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Abstract  The problem of thermally laminar heat transfer based on the fully developed velocity for Bingham flu ids in the 
entrance region of a circu lar duct is studied. The effect of the axial position, Peclet number, and Brinkman number are taken 
into account. Two cases of T  (constant wall temperature) and 

2H  (constant heat flux) thermally boundary conditions are 
considered in this study. The energy equation is solved numerically by finite difference methods. The march ing technique 
and the relaxat ion method are the main factors of the computer program. The results of the present work including the 
variation of the Nusselt number and mean temperature with the axial distance for the two cases are represented in Figures and 
compared with the available known results to support its accuracy.  
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1. Introduction 
Many of the flu ids used fo r industrial purposes  are 

non-Newtonian such as pastes, polymer solutions and melts, 
p last ics , pu lps  and  emuls ions  in  every  day  chemical 
engineering practice. Bingham model is one of the simplest 
models that describes materials with yield stress and most 
widely model fo r the above materials. Viscous dissipation 
changes the temperature distributions by playing a role like 
an energy source, which affects heat transfer rates. The merit 
of the effect of the viscous dissipation depends on whether 
the pipe is being cooled or heated. Many studies involving 
pipe flows in the existing literature have neglected the effect 
of viscous dissipation. In fact, the shear stresses can induce a 
considerable power generat ion. However, in  the exist ing 
convective heat  t ransfer literature, th is effect is usually 
regarded as important only  in  two  cases of flow in  capillary 
tubes and flow of very viscous fluids. The effects of viscous 
diss ipat ion  in  laminar flows have not  yet  been  deep ly 
investigated. For liquids with high viscosity and low thermal 
conductivity, disregarding the viscous dissipation can cause 
appreciable errors. The first studies of heat transfer in a duct 
flow of Newtonian fluid were made more than a century ago 
by Greatz in1883-1885 and independent ly by Nusselt in 
1910. So lutions to this problem and its various extensions 
con t inue  to  e vo ke  many  res e ar ch  e f fo rts  and  a 
comprehens ive rev iew of the works on  heat  t ransfer in  

 
* Corresponding author: 
mes00@fayoum.edu.eg (M. E. Sayed-Ahmed) 
Published online at http://journal.sapub.org/am 
Copyright © 2013 Scientific & Academic Publishing. All Rights Reserved 

laminar duct flow was compiled by Shah and London[1]. 
Tyagi[2] performed a wide study on the effect of viscous 
dissipation on the fully developed laminar forced convection 
in cylindrical tubes with an arbitrary cross-section and 
uniform wall temperature. Ou and Cheng[3] employed the 
separation of variables method to study the Graetz problem 
with fin ite viscous dissipation. They obtained the solution in 
the form of a series whose eigenvalues and eigenfunctions of 
which satisfy the Sturm–Liouville  system. The solution 
technique follows the same approach as that applicable to the 
classical Graetz problem and therefore suffers from the same 
weakness of poor convergence behavior near the entrance. 
Lin et al.[4] showed that the effect of viscous dissipation was 
very relevant in the fully developed region if convective 
boundary conditions were considered. With these boundary 
conditions and if viscous dissipation was taken into account, 
the fully developed value of the Nusselt number was 48/5 for 
every value of the Biot number and of the other parameters. 
On the other hand, it  is well known that, if a forced 
convection model with no viscous dissipation is employed, 
the fully developed value of the Nusselt number for 
convective boundary conditions depends on the value of the 
Biot number. Basu and Roy[5] analyzed the Graetz problem 
for Newtonian flu id by taking the account of viscous 
dissipation but neglecting the effect of axial conduction. 
Zanchini[6] analyzed the asymptotic behavior of laminar 
forced convection in a circular tube, fo r a Newtonian fluid at 
constant properties by taking into account the viscous 
dissipation effects. It was disclosed that particularly for the 
boundary conditions of uniform wall temperature and of heat 
transfer by convection to an external fluid yielded the same 
asymptotic behavior of the Nusselt number, namely Nu ∞  
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=48/5. And therefore, He obviously stated that, for these 
boundary conditions, when the wall heat  flux qw(ًx )  tended 
to zero, i.e., the local Brinkman number Br(x) tended to 
infinity, it is completely wrong to neglect the effect of 
viscous dissipation on the asymptotic behavior of the forced 
convection problem. Aydin[7] investigated the effect of 
viscous dissipation on thermally developed laminar forced 
convective flow in  a pipe for a Newtonian  fluid  with constant 
properties. They showed that the effect of viscous dissipation 
could not be neglected when the wall temperature was 
uniform. The effect  of v iscous dissipation on the thermal 
entrance region in a pipe for a power law non-Newtonian 
flu id has been studied by Liou and Wang[8] using the 
uniform wall heat flux thermal boundary condition, Berardi 
et al.[9] using the convection with an  external isothermal 
flu id, Lawal and Mujumdar[10] and Dang[11] using the 
uniform wall temperature. Barletta[12] studied the 
asymptotic behavior of the temperature flield for the laminar 
and hydrodynamically developed forced convection of a 
power-law fluid which flows in a circular duct taking the 
viscous dissipation into account. The asymptotic Nusselt 
number and the asymptotic temperature distribution were 
evaluated analytically in the cases of either the uniform wall 
temperature or convection with an  external isothermal fluid. 
Also, Valko[13] studied the problem for power law flu id 
using the Laplace transform Galerkin technique. Khatyr et 
al.[14] investigated the fully  developed laminar forced 
convection in circular ducts for a Bingham plastic with 
viscous dissipation and negligible axial heat conduction in 
the fluid. Both the asymptotic Nusselt number and the 
asymptotic profile temperature are obtained for many axial 
distributions of wall heat flux, which y ield a thermally 
developed region. Min et al.[15] studied thermally fully 
developed flow of a Bingham p lastic including axial 
conduction, to obtain the Nusselt number and temperature 
profiles and to propose a correlation formula between the 
Nusselt number and the Peclet number and also studied 
thermally developing flow (the Graetz problem) of a 
Bingham plastic includ ing both axial conduction and viscous 
dissipation. The solution to this problem is obtained by using 
the method of separation of variables, where the resulting 
eigenvalue problem is solved approximately by using the 
method of weighted residuals. 

In this paper, we study the effects of the viscous 
dissipation and axial conduction on the thermal entrance for 
a Bingham flu id in a tube. The flow is assumed to be laminar, 
steady state and fully  developed velocity. Two cases of T  
(constant wall temperature) and 

2H  (constant heat flux) 
thermally boundary conditions are considered. The energy 
equation is solved numerically by fin ite difference method to 
obtain the temperature distributions. Then the mean 
temperature an Nusselt number are computed for the two 
thermal boundary conditions 

2. Formulation of the Problem 

The circu lar tube configuration and boundary conditions 
are shown in Fig. 1. The flow is assumed to be laminar 
steady state, and incompressible with constant physical 
properties. The Bingham model is chosen to characterize the 
Non-Newtonian behavior of the fluid. The flu id enters the 
duct at uniform temperature Te and fu lly developed velocity 
u. The no-slip condition is applied at the circular tube walls 
and two cases of thermal boundary conditions; uniform wall 
temperature everywhere ( T ) and uniform heat flux axially as 
well as peripherally (

2H ) ) are assumed. 

 
Figure 1.  Circular tube configuration and boundary conditions 

The energy equation for a circu lar tube with viscous 
dissipation and axial condation effect may be written as 
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where η  is the apparent viscosity for a Bingham model and 
given by 
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The boundary conditions of the problem for the two cases 
are given by: 
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Where r0 is the radius of the tube, τw is the wall shear 
stress and Dh is the hydraulic diameter. 

The energy equation (1) is written in the following 
non-dimensional fo rm by Min et al.[14] as  
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The boundary conditions of the problem for the two cases 
of thermal boundary conditions are written in the following 
non- dimensional forms: 
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The local Nusselt numbers
,x TuN , 

, 2x HuN according to 

the two cases of the thermal boundary conditions are given 
by 
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3. Numerical Solution 
Using central difference for the L.H.S of the energy 

equation (5) and the Crank-Nicolson finite d ifference 
scheme for the R.H.S, the fin ite difference forms of the first 
and second derivatives are written as 
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The difference forms of the boundary conditions are: 

For case (i): ,1),1( =jθ  ,0),( =niθ  ,0
2

)0,()2,(
=

+∆

−

r

ii θθ  

0
2

),1(),(
=

+∆

−−

x

jmjm θθ  

For case (ii): ,0),1( =jθ  ,0
2

)0,()2,(
=

+∆

−

r

ii θθ  

0
2

),1(),(2),1(
=

+∆

−+−+

x

jmjmjm θθθ  

To compute Nusselt number  and mean temperature  for 
two cases of temperature boundary conditions we may 
introduce finite-difference forms for the integrals and the 
first partial derivatives in equations (10) and (12) .The 
Simpson rule for single integral is introduced by  Jain et 
al.[16], is used to introduce a difference form for the integral 
equation (11) as 
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4. Method of Solution 
The governing equations are solved numerically using the 

successive over relaxation method. For each axial position (i) 
(contain 2θ  as unknown variable notation), in the first we 

get the velocity from equation (7), and the energy equation 
(14) is then solved to obtain 2θ . 

The linear algebraic equations resulting from  equation 
(14) may be written in the matrix form as 
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Where, 
A( i , j ) : Designate the coefficients of the unknowns in  the 

algebraic equations 
),(2 jiθ  : Designate the unknowns in the algebraic 

equations 
B( i , j ) : Designate the residual in the algebraic equations 
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The relaxation equation can be written in the  form of : 
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Where: 
1θ  : Known values of the temperature in the old  

iterations, 
2θ  : Unknown values of the temperature in the new 

iterations, 

ew  : Relaxat ion factor, 

a:  the coefficient of θ . 
The resulting of a linear algebraic system of equations are 

solved by using successive over relaxat ion method (S.O.R) 
with relaxation  factor ew  = 1.1. The process repeated up till 
the difference between the new and old temperature value at 

each point is less than 510− . 
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Figure 2.  The variation of the dimensionless mean temperature with respect to axial distance for Pe =100 (for case(i)) 

 
Figure 3.  The variation of the dimensionless mean temperature with respect to axial distance for Pe =10 (for case (i) ) 
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Figure 4.  The variation of the dimensionless mean temperature with respect to axial distance for Pe =100 (for case (ii) ) 

 
Figure 5.  The variation of the dimensionless mean temperature with respect to axial distance for Pe =10 (for case (ii) ) 
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Figure 6.  The variation of the dimensionless local Nusselt number with respect to axial distance for Pe =100 (for case (i) ) 

 
Figure 7.  The variation of the dimensionless local Nusselt  number with respect to axial distance for Pe =10 (for case (i) ) 



34 M. E. Sayed-Ahmed et al.:  Numerical Solution of the Extend Graetz Problem   
for a Bingham Plastic Fluid in Laminar Tube Flow 

 

 
Figure 8.  The variation of the dimensionless local Nusselt  number with respect to axial distance for Pe =100 (for case (ii) ) 

 
Figure 9.  The variation of the dimensionless local Nusselt  number with respect to axial distance for Pe =10 (for case (ii) ) 
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Figure 10.  Comparison of the local Nusselt  number for case (i). for Pe= 10 

 
Figure 11.  Comparison of the mean temperature respect to axial distance for case (i) at  c=0 and Pe = 10 

5. Results and Discussion 
Numerical results are presented in Figures (2 to 11). The 

results are made for Pe = 10, 100, with Br = 0, 0.1, 1, 2 and c 

= 0, 0.4, 0.6 over the range of 0.001 < +x < 0.6 where the 

transverse mesh spacing +∆x =0.001 and +∆r =0.01, for the 
two cases of the thermal boundary conditions. The variation 
of dimensionless mean temperature

mθ  with axial coordinate

+x  is shown for case(i) ( constant wall temperature ) in 
Figures 2(a , b  , c ,d ) and 3(a , b , c  ,d  ) for Peclet numbers, Pe 
= 100,10, respectively and different Brinkman number Br = 
0, 0.1 , 1 ,2. The study of this Figures shows that the value of 
the dimensionless mean temperature mθ  decreases with 
increasing the values of c (ratio  of the y ield  shear stress to the 
wall shear stress) for the values of Br = 0, 0.1 and it increases 
with the increasing values of c for Br =1 , 2. The value of the 
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dimensionless mean temperature mθ  decreases with 

increasing the values of +x  for values of Br = 0, 0.1 and it 

increases with increasing the values of +x  for Br =1 , 2. 
The value of the dimensionless mean temperature mθ  
decreases with increasing the values of Peclet number Pe at 
the same value of Br and c . 

The variation o f d imensionless mean temperature mθ with 

axial coordinate +x  is shown for case(ii) ( constant wall heat 
flux) in Figures 4(a , b , c ,d ) and 5(a , b , c ,d ) for Peclet 
numbers, Pe = 100,10, respectively and different Brinkman 
number Br = 0, 0.1 , 1 ,2. The study of this Figures shows that 
the value of the dimensionless mean temperature mθ  
increases with increasing the values of  c for the values of 
Br = 0.1 ,1 ,2 and it appears the same values with increasing 
values of c for Br =0. The value of the dimensionless mean 
temperature mθ  increases with increasing the values of +x  
for all values of Br. The value of the dimensionless mean 
temperature mθ  decreases with increasing the values of 
Peclet number Pe at the same value of Br and c. The value of 
the dimensionless mean temperature mθ  increases with 
increasing the values of Br for all values c and Pe. 

The variation of local Nusselt number  with axial 

coordinate +x  is shown for case(i) in  Figures 6(a , b  , c ,d ) 
and 7(a , b , c ,d ) fo r Peclet numbers, Pe = 100,10, 
respectively and different Brinkman number Br = 0, 0.1 , 1 ,2. 
It has been found that the value of local Nusselt number 

TxNu ,
 increases with increasing the values of  c  for all 

values of Br. The value of local Nusselt number TxNu ,  

decreases with increasing the values of +x  for all values of 
Br = 0 , 1, 2 and it decreases with increasing the values of 

+x  then it increases with increasing the values of +x  for 
the value of Br = 0.1 for the different value of Pe and c. It has 
been observed the local Nusselt number  decreases 
with increasing the values of Peclet number Pe at the same 
value of Br and  c. The value of local Nusselt number 

 increases with increasing the values of  Br for all 
values c and Pe. The variation o f local Nusselt number 

2,HxNu  with axial coordinate +x  is shown for case(ii) in 
Figures 8(a , b  , c ,d ) and 9(a , b , c  ,d  ) for Peclet numbers, Pe 
= 100,10, respectively and different Brinkman number Br = 
0, 0.1 , 1 ,2. The study of this Figures shows that the value of 
local Nusselt number  decreases with increasing 
the values of  c for all values of Br = 0.1 , 1 ,2 but when Br = 
0 it increases with increasing the values of c. Also it is 
observed that The value of local Nusselt number  

decreases with increasing the values of +x  for all values of 
Br. Also it is observed that the value of local Nusselt number 

 decreases with increasing the values of Peclet 
number Pe at the same value of Br and c. Also it is observed 
that The value of local Nusselt number ( ) decreases 
with increasing the values of  Br for all values c and Pe. 

Figure(10) shows the comparison of the local Nusselt 

number  for case (i) with the results obtained by  
Min et al.[14]( c = 0, 0.4 , 0.6 ,Br = 0 , 0.1 ,1 ,2 and Pe =10 ). 
It has been found that present results of this study are in good 
agreement with the results of Min et al.[14]. Figure(11) 
shows the comparison of the mean temperature mθ  for case 
(i) with the results obtained by Min et al.[15] for c = 0 ( Br = 
0 , 0.1 ,1 ,2 and Pe =10 ). It has been found that present 
results of this study are in good agreement with the results of 
Min et al.[15]. Tab les (1) and (2) show the comparison of the 
mean  temperature mθ  and the local Nusselt number 

TxNu , in the present work with previous work Blackwell[17] 
and exact solution for Newtonian fluid ( c= 0 , Br = 0 and Pe 
= 1000). It has been found that present results of this study 
are in good agreement with the results of Blackwell[17] and 
exact solution. 

Table 1.  Comparison of the mean temperature in this work (numerical 
solution for c= 0 , Br=0 and Pe = 1000) with Blackwell[17] and Exact 
solution 

+x  Exact solution Blackwell[17] 
Numerical 

solution (c =0) 
pe = 1000 

0.001 0.96173147762562 0.9617496 0.96325750886521 

0.004 0.90736344480472 0.9073635 0.90775768497412 

0.01 0.83621890370042 0.8362189 0.83638054674626 

0.04 0.62802762547356 0.6280276 0.62808567893518 

0.1 0.39529878135531 0.3952988 0.39534918943781 

0.4 0.04393498463039 0.0439350 0.04396111675708 

0.6 0.00054583351369 0.0005458 0.00544505565523 

Table 2.  Comparison of the local Nusslt number in this work (numerical 
solution for c= 0 , Br=0 and Pe = 1000) with Blackwell[14] and Exact 
solution 

+x  Exact solution Blackwell[17] 
Numerical solution 

(c =0) 
pe = 1000 

0.001 12.8008735372838 12.824 13.47483171029748 
0.004 8.03613734603618 8.036 8.14204203500937 
0.01 6.00151517834822 6.002 6.01545419345994 
0.04 4.17243317739900 4.172 4.17294607914032 
0.1 3.70998830584280 3.710 3.70965254965498 
0.4 3.65679419479766 3.657 3.65624580709372 
0.6 3.65679345776329 3.657 3.65605394751762 

6. Conclusions 
A fin ite difference method has been used to numerically  

solve the energy equations for steady laminar fluid flow and 
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heat transfer in  entrance region of a circular p ipe. A  Bingham 
Non-Newtonian model is used to characterize the flu id 
behavior. Two cases of thermal boundary conditions (T and 
H2 ) are studied. Two-dimensional storage and marching 
technique with a relaxat ion method line by line  solution 
procedure for the difference equations are some important 
features of the program. the effects of the Brinkman number 
( Br = 0, 0.1 ,1 ,2 ), the thermal axial position +x ,the Peclet 
number ( Pe = 100 , 10 ) and the ratio of the yield shear stress 
to the wall shear stress( c = 0,0.4 ,0.6) on the temperature θ , 
the mean temperature mθ  and the local Nusselt number 

 and  are studied. It is observed that, 

1- The value of the dimensionless mean  temperature mθ  

for case (i) decreases with increasing the values of +x for 
values of Br = 0, 0.1 and it  increases with increasing the 
values of +x  for Br =1 , 2. A lso the value of the 
dimensionless mean temperature mθ  decreases with 
increasing the values of Peclet number Pe . 

2- The value of the dimensionless mean temperature mθ  

for case (ii) increases with increasing the values of +x  for 
all values of Br . Also the value of the dimensionless mean 
temperature( mθ ) decreases with increasing the values of 
Peclet number Pe and it increases with increasing of the Br . 

3- The value of local Nusselt number  for case(i) 

decreases with increasing the values of +x  for all values of 
Br .Also the value of local Nusselt number  
decreases with increasing the values of Peclet number Pe , 
while increases with increasing the values of  Br . 

4- The value of local Nusselt number  for case (ii) 

decreases with increasing the values of +x  for all values of 
Br , and it  decreases with increasing the values of Peclet 
number Pe  . A lso it is observed that The value of local 
Nusselt number decreases with increasing the 
values of  Br . 
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