better than the Bayes estimates but vice-versa is seen when states were considered as a random variable.  
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1. Introduction 

The Kolmogrov equations for the various Birth and Death 

processes yield the Poisson distribution as the distribution of 

number of infectives at time t. This may be thought of as an 

intuitive result considering the fact that when we are building 

a model for the HIV infect ives in the population, the area of 

opportunity is very large and the opportunity of infection is 

very small, so that both of them mult iply to a finite quantity. 

This finite quantity is the average number of HIV cases in the 

population at time t or the HIV incidence rate per time period 

and may be considered as a time dependent or independent 

constant. The scenario may be suitably modeled through a 

Poisson distribution as follows: 

Let X denote the number of HIV infected individuals in  

the population. Therefore, 

P(X = x) = 
!x

e x
, x = 0, 1, … and λ > 0    (1) 

where the parameter λ is (assumed as t ime independent) the 

average number of HIV cases in the population. 

Poisson distribution is widely used by many researchers in 

modeling  the HIV data ([5, 19, 20], etc.) Considerab le 

amount o f work has been  done in  the est imat ion  of the  
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parameter λ using various techniques and such an estimate is 

used for further modeling of the Viral Load, estimat ing the 

time since in fection[7], obtaining incidence rates[14], etc. 

Deuchert et. al.[6] used Poisson distribution while 

modeling HIV/AIDS epidemic by assuming that heterosexu

al transmission is the major or sole transmission mode. The 

empirical estimates for relevant model parameters were 

obtained by the Maximum Likelihood approach and were 

compared with parameters in mathematical models using the 

Chi-square goodness of fit  test, Akaike Information criterion, 

etc. 

However, the usual method to estimate λ is the Maximum 

likelihood approach where the estimate is obtained as 

x̂  or a weighted mean of observations for a sample 

x1, …, xn of n observations. Moreover, despite satisfying the 

properties of a good estimator asymptotically, the Maximum 

likelihood estimator (M.L.E) fails to  take into account any 

additional information availab le on the parameter λ prior to 

taking the sample. This additional informat ion may be 

incorporated into the estimation process by the so-called 

prior d istribution and hence Bayesian approach may be used 

to evolve a much more refined estimator. Bayesian methods 

do not require large samples or asymptotics for their valid ity. 

They allow for incorporation of expert  knowledge through 

the specification of prior distribution.  

Classical M.L.E approach to the problem of estimat ion 

relies on an estimator which is obtained theoretically and 

remains the same for whatever may be the data set. However, 

Bayesian approach obtains a separate set of estimators for 
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every set of prior informat ion and adjusts these estimators 

for changes in the data set. Such an estimator provides a 

logical alternative because it not only incorporates the 

additional informat ion on the parameter, but also relies  on 

the data to a great extent. 

2. Bayes Approach for Estimating HIV 
Incidence Using Various Prior 
Distributions 

The use of prior distributions is the best way to summarize 

the available informat ion (or rather lack of informat ion) 

about the parameter of interest i.e., average number of HIV 

persons in the population. It may  be helpful in incorporating 

the experiences from previous studies or subjective beliefs of 

the experimenter into the analysis. These beliefs may be put 

into various kinds of functional forms depending on the 

amount of information available.  

Let  xi denote the number of HIV infected indiv iduals in  

the population for the i
th

 entity/time po int, with probability  

P(xi | λ ) where λ is the parameter denoting the average 

number of HIV infected indiv iduals in the population. Let 

the prior probability (or "unconditional" or "marginal" 

probability) of λ be P(λ) and the joint distribution of x1, x2, …, 

xn be P(
~
x | λ ). Then the posterior density of λ is given by  

P(λ |
~
x ) = 

   

 
   

   


dλλPλ|xP

λPλ|xP

xP

λPλ|xP

~

~

~

~    (2) 

provided that the probability of 
~
x  does not equal zero. 

When substantial information about the average HIV 

cases is availab le, we may look at the (Natural) Conjugate 

Priors wherein the functional form of the prior and posterior 

remains same and when no information is available, we may 

consider the Non-informative Prior (Jeffreys)[10]. 

The subsequent sections develop theory for modeling the 

HIV incidence λ, using various prior d istributions in the 

population. This prior information is refined to posterior 

distribution by means of additional information provided by 

the data and estimates of λ are obtained from the posterior 

distribution. The estimates are obtained so as to provide 

minimum risk (which is expected loss) with respect to the 

posterior distribution. Of course, there is no consensus 

opinion on defining the loss, although the Quadratic loss is 

popularly used and found to be sufficient in majority of the 

situations. 

2.1. Conjugate Prior for Modeling HIV Incidence  

Cole et. al[18] and Berry et al.[3] had used the Gamma 

distribution as a prior for the incidence of HIV infect ion and 

multip lied it with a pseudo-person-time to find the average 

number of recent HIV infect ions. The estimates were 

obtained using the Markov Chain Monte Carlo (MCMC) 

procedures. Kpozhouen et al.[2] attempted to test the 

Bayesian approach as a tool for optimizing management of a 

chemoprophylaxis trial in HIV infection by allowing interim 

analysis with a reduced number of patients or follow-up time. 

The Bayesian proportional hazards model was considered for 

this purpose. The unknown coefficients of the covariates and 

the baseline cumulat ive incidence were assigned three 

different kinds of prior d istributions. Gamma prior was 

assumed for the baseline cumulative incidence since the 

variable under consideration followed Poisson distribution 

and also to facilitate the determination of conjugated 

distribution. Finally, posterior distribution and the estimates 

of the parameters (as well as hyperparameters) were obtained 

using Markov Chain Monte-Carlo (MCMC) methods. White 

et al.[16] developed an age-stratified model that accounts for 

transmission due to unsafe injections, unsafe transfusions, 

and mother-to child  transmission. The confidence intervals 

for HIV incidence rates with respect to unsafe injections 

were based on the Poisson assumption with a Gamma prior.  

The estimates of relative contribution of HIV-contaminated 

injections, and other routes of HIV t ransmission in this 

age-structured transmission model were obtained using the 

MCMC techniques. Grover et al.[9] used the Bayesian 

approach for estimat ing the proportion of HIV infected 

population converting to AIDS. They had modeled the 

number of HIV infected persons using Binomial distribution 

and assumed the beta distribution as a conjugated prior for 

the proportion of HIV in fected population converting to 

AIDS. Finally  Maximum likelihood estimates were for the 

posterior distribution. 

Even though the widespread use of Computers in analysis 

have highlighted the importance and popularized the use of 

MCMC techniques, the procedure itself seems to be complex. 

Moreover, at times MCMC procedures involve large number 

of iterations and still fail to converge to any particular value. 

We present an easy method of obtaining the estimates of the 

parameters by using the Empirical Bayes approach[17] as 

this will save the time and complexit ies of an MCMC 

technique. The aim of suggesting the Empirical Bayes 

approach is not to portray the MCMC procedures in poor 

light, but is solely intended to provide an easy and 

convenient alternative. Bartolucci et al.[1] had used the 

Empirical Bayes analysis for estimat ion of incidence and 

intervention parameters for the Intervened Poisson (IP) 

model. 

Let us assume that the prior distribution for HIV incidence 

rate λ follows a Gamma distribution with parameters (, ). 

On using the Bayes theorem, for a given set of data x1,… , xn, 

the posterior distribution of λ| x1, …, xn becomes Gamma 

( nxi   , ). The posterior mean of the distribution 

is 
n

xi








 which provides an estimate of λ with variance

 2
n

xi








. 

The problem in find ing the estimator of intensity  is that 

it is based on the data as well as the parameters of the prior 
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distribution  and  (known as hyperparameters). 

Authors[16, 18] of related studies have, on the basis of their 

past knowledge, judgment or intuit ion taken various 

predetermined values for these hyperparameters and 

obtained the estimate of the average HIV cases . These 

estimators were further studied for robustness with respect to 

the prior parameters. However, we believe that the 

informat ion about the parameters of interest lies in the data 

itself and hence the hyperparameters have been estimated 

using the Empirical Bayesian Procedure[17]. 

Let   f  and   2

f  denote the conditional mean 

and variance of the random variable X which denotes the 

HIV cases in the population. Let 
m  and 

2

m  denote the 

marginal mean and variance of these HIV cases. Assuming 

that these quantities exist, we have  

   
fm E )(               (3) 

and 

   2)(2)(2 )()( mffm EE      (4) 

Further, if    f  and   2

f =
2

f  then, 

   )(Em   and 
222

fm     

Therefore the estimates of the hyperparameters when the 

prior distribution of  is Gamma(, ) are obtained as 

xs

x




2

2

̂  and 
xs

x




2
̂  where x  and 

2s  are 

the sample mean and variance respectively. These may in 

turn be used to find the estimate of HIV incidence rate along 

with its standard error. 

2.2. Non-Informative Priors for Modelling HIV 

Incidence 

Kpozhouen et al.[2] used three different kind of prior 

distributions, one being a non-informat ive prio r to assess the 

efficacy of Cotrimoxazole prophylaxis in reducing severe 

morb idity in adults at early stages of human 

immunodeficiency virus infection. The authors modeled the 

intensity of serious events (mortality) using the Bayesian 

proportional hazards model proposed by Spiegelhalter et al. 

(1996) and used the non-informative prior to represent the 

weak prior informat ion on the coefficients of the covariates 

of the model. Many other authors have used the 

non-informative priors in terms of assigning negligib le 

values to the parameters of the conjugate/informative prior 

distributions. However, none of them have modeled weak 

prior information in the lines of Jeffreys perspective which is 

a formal and admissible approach to specifying negligib le 

informat ion on the parameter of interest. 

When prior information about the HIV incidence 

parameter   is not available and the intention is to use the 

available clinical data to determine the parameter, Haro ld 

Jeffreys[10] approach may be used to obtain the following 

non-subjective reference prior in terms of the Fisher’s 

Information matrix:  

π()   
~

| xI                (5) 

where 

 
   














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
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













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






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22

~

~

|log|log
|I  is 

the Fisher’s Information matrix.  

Therefore, the prior distribution for the HIV incidence rate 

(λ) accord ing to Jeffrey’s rule may be taken as 

 



1

 . Using the Bayes rule, the posterior 

distribution is obtained as (λ|x1, …, xn ) ~ 

Gamma( nxi ,
2

1
 ). The posterior mean of the 

distribution is 
n

xi 
2

1

 which provides an estimate of λ 

with variance
2

2
1

n

xi 
. 

The situation of no prior information about the Incidence 

rate λ, may be also modeled through the improper prior, 

  1  where 0 ≤ λ  < ∞ for wh ich the posterior 

distribution is given by (λ|x1, …, xn ) ~ Gamma 

( nxi ,1 ). The estimate o f the HIV incidence rate is then 

n

xi 1
 with variance 

2

1

n

xi 
.  

Also, in case of large sample sizes, Brenner et al. [4], 

Fraser and McDunnough[8] gives the asymptotic posterior 

distribution for the HIV incidence parameter   on 

assuming non informat ive prio r.  

If ̂  is the M.L.E of   and prior density of   is  

non-informative (or likelihood dominates the prior density), 

then the posterior density of   is given by   | x1, …, xn ~ 

Normal












 

)ˆ(

1
,ˆ

'' 


L
 where L(  ) is the logarithm of 

likelihood of (   | x). 

Using this result, we obtain the posterior distribution of 

the HIV incidence as  

(λ| x1, …, xn) ~ Normal












  
2

,
n

x

n

x ii      (6) 

The estimate of HIV incidence rate, λ is the posterior mean 

i.e., 
n

x
x i
  with variance 

2n

xi
 which is the 

Maximum Likelihood Estimator of  . 

The objective of using these non-informative priors is to 
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highlight the 'weak ' or 'negligible' informat ion over 'no' prior 

informat ion as assumed while obtaining M.L.E. A lso, this 

paper assumes an informative prior modeled by Gamma 

distribution in comparison with weak  (Jeffreys), negligible 

(Improper) and no (M.L.E) prio r informat ion. The 

consideration for these non-informat ive priors is to bridge 

the gap between substantial amount of informat ion as 

compared to no information. Various other informative 

priors could also have been considered for this purpose but 

then, these could also be obtained by giving suitable values 

to the parameters of Gamma distribution being one from the 

exponential class of distributions. In such situations, the 

solution would simply be obtained by doing a grid search for 

the best values of hyperparameters that will yield minimum 

standard errors of the estimators. However, doing so would 

dilute the concept of Empirical Bayes procedure which 

recommends for the estimat ion of hyperparameters from the 

sample itself. 

3. Application 

The year-wise record (2002-2011) of the number of HIV 

patients across 19 States/Union Territories of India have 

been taken from the Nat ional AIDS Control Organisation 

(NACO)[13] and National Institute of Medical Statistics 

(NIMS)[11]. NACO is an agency that is  committed to 

contain the spread of HIV in India by build ing an 

all-encompassing response reaching out to diverse 

populations. They strive to provide people with accurate, 

complete and consistent information about HIV, promote use 

of condoms for protection, and emphasise treatment of 

sexually transmitted diseases . National Institute of Medical 

Statistics (NIMS) aims to promote and undertake research in 

statistical techniques and methodology in the field  of health 

research, exercise surveillance to ensure the statistical 

adequacy and valid ity in  various programmes of the 

Government of India. One of their main thrust areas is 

modelling, estimation and projection of HIV/AIDS.  

4. Results and Discussion 

Table 1.  Bayes estimates and Standard errors of the average HIV persons (Lakhs) in various states/UT’s of India 

States/UTs 

Gamma Prior 
Jeffrey’s Non-Informative 

Prior 

Improper 

Non-informative prior 
M.L.E 

Estimate 
Std. 

Error 
Estimate 

Std. 

Error 
Estimate 

Std. 

Error 
Estimate 

Std. 

Error 

Andhra Pradesh 5.188 0.7595 5.238 0.7237 5.288 0.7272 5.188 0.7202 

Karnataka 2.558 0.5339 2.608 0.5106 2.658 0.5155 2.558 0.5057 

Maharashtra 4.899 0.7471 4.949 0.7035 4.999 0.7070 4.899 0.6999 

Manipur 0.267 0.1721 0.317 0.1779 0.367 0.1915 0.267 0.1633 

Nagaland 0.169 0.1370 0.219 0.1478 0.269 0.1639 0.169 0.1298 

Tamil Nadu 2.314 0.5106 2.364 0.4862 2.414 0.4913 2.314 0.4810 

Gujarat 1.372 0.3913 1.422 0.3771 1.472 0.3837 1.372 0.3705 

Bihar 0.687 0.2787 0.737 0.2716 0.787 0.2806 0.687 0.2622 

Chhattisgarh 0.359 0.2004 0.409 0.2022 0.459 0.2142 0.359 0.1894 

Delhi 0.346 0.1961 0.396 0.1989 0.446 0.2111 0.346 0.1859 

Haryana 0.317 0.1885 0.367 0.1916 0.417 0.2043 0.317 0.1781 

Jharkhand 0.151 0.1295 0.201 0.1417 0.251 0.1583 0.151 0.1228 

Kerala 0.527 0.2437 0.577 0.2402 0.627 0.2504 0.527 0.2296 

Madhya Pradesh 0.528 0.2435 0.578 0.2404 0.628 0.2506 0.528 0.2298 

Orissa 0.353 0.1996 0.403 0.2007 0.453 0.2128 0.353 0.1878 

Punjab 0.290 0.1803 0.340 0.1843 0.390 0.1974 0.290 0.1702 

Rajasthan 0.448 0.2244 0.498 0.2231 0.548 0.2340 0.448 0.2116 

Uttar Pradesh 1.030 0.3396 1.080 0.3287 1.130 0.3362 1.030 0.3210 

West Bengal 1.161 0.3699 1.211 0.3481 1.261 0.3552 1.161 0.3408 

National Estimate 23.890 1.6925 23.940 1.5473 23.990 1.5489 23.890 1.5457 
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Table 2.  Bayes estimates and standard errors of the average HIV persons (Lakhs) in India for the years 2002-2011 

Prior Distributions 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

Gamma 

Prior 

per state 

estimate (λ) 
1.32 1.31 1.30 1.29 1.28 1.22 1.26 1.23 0.97 0.91 

National 

estimate 

(19*λ) 

25.00 24.92 24.75 24.51 24.24 23.16 23.88 23.38 18.51 17.28 

std. error 0.2588 0.2578 0.2561 0.2539 0.2516 0.2443 0.2459 0.2411 0.2201 0.2136 

Jeffreys 

Prior 

per state 

estimate (λ) 
1.34 1.34 1.33 1.32 1.30 1.25 1.28 1.26 1.00 0.94 

National 

estimate 

(19*λ) 

25.50 25.42 25.25 25.01 24.74 23.66 24.38 23.88 19.01 17.78 

std. error 0.2658 0.2654 0.2645 0.2632 0.2618 0.2560 0.2599 0.2572 0.2295 0.2219 

Improper 

Prior 

per state 

estimate (λ) 
1.37 1.36 1.36 1.34 1.33 1.27 1.31 1.28 1.03 0.96 

National 

estimate 

(19*λ) 

26.00 25.92 25.75 25.51 25.24 24.16 24.88 24.38 19.51 18.28 

std. error 0.2684 0.2680 0.2671 0.2658 0.2644 0.2587 0.2625 0.2599 0.2325 0.2250 

M.L.E 

per state 

estimate (λ) 
1.32 1.31 1.30 1.29 1.28 1.22 1.26 1.23 0.97 0.91 

National 

estimate 

(19*λ) 

25.00 24.92 24.75 24.51 24.24 23.16 23.88 23.38 18.51 17.28 

std. error 0.2632 0.2627 0.2618 0.2606 0.2591 0.2533 0.2572 0.2545 0.2264 0.2188 

 

Figure 1.  Bayes estimates of the average HIV persons in various states/UT’s of India 

The National and State-wise Bayes estimates for average 

HIV population along with their Standard Errors using 

various prior distributions discussed above are obtained in 

table 1. Also, the year-wise estimates of average number of 

HIV patients in  India using various priors discussed above 

are obtained in table 2. 

Estimates of the average HIV persons in various 

States/UT’s spread across different years and their 

corresponding standard errors have been obtained in the 

tables 1 and  2. As can be seen from figure 1 and 3, the 

Maximum likelihood estimators are exactly similar to that of 

Empirical Bayes estimators for a Gamma prior. That is the 

reason why Empirical Bayes procedure is labeled as 

partially-Bayesian or sometimes non-Bayesian rather than 

fully-Bayesian. However, the Standard Errors of these 

estimates (figure 2 and 4) are not identical and thus provide 
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the criteria for preferring or rather not preferring  Bayesian 

procedure of introducing prior d istributions. 

In case of the state-wise estimation of the average number 

of HIV people (table 1), time (years) was treated as a random 

variable and it is found that the Maximum Likelihood 

estimates have the minimum standard errors  (figure 2). This 

implies that the additional informat ion routed through the 

use of prior distributions is not so much as to produce 

estimators which are better than the classical M.L.E.  In fact, 

it may be noted that as we gradually move from informat ive 

priors to the non-informative ones (M.L.E depicting the most 

non-informative one as there is no prior distribution 

involved), the estimates too showed reduction in their 

standard errors. One of the possible reasons for such a trend 

could be that the estimators of the incidence were obtained 

by assuming it to be a time independent constant and hence 

when time plays the role of a random variable, such 

estimators may not be viable. The solution to this situation 

may be exp lored by considering the hyperparameters as time 

dependent.  

On the other hand, when time was kept fixed and 

States/UT’s were considered as random, the Bayes estimates 

with Gamma prior had the min imum standard errors 

followed by M.L.E and the estimates obtained using 

Jeffrey’s and improper prior (table 2). Thus in this case, 

Bayes estimates are not only admissible but prove to be 

better than the classical Maximum Likelihood estimates. As 

can be seen from figure 4, the standard errors of the estimates 

are overwhelmingly better than the M.L.E. The reason for 

such results may again be attributed to the last point made in 

the previous paragraph. Note that, even though the 

differences in the Standard errors appear to be meager, these 

are considered significant enough to warrant one procedure 

over the other because of all the numbers being in lakhs. 

 

Figure 2.  Estimated Standard Error for the Bayes estimates of the average HIV persons in various states/UT’s of India 

 

Figure 3.  Bayes estimates of the average HIV persons in India for the years 2002-2011 
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Figure 4.  Estimated Standard Error for the Bayes estimates of the average HIV persons in India for the years 2002 -2011 

At the end of year 2011, the number of HIV cases in India 

were estimated to be 2.39 million (Tab le 1). While Andhra 

Pradesh reported the highest number of HIV cases i.e., 

5,18,800 which  is 21.72% of the national estimate, 

Maharashtra was not far behind with 4,89,900 cases which is 

20.51% of the national estimate. Together the high 

prevalence states of Andhra Pradesh, Maharashtra, 

Karnataka and Tamil Nadu accounted for 1.5 million HIV 

cases i.e., 62.62% of the national estimate.  On the other 

hand, Gujarat, West Bengal and Uttar Pradesh recorded 

1,37,200, 1,16,100 and 1,03,000 HIV cases which combined 

form 14.92% of the national estimate. The number of HIV 

cases in Bihar, Madhya Pradesh, Kerala, Rajasthan, 

Chhattisgarh, Orissa, Delhi and Haryana range from 30,000 

to 1,00,000 while Punjab, Manipur, Nagaland and Jharkhand 

registered below 30,000 HIV cases. 

Pandey et al.[15] estimated the total number o f HIV cases 

in India for the year 2008 to be 2.44 million while in 2009 it 

was 2.4 million. Their estimates indicated a slowdown in the 

AIDS epidemic which is corroborated by our national 

estimate of 2.39 million at the end of year 2011. Hence we 

notice a decreasing trend in the number of HIV cases in India.  

However, comparison of our estimates with state-wise 

estimates of[15] showed a different trend. According to[15], 

high prevalence states showed a stable or decreasing trend 

while low-to-moderate prevalence states exh ibit a  varying 

trend.  The high prevalence states account for 62.62% of all 

the HIV infections as compared to their 57%. This shows 

that the number of infections in h igh prevalence states has 

increased by 5.62% as compared to year 2009. West Bengal, 

Gujarat, Bihar and Uttar Pradesh together account for 17% of 

the national estimate while it was 22% in the year 2009. The 

number of HIV cases in Punjab, Orissa, Rajasthan, Madhya 

Pradesh together account for 6.78% which is a steep decrease 

from 12% of the national estimate in  the year 2009. Among 

the high prevalence states, the number of HIV cases in 

Andhra Pradesh increased from 21% to 21.72%, 

Maharashtra increased from 18% to 20.51%, Tamil Nadu 

increased from 10% to 10.70% and Karnataka increased 

from 7% to 9.68% of the National estimate as compared to 

year 2009. 

Table 3.  Estimated Number and % HIV cases with respect to Area(sq. Km) 
and Population 

STATE 
No. of HIV 

(per sq km) 

% HIV 

(in population) 

Andhra Pradesh 1.8862 0.6128 

Maharashtra 1.5921 0.4360 

Karnataka 1.3337 0.4184 

Tamil Nadu 1.7792 0.3208 

Gujarat 0.6999 0.2272 

West Bengal 1.3081 0.1271 

Uttar Pradesh 0.4234 0.0516 

Bihar 0.6925 0.0662 

Madhya Pradesh 0.1713 0.0727 

Kerala 1.3560 0.1578 

Rajasthan 0.1309 0.0653 

Chhattisgarh 0.2655 0.1406 

Orissa 0.2265 0.0842 

Delhi 23.3311 0.2065 

Haryana 0.7170 0.1250 

Punjab 0.5758 0.1047 

Manipur 1.1948 0.9810 

Nagaland 1.0194 0.8533 

Jharkhand 0.2022 0.0458 

National Estimate 0.8777 0.2105 

The above findings give an idea about the concentration of 

HIV cases across various states of India on the basis of which 

we could segregate high prevalence areas from the moderate 

and low-prevalence ones. On  the other hand, if we look at the 

density of the HIV cases in terms of area of each state(in sq. 

Km.), Delh i records a whopping surge over all the remaining 

states with 23 persons per square Kilometer fo llowed by 
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Andhra Pradesh, Tamil Nadu and Maharashtra and others as 

distant next few positions. Chhattisgarh, Orissa, Madhya 

Pradesh and Rajasthan record the minimum number of HIV 

persons per square Kilometer area. A lso, if the population of 

States is considered, Manipur records the highest percentage 

of HIV population closely followed  by Nagaland and Andhra 

Pradesh. The lowest percentage i.e., less than 0.1% of HIV 

cases in the population is noticed in the States of Orissa, 

Madhya Pradesh, Bihar, Rajasthan, Uttar Pradesh and 

Jharkhand. The results are given in Table 3 and illustrated in 

Figure 5. A lso, the census data pertaining to the Area (in Sq. 

Km) and the population is obtained from[12].  

 

 

Figure 5.  Estimated % HIV with respect to Area(sq. Km) and Population 
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5. Conclusions 

From the results, we note that the average number of HIV 

infected persons in India is declining over the years. Before 

coming to any conclusion on this, it  may  be exp lored 

whether the decrease is indeed a good sign or is a situation 

where they are either dying or converting to AIDS. It  may 

also be noted that the states of Andhra Pradesh and 

Maharashtra have recorded high incidence of HIV cases 

while the lowest is seen in the Jharkhand and Nagaland. The 

high prevalence states of Andhra Pradesh, Maharashtra, 

Karnataka and Tamil Nadu show an  increase in the incidence 

in 2011 as compared to 2009. Delhi records the highest 

prevalence in terms of the number of HIV cases per square 

Kilometer area while the lowest is seen in Rajasthan. In 

terms of population of each state, the highest percentage of 

HIV cases are seen in Manipur and Nagaland while the 

lowest is seen in Jharkhand. 

The results invariably strike a balance between Classical 

and Bayesian procedures by not discriminating one over the 

other. However, it may be noted that the Bayesian procedure 

is a fairly general procedure which may encompass the 

classical procedure by simply making assumptions on the 

hyperparameters. This paper obtains very good estimates of 

the HIV infection rate by relating it to the number of infected 

people and hence, subject to the assumptions of constant 

infection rate, prior distributions provides a good utility in 

the estimation procedure. 

Even though, this procedure can be generalized  for 

calculating the national averages of HIV infect ives, further 

improvements may be done by developing a procedure that 

incorporates time dependent Incidence Rate in  the Po is son 

model. Such a model would refine the Bayes estimators to 

perform well, even for a time-series data. The incidence rate 

may be verified for its dependence on certain covariates and 

suitable Bayesian approach may be applied to it. Also, the 

estimators may further be improved to accommodate the 

case of incomplete data sets. 
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