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Abstract The problemof thermally laminar heat transfer based on the fully developed velocity for Bingham fluids in the

entrance region of a circular duct is studied. The effect of the axial position, Peclet number, and Brinkman number are taken
into account. Two cases of 7 (constant wall temperature) and f/, (constant heat flux) thermally boundary conditions are

considered in this study. The energy equation is solved numerically by finite difference methods. The marching technique
and the relaxation method are the main factors of the computer program. The results of the present work including the
variation of the Nusselt number and mean temperature with the axial distance for the two cases are represented in Figures and
compared with the available known results to support its accuracy.
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1. Introduction

Many of the fluids used for industrial purposes are
non-Newtonian such as pastes, polymer solutions and melts,
plastics, pulps and emulsions in every day chemical
engineering practice. Bingham model is one of the simplest
models that describes materials with yield stress and most
widely model for the above materials. Viscous dissipation
changes the temperature distributions by playing a role like
an energy source, which affects heat transfer rates. The merit
of the effect of the viscous dissipation depends on whether
the pipe is being cooled or heated. Many studies involving
pipe flows in the existing literature have neglected the effect
of viscous dissipation. In fact, the shear stresses can induce a
considerable power generation. However, in the existing
convective heat transfer literature, this effect is usually
regarded as important only in two cases of flow in capillary
tubes and flow of very viscous fluids. The effects of viscous
dissipation in laminar flows have not yet been deeply
investigated. For liquids with high viscosity and low thermal
conductivity, disregarding the viscous dissipation can cause
appreciable errors. The first studies of heat transfer in a duct
flow of Newtonian fluid were made more than a century ago
by Greatz in1883-1885 and independently by Nusselt in
1910. Solutions to this problem and its various extensions
continue to evoke many research efforts and a
comprehensive review of the works on heat transfer in
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laminar duct flow was compiled by Shah and London[l1].
Tyagi[2] performed a wide study on the effect of viscous
dissipation on the fully developed laminar forced convection
in cylindrical tubes with an arbitrary cross-section and
uniform wall temperature. Ou and Cheng[3] employed the
separation of variables method to study the Graetz problem
with finite viscous dissipation. They obtained the solution in
the form of a series whose eigenvalues and eigenfunctions of
which satisfy the Sturm-Liouville system. The solution
technique follows the same approach as that applicable to the
classical Graetz problemand therefore suffers fromthe same
weakness of poor convergence behavior near the entrance.
Lin et al.[4] showed that the effect of viscous dissipation was
very relevant in the fully developed region if convective
boundary conditions were considered. With these boundary
conditions and if viscous dissipation was taken into account,
the fully developed value of the Nusselt number was 48/5 for
every value of the Biot number and of the other parameters.
On the other hand, it is well known that, if a forced
convection model with no viscous dissipation is employed,
the fully developed value of the Nusselt number for
convective boundary conditions depends on the value of the
Biot number. Basu and Roy[5] analyzed the Graetz problem
for Newtonian fluid by taking the account of viscous
dissipation but neglecting the effect of axial conduction.
Zanchini[6] analyzed the asymptotic behavior of laminar
forced convection in a circular tube, for a Newtonian fluid at
constant properties by taking into account the viscous
dissipation effects. It was disclosed that particularly for the
boundary conditions of uniform wall temperature and of heat
transfer by convection to an external fluid yielded the same
asymptotic behavior of the Nusselt number, namely Nu oo
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=48/5. And therefore, He obviously stated that, for these
boundary conditions, when the wall heat flux gy (x ) tended
to zero, i.e., the local Brinkman number Br(x) tended to
infinity, it is completely wrong to neglect the effect of
viscous dissipation on the asymptotic behavior of the forced
convection problem. Aydin[7] investigated the effect of
viscous dissipation on thermally developed laminar forced
convective flow in a pipe for a Newtonian fluid with constant
properties. They showed that the effect of viscous dissipation
could not be neglected when the wall temperature was
uniform. The effect of viscous dissipation on the thermal
entrance region in a pipe for a power law non-Newtonian
fluid has been studied by Liou and Wang[8] using the
uniform wall heat flux thermal boundary condition, Berardi
et al.[9] using the convection with an external isothermal
fluid, Lawal and Mujumdar[10] and Dang[11] using the
uniform wall temperature. Barletta[12] studied the
asymptotic behavior of the temperature flield for the laminar
and hydrodynamically developed forced convection of a
power-law fluid which flows in a circular duct taking the
viscous dissipation into account. The asymptotic Nusselt
number and the asymptotic temperature distribution were
evaluated analytically in the cases of either the uniform wall
temperature or convection with an external isothermal fluid.
Also, Valko[13] studied the problem for power law fluid
using the Laplace transform Galerkin technique. Khatyr et
al[14] investigated the fully developed laminar forced
convection in circular ducts for a Bingham plastic with
viscous dissipation and negligible axial heat conduction in
the fluid. Both the asymptotic Nusselt number and the
asymptotic profile temperature are obtained for many axial
distributions of wall heat flux, which yield a thermally
developed region. Min et al[l5] studied thermally fully
developed flow of a Bingham plastic including axial
conduction, to obtain the Nusselt number and temperature
profiles and to propose a correlation formula between the
Nusselt number and the Peclet number and also studied
thermally developing flow (the Graetz problem) of a
Bingham plastic including both axial conduction and viscous
dissipation. The solution to this problemis obtained by using
the method of separation of variables, where the resulting
eigenvalue problem is solved approximately by using the
method of weighted residuals.

In this paper, we study the effects of the viscous
dissipation and axial conduction on the thermal entrance for
a Bingham fluid in a tube. The flow is assumed to be laminar,
steady state and fully developed velocity. Two cases of T
(constant wall temperature) and f, (constant heat flux)
thermally boundary conditions are considered. The energy
equation is solved numerically by finite difference method to
obtain the temperature distributions. Then the mean
temperature an Nusselt number are computed for the two
thermal boundary conditions

2. Formulation of the Problem

The circular tube configuration and boundary conditions
are shown in Fig. 1. The flow is assumed to be laminar
steady state, and incompressible with constant physical
properties. The Bingham model is chosen to characterize the
Non-Newtonian behavior of the fluid. The fluid enters the
duct at uniform temperature 7,and fully developed velocity
u. The no-slip condition is applied at the circular tube walls
and two cases of thermal boundary conditions; uniform wall
temperature every where ( 7') and uniform heat flux axially as
well as peripherally ( /,)) are assumed.
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Figure 1. Circulartube configuration and boundary conditions

The energy equation for a circular tube with viscous
dissipation and axial condation effect may be written as
2 2
wor _OT 10T oT +n(du/dr)* (1)
aox or ror ox’
where 77 is the apparent viscosity for a Bingham model and
given by

77::UO+Ty/

@ 2
dr

The boundary conditions of the problem for the two cases
are given by:
Case (i) T- thermal boundary

T(O,r):Te 9T(x5 ro ):TWa

a—T(x,O):Oa 6120 as X —» © 3)
or ox

Case (i) H ,-thermalboundary

aT q"
T(O,r) = TC’ E(x’ro) = —;7

2
al(x’o)zo, aifzo as X —> 4
or X

In addition to the non-dimensional variables, we may
introduce the following:
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Where r,is the radius of the tube, 7,is the wall shear
stress and D), is the hydraulic diameter.

The energy equation (1) is written in the following
non-dimensional formby Min et al.[14] as

+ 2 2 + 2
W00 1 00 100, 00, p . du) 5
2 ox" pe’ gt rtort gyt dr*
where
o D=rt =¢
*
7= ©)
—4494 +
e ) o=t e
Fﬂrﬁ[
oal-ey D=rt 2e
4 g
l-—c+—
33
ut =< 7
M-r*-2ol-r*] c=rt=l
l—ic+£
. 3 3

The boundary conditions of the problem for the two cases
of thermal boundary conditions are written in the following
non- dimensional forms:

Case (i): 6(0,7)=1.0, O(x*,1)=0,
00 00

Ca0)=00 Lxr =g s ¥ 0w @)
- ox*
Case (if): 6(0,) =05 2% (x 1= 0.5
a

The finite-difference form of the energy equation (5) is:

2
89 (x’,O)ZO 69(x+,r+):0 as x+—)OO (9)
rt o’
The local Nusselt numbers V,, , N, according to
ux,T ux,Hz

the two cases of the thermal boundary conditions are given
by

(10)

Nu = 11
0, -0,( ) .

I(l)u+9r+dr+

j(1)u+r+dr+

6, = (12)

3. Numerical Solution

Using central difference for the L.H.S of the energy
equation (5) and the Crank-Nicolson finite difference
scheme for the R.H.S, the finite difference forms of the first
and second derivatives are written as

00 _0G+L)=0G=L)) 55

ox* 2Ax"
00 _ 00,/ +D=0j=1) | 55,2
or* 2Ar°

W) 0G+L)=0G=1))_ 1 6G+1)j)=20G.)+8G-L)) 1 8Gj+1)=-6G.j-D

2 2Ax* pe’ Axt’ o 2Ar*
*
0.ij + 1) =260, )+ 60sj =1 . grrr g -
+ % +Bra 9 (13)
Ar
2
+
Where ¢ = du
drt
Rearranging equation (13) in the form as:
sk
as0(i, j) = a0 +1, j) + az6i — 1, j) + a30(. j + D+ . .
/PPN 14
aq0@,j -+ () () (19
For 1<i<m-1,2<j<n-1
+, . + ..
where, a| = 21 U (i), ap = ; + 4 (i),
At _pe2 4Ax AxT pez 4Ax
! ! a ! ! d a 2 + 2
az = + ) = > A+ L | an 5= 2 2
Ar+2 Zr(-;)Ar Ar® 2]"(_1.)A7” Ax* pe2 Ar”



30 M. E. Sayed-Ahmed et al.:

Numerical Solution of the Extend Graetz Problem

for a Bingham Plastic Fluid in Laminar Tube Flow

, . 1 00 . . 1 00 0’0
Forj=1 (7" — 0)the term — —— is undefined, therefore we apply the L’Hopital’s rule. Then — == >
ot ror ort
In the equation (13) becomes;
' (j) OGi+1,)-0G-1,)) 1 0Gi+1,))=203,))+0G-1,))
2 + 2 2
2Ax pe At
0G, j +1) =200, j) + 06, j =) *
2 5 +Bri @) (15)
Art
Rearranging equation (15) in the form as:
%
as50(, j) = a10G +1, )+ a20(i -1, j) + a30(i, j + 1)+ a0, j - 1)+ Brn(j)¢(j) (16)
where ,
1 0) 1 0) 2 2 2 4
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The difference forms of the boundary conditions are:

0(i:2) - 0(.0) _

For case (i): 6(1,j)=1, 6(i,n)=0, 0,
24r*
00m, ) =0m=1)) _,
28x*
For case (i)): (1, /)=0, 06,2)~6,0) =0,

2ArT
O(m+1,j)—260(m, j)+0(m—1,j)

0
2

Ax+

To compute Nusselt number and mean temperature for
two cases of temperature boundary conditions we may
introduce finite-difference forms for the integrals and the
first partial derivatives in equations (10) and (12) .The
Simpson rule for single integral is introduced by Jain et
al.[16], is used to introduce a difference form for the integral
equation (11) as

At n—1 n-2
=2+l +4 D nGh+2 D o@D
, 1=2,4,6 1=35,7
O (i) =
At n—1 n—2
| aEh+aGm+4 > uG@h+2 Y 6D
1=2,4,6 1=35,7
Where, tl(i,j):r“Lu,+ o= G oA
12 (i, /) =11, ))OG, )
4. Method of Solution

The governing equations are solved numerically using the
successive over relaxation method. For each axial position (i)

(contain @2 as unknown variable notation), in the first we

get the velocity from equation (7), and the energy equation
(14) is then solved to obtain 62 .

The linear algebraic equations resulting from equation
(14) may be written in the matrix form as

A(i,j) 02(i,j) =B(i.]) (17)

Where,

A(1,]) : Designate the coefficients ofthe unknowns in the
algebraic equations

02(i, j) : Designate the unknowns in the algebraic

equations
B(1i,j) : Designate the residual in the algebraic equations
i=1,23,............ ,nandj=1,2,3,............ ,m

The relaxation equation can be written in the form of:

a0V +1, /) +a;y ;02(i—1, /)

02(i, j) = —<| +a; ;,01(i, j+1)+ a; ;,02(i, j 1) | 1D
1,] *
+Brn; ¢ +(1-w,)01(i, )
Where:
01 : Known values of the temperature in the old

iterations,

02 : Unknown values of the temperature in the new
iterations,

w, : Relaxation factor,
a: the coefficient of @.

The resulting of a linear algebraic system of equations are
solved by using successive over relaxation method (S.O.R)

with relaxation factor w, =1.1. The process repeated up till

the difference between the new and old temperature value at

each point is less than 107,
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Figure 2. The variation ofthe dimensionless mean temperature with respect to axial distance for Pe =100 (for case(i))
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Figure 3. The variation ofthe dimensionless mean temperature with respect to axial distance for Pe =10 (for case (i) )
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Figure 4. The variation of the dimensionless mean temperature with respect to axial distance for Pe =100 (for case (ii) )
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5. Results and Discussion

Numerical results are presented in Figures (2 to 11). The
results are made for Pe =10, 100, with Br=0,0.1, 1, 2and ¢

=0, 0.4, 0.6 over the range of 0.001 < x "< 0.6 where the

transverse mesh spacing Ax"=0.001and Ar*=0.01, for the
two cases of the thermal boundary conditions. The variation
of dimensionless mean temperature ¢~ with axial coordinate

x* is shown for case(i) ( constant wall temperature ) in
Figures 2(a,b,c,d )and 3(a,b,c ,d ) for Pecletnumbers, Pe
= 100,10, respectively and different Brinkman number Br =
0,0.1, 1,2. The study of this Figures shows that the value of
the dimensionless mean temperature 9m decreases with

increasing the values ofc (ratio ofthe yield shearstress to the
wall shear stress) for the values of Br=0, 0.1 and it increases
with the increasing values of ¢ for Br =1, 2. The value of the
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dimensionless mean temperature Hm decreases with

increasing the values of x" forvalues of Br= 0, 0.1 and it

increases with increasing the values of x* for Br =1, 2.
The value of the dimensionless mean temperature Hm

decreases with increasing the values of Peclet number Pe at
the same value of Brand c .

The variation o f dimensionless mean temperature Hm with

axial coordinate X is shown for case(ii) (constant wallheat
flux) in Figures 4(a,b,c,d )and 5(a, b, c ,d) for Peclet
numbers, Pe = 100,10, respectively and different Brinkman
number Br=0,0.1, 1,2. The study ofthis Figures shows that

the value of the dimensionless mean temperature 0m

increases with increasing the values of ¢ for the values of
Br=0.1,1,2 and it appears the same values with increasing
values of ¢ for Br =0. The value of the dimensionless mean

temperature l9m increases with increasing the values of x"
for all values of Br. The value of the dimensionless mean
temperature 9m decreases with increasing the values of

Peclet number Pe at the same value of Brand c. The value of
the dimensionless mean temperature § increases with

increasing the values of Br for all values ¢ and Pe.

The variation of local Nusselt number N”x r with axial

coordinate x* is shown for case(i) in Figures 6(a , b , ¢ ,d )
and 7@ , b , ¢ ,d ) for Peclet numbers, Pe = 100,10,
respectively and different Brinkman number Br=0, 0.1, 1,2.
It has been found that the value of local Nusselt number
Nu_, increases with increasing the values of c¢ for all

values of Br. The value of local Nusselt number Nux’T

decreases with increasing the values of x" forallvalues of
Br=0, 1, 2 and it decreases with increasing the values of

x" then it increases with increasing the values of x " for
the value of Br=0.1 for the different value of Pe and c. It has

been observed the local Nusselt number N”x,T decreases

with increasing the values of Peclet number Pe at the same
value of Br and c¢. The value of local Nusselt number

N”x,r increases with increasing the values of Br for all
values ¢ and Pe. The variation of local Nusselt number
Nux,H2

Figures 8(a,b,c,d)and 9(a, b ,c ,d ) for Peclet numbers, Pe
=100,10, respectively and different Brinkman number Br =
0,0.1, 1,2. The study of this Figures shows that the value of

local Nusselt number Nu_,, decreases with increasing

with axial coordinate X is shown for case(ii) in

the values of c¢ forall values of Br=0.1,1 ,2but when Br=
0 it increases with increasing the values of c. Also it is

observed that The value of local Nusselt number Nu_ ,;,

decreases with increasing the values of x* forall values of
Br. Also it is observed that the value of local Nusselt number

Nuw2 decreases with increasing the values of Peclet
number Pe at the same value of Br and c. Also it is observed
that The value of local Nusselt number ( Nu ,,, ) decreases

with increasing the values of Br for all values ¢ and Pe.
Figure(10) shows the comparison of the local Nusselt

number Nux,r for case (i) with the results obtained by
Min et al[14](¢=0,0.4,0.6 ,Br=0,0.1,1,2and Pe=10).
It has been found that present results of this study are in good
agreement with the results of Min et al.[14]. Figure(11)

shows the comparison of the mean temperature «9m for case
(i) with the results obtained by Min et al.[15] forc =0 ( Br=
0, 0.1 ,1,2and Pe =10 ). It has been found that present

results of this study are in good agreement with the results of
Min et al.[15]. Tables (1) and (2) show the comparison of the

mean temperature Hm and the local Nusselt number

Nux,T in the present work with previous work Blackwell[17]

and exact solution for Newtonian fluid ( c= 0, Br =0 and Pe
= 1000). It has been found that present results of this study
are in good agreement with the results of Blackwell[17] and
exact solution.

Table 1. Comparison of the mean temperature in this work (numerical
solution for c=0 , Br=0 and Pe = 1000) with Blackwell[17] and Exact
solution

Numerical
X+ Exact solution Blackwell[17] solution (c =0)
pe =1000
0.001 | 0.96173147762562 0.9617496 0.96325750886521
0.004 | 0.90736344480472 09073635 0.90775768497412
001 0.83621890370042 0.8362189 0.83638054674626
0.04 0.62802762547356 0.6280276 0.62808567893518
0.1 0.39529878135531 0.3952988 0.39534918943781
04 0.04393498463039 0.0439350 0.04396111675708
0.6 0.00054583351369 0.0005458 0.00544505565523

Table 2. Comparison of the local Nusslt number in this work (numerical
so{ution for ¢=0 , Br=0 and Pe = 1000) with Blackwell[14] and Exact
solution

Numerical solution
xt Exact solution Blackwell[17] (c =0)
pe =1000
0.001 | 12.800873537283§ 12.824 13.4748317102974
0.004 | 8.0361373460361§ 8.036 8.14204203500937
001 6.00151517834827 6.002 6.01545419345994
0.04 | 4.1724331773990 4.172 4.17294607914032
0.1 3.7099883058428 3.710 3.70965254965498
04 3.6567941947976( 3.657 3.65624580709372
0.6 3.65679345776324 3.657 3.65605394751762

6. Conclusions

A finite difference method has been used to numerically
solve the energy equations for steady laminar fluid flow and
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heat transferin entrance region of a circular pipe. A Bingham
Non-Newtonian model is used to characterize the fluid
behavior. Two cases of thermal boundary conditions (T and
H2 ) are studied. Two-dimensional storage and marching
technique with a relaxation method line by line solution
procedure for the difference equations are some important
features of the program. the effects of the Brinkman number

(Br=0,0.1,1,2), the thermal axial position x " the Peclet
number (Pe =100, 10) and the ratio of the yield shearstress

to the wall shearstress(c= 0,0.4,0.6) on the temperature @,
the mean temperature 6’m and the local Nusselt number

Nu,; and Nu,,, arestudied.Itis observed that,
1- The value of the dimensionless mean temperature 0m

for case (i) decreases with increasing the values of x for

values of Br = 0, 0.1 and it increases with increasing the
values of x* for Br =1 , 2. Also the value of the
dimensionless mean temperature Qm decreases with
increasing the values of Peclet number Pe .

2- The value of the dimensionless mean temperature l9m

for case (ii) increases with increasing the values of x" for
all values of Br . Also the value of the dimensionless mean

temperature( '9m ) decreases with increasing the values of
Peclet number Pe and it increases with increasing of the Br .

3- The value of local Nusselt number Nux,T for case(i)

decreases with increasing the values of x* forall values of
Br .Also the value of local Nusselt number Nu_,
decreases with increasing the values of Peclet number Pe ,

while increases with increasing the values of Br.

4- The value of local Nusselt number Nu for case (ii)

x,H2

decreases with increasing the values of x* forall values of
Br , and it decreases with increasing the values of Peclet
number Pe . Also it is observed that The value of local

Nusselt number Nu_,, decreases with increasing the

values of Br.
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