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Abstract The purpose of this article is to provide a stochastic model of network flows based on the Erlang time
distribution for vehicles moving in succession, which allows us to describe the flows of high density. We used a graph

representation and introduced a structure of matrices A4 to store all necessary information about

streers M Bivrersecrion
the network flows for analytical modelling. In this paper, the classification of network nodes is given as well as the criteria
of optimisation of flows distribution in the network nodes. We provide an algorithm of numerical method to find out the
optimal parameters of control for the type 2 node. Using the graph representation of the model, we developed methods of

determination of the optimal scheme of flows distribution within the network.
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1. Introduction

The accelerating increase in number of car owners results
in considerable growth of traffic volume, regular traffic
congestion and advance in the cost of motor trucking. Cities
usually develop according to the following consistent
pattern: at an early stage the directions of arterial streets are
laid but later the urban transportation infrastructure itself
starts dictating the directional development. Therefore,
optimal planning of networks and optimization of paths
gain in importance. The problem of rational employment of
already existing urban transportation networks by optimal
organization of traffic is also urgent.

Mathematical models applied for analyzing transportatio
n networks vary according to the problems solved,
mathematical apparatus, data used, and specification of
traffic description (e.g.[1-2, 4-9, 16, 17]).The first
macroscopic model was suggested by M. Lighthill and G.
Whitham[8] in the middle of the last century parallel with
the first microscopic models (‘follow-the-leader’ theory)
which explicitly derived an equation of motion for each
individual vehicle (A. Reshel, L. Pipes, D. Gazis and
others).

Frank A. Haigt[5] was the first to establish the
mathematical investigation of traffic flow as a separate
section of applied mathematics. At present there is
voluminous literature on the subject.

In order to efficiently control urban traffic flows and
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choose the optimal solutions of designing transportations
networks we should consider a wide range of the flow
features as well as the laws of impact of both external and
internal factors on dynamic characteristics of traffic flow
(e.g.[9],[16],[17]). The problems arise due to instability of
traffic flow and divergence of the criteria of traffic control
quality. The travel time for a concrete path is made up of
the delays at intersections and the time of motion from one
intersection to another. By reducing the waiting time at
intersections we could optimize the total travel time.
Therefore, developing a microscopic model of
transportation dynamics in the nodes and estimation of their
influence on the network flows distribution seems to be
relevant.

2. A Graph Representation of
Transportation Network

In stochastic models a traffic flow is defined as the result
of interaction of vehicles on the segments of transportation
network. A network is a graph each edge of which is
assigned to a certain number. A flow is a certain function
prescribed for the graph edges (e.g.[12]). In the case studied,
the flow in the graph is given as a function of density of
arrival distribution (arrival times of service requests).

We hold that time intervals distribution in each customer
flow (channel) obeying the Erlang distribution (e.g.[11]) is:

fOM=20"e J(k=1)! (t>0). 1)

This law allows us to describe flows of rather high density.
For example, the assumption of time intervals distribution
for vehicles moving in succession according to the Erlang
distribution is true for the intensity of 500 vehicles per hour
on each lane.



Applied M athematics 2013, 3(1): 12-19 13

We will refer to the network flows as ‘non-conflict’ if
they are not crossed in the given sector of the network, and
as ‘conflict’ otherwise. We will consider the node-points —
the points of sources or consumption of information and
those of conflict flows crossing — to be the vertices of a
graph. The node-points are formed by crossing of
mu ltichannel lines.

Let us consider a node-point (NP) in which the conflict
flows are crossed as follows: a number of flows (the main
ones) are freely passing the NP. The customers of the rest of
flows (the secondary ones) are expecting sufficient time
intervals between arrivals of main flows in order to cross
the NP. We will call such a node-point a ‘type 1 node’, as
in[10, 13, 15].

2.1 Asrregrs =

We will call a node-point in which traffic is alternately
blocked for one of the non conflict flow group for a fixed
time to enable crossing a ‘type 2 node’, as in[ 10, 13, 15].

Let:

{lj } = set of graph edges,
{Zj} = set of nodes.

Then, a edge is part of a multichannel line between two
nodes. Assign the identification numbers p4y ;i ,

ieN to the lines. Then STREET i = Ulj_

JjeEW
And the graph could be given as the following combined
matrices:

. =(Sl S, S, S, Contr Pr Len Col AL AS AR AAl kAl.. BL BS BR AB1 kBl...)

where

1) Ne = number of the matrix line  Agppprs

number of lines equals the number of edges);
2)S; u S, = intersected lines forming Node 1;
3) S; u Sy — intersected lines forming Node 2;
4) C = node type;
5) Pr = priority (main or secondary line);
6) L = length of edge;
7) Col =number of flows on the edge;

corresponding to the number of the graph edge linking Nodes 1 and 2 (the

8) AL = admissibility of turning to the left from Direction A at Node 1;
9) AS = admissibility of direct motion from Direction A at Node 2;
10) AR = admissibility of turning to the right from Direction A at Node 2;

11)1A1,AA2, etc. = parameter A in Direction A;
12) kAl,kA2, etc. = parameter k in Direction A;

13) BL = admissibility of turning to the left from Direction B at Node 1;
14) BS = admissibility of direct motion from Direction B at Node 1;
15) BR = admissibility of turning to the left from Direction B at Node 1;

16))1, B2 etc. = parameter A in Direction B;
17) kB1,kB2 etc. = parameter k in Direction B.

22. Bpprsecron =S, S, AClinel  kClinel

where

ADlinel

kDlinel )

1) The line number is the number of the edge connecting the type 1and 2nodes in the matrix Agpzzrs 3

2) S1u S2 = intersected lines forming Node 1;

3) AClinel, ACline2 etc. = parameter A of flows arriving at Node 1 in Direction C of the line crossing the given edge in

Node 1;

4) kC linel, kC line2 etc. = parameter k of flows arriving at Node 1 in Direction C of the line crossing the given edge in

Node 1;

5)AD linel, AD line2 etc. = parameter A of flows arriving at Node 1 in Direction D ofthe line crossing the given edge in

Node 1;

6) kD linel, kD line2 etc. = parameter k of flows arriving at Node 1 in Direction C of the line crossing the given edge in

Node 1.
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3. Optimisation of Flows Distribution in
the Network

3.1. Determination of the Optimal Flow Distribution in a
Node

Let us consider the following problem: we must find out
the optimal distribution of flows for a given node
z, = StrlNStr2 from the known methods of the set

¥ = {14,kA, AB, kB, AC,kC,AD,kD, Contr,Prior} .

Depending on the the criteria of

optimization can be:
1) f(z,) = weight of the vertex z, (node-point) for

aim pursued

the flow ofthe given direction;
2) u(z,) =weightofthe vertex z;

3) ®,(z,)= mean delay of request in the chosen

directions.
For the type 1 node:
A
7.WH1‘
- _ ki
1) ,U(Zn) = — ___, where M = set of chosen
o 3600
directions;
Al
7.WH1'
_ ki
2) /U(Z,,) = , where O = set of all
“~ 3600
directions;
Ai
2 Pl
_ieM
3) Wy (Zn) - A , where M = set of
ieM kl

chosen directions.
Here we used the following notation (as in[10]): WH

= mean delay (seconds) at a node of one request of a
secondary direction with A and k& parameters of distribution:
For the type 2 node:

2T, A)
ieM

n H(z,)=

T , wWhere M = set of
chosen directions, o < {1;2};
LWL A)+ 2 (T, 4)
) uz,)=— T ;
D W(T,4)
__ieM
3) wM(Zn) = ZH(TQ,&) , where M = set of
ieM

chosen directions, . < {1;2} -
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Here we used the following notations
Tl

W(,A) = J.Hﬂ(t)dt (requests per second) = the total
0

(as in[10]):

delay of all requests of a given flow for one regulated cycle
T=1 +T, ;

H(Z) = number of requests arriving at a given point of
road for the time interval (0; ¢).

Let: the given vertex (node-point) z, = Strl M Str2
(with the The

information about incoming flows is given in he matrices

order precision of  sp1u SH2 )

Agrreers 20d Biyrerszerion -
Lemma 1. The Erlang distribution parameters for

incoming flows of the vertex z = StrlNStr2 are

given:

1) in the matrix  Agpeers I the  line
(Agpppers ). =(Strl Str2 Swl X ) - in
Direction B;

2) in the matrix Bppepemony 0 the  line
(B INTERSECTION )l. in Directions C and D;

3) in  the matrix  Agpgrg in the  line

(Agrpprs), = (Sl Y Sorl Sur2

) - i
Direction A.
The optimal flow distribution in the node is the solution
to the problem (depending on the pursued objective):

) g(z,) opt= man{ﬁ(zn)};
2 p(z,) _opt =minfu(z,)};

3) w,(z,)_opt= m\Pin{a)M (z,)}-

3.2. Selection of the Optimal Parameters of the Type 2
Node Operation

Let us set the following task of optimization of the type 2
node operation: to minimize the total hour delay of all
requests £(z,) in the given node on condition of absence

of congestion for each flow:

H(T,z,.)—%so, i=12,.,nl> (2)

H(T,/ij)—%so, J=12en2s ()

where nl = number of flows of Line Nel; #2 = number
of flows of Line Ne2. It is necessary also to fulfill the
condition: 70 > 2As , where M = the minimum time
(seconds) necessary for a request to pass the type 2 node.

The problem of mathematical (non-linear) programming
is:

D W(TLA)+ Y WL, 4)
= ! T J

Z — min

4
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T.
H(T,A)--—%+<0,
h
T
Q: {H(T,A) —7‘ <0, ®)
T2>2M,
I +T,=2M
The results obtained are the optimal values of operation
parameters 77, 77,

Specify the algorithm of numerical solution to the
problem (4-5) as a relaxation process — the process of
construction of successive approximations

M .M,,..M,, which M, eQ u
Z(M,.)<Z(M}).
Step 1. Specify initial values:

ﬂ“/

2y,
PR
202,

for

*

p_

and
(1—1«% (l—ky
A 2k,
7" = min{— 2k, - LL s
" A _1-p 4 p
k. h k, h
and the values for fulfillment of the algorithm
£,=001; £, = 0,5; &, = 0,1,
Step 5. Assume [ ZT*1 (initial value TI*O
oz _
or,
A A
n (k)3 2|z
i J J
s 1
The newvalue P = T*!

*
= p* . T*l ) and find numerically the solution ]}

Ik -k,
DI TR N T

Step 2. Find numerically (for example, by half-division
*
method) the solution T : to
1-p)T .
w2 -9=PT _ 5 | meeting

h
. {/1,}
ming —., .
i ki

Step 3. Check the fulfillment of other inequalities of the
system with restrictions:

a-pr
h

the equation

the condition:

H(T*laﬂ’i) = 09 i=12,...,nl;

pT"!

81
H(T",2,) -

<0, J=12,...,n2

Step 4. If the conditions of Step 3 are fulfilled, compute
Z*(p*;T*l) and go to Step 5. If the conditions of Step 3
are not fulfilled, then find numerically (for example, by
half-division method) the solution 7~ ot

H(T,2,) —%

to the equation

=0 , meeting the condition:

i

min{%} ; check the fulfillment of other inequalities of the

system with restrictions:

. 1— p)T"!
H(T 1,4)—% <0, ;1.2 .n;

*1

T
H(TS],/,L]') — ph <0, J=12,...,n2"

Then compute Z (p ;T') and go to Step 5.

to the equation:

OR,,

+>—1=0

T T2k Ton

Step 6. Repeat Steps 2-4 until AZ <&, Ap <¢,, AT <¢&;.

The author has proved that the successive approximations meet the conditions of convergence with the optimal solution

M,:
}imZ(Mk) = Z(Mo) )
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3.3. Determination of the Critical Values of the Erlang
Distribution Parameters for the Type 2 Node

As stated above, there is no congestion in the type 2 node
under certain conditions (2-3). In the case where time
intervals are distributed according to Erlang law (1), the
given conditions are identical with the following inequality
system:

iT+ﬂ+R,.(/1,.,k,.,t)s§,i=1,2,...,n1
k2K, h
(6)
A, 1-k.
—’T+—’+R4(/1.,k.,t)§£,j=1,2,...,n2
kooo2k, T
Since lg|R(ﬂ,’k,t)|g 1 , the approximate
4 .
2k-sm;

solution to the system for A parameter (with & parameter
being known) is:

T, k-1 1
724_ k’ — pn . ki
h 2k 2k, -sin—
2’[ < T , 1= 1,2,.. ,nl (7)
k.—1
ﬁ_{_ J — 1 k/
b2k ok sin ™
4, < T d ,j=L2,.,n2

If necessary, the value of A parameter of the FErlang
distribution for each flow preventing congestion in the type
2 node can be found numerically with any precision by
solving the equation:

H(T, 1) —% =0 WM H(T,A,) —% -0

(8)
3.4. Selection of the Optimal Path for Flows in the Given
Network (from the Preset Number)
Assume there are a limited number of certain routs
WAY(z,z,),1=12,....k , from the node z, to the

node Z, given by enumeration of nodes in the order of

their passing by the flow requests.
Let the optimization criterion be the following function:

uWAY(z,,2,)) = 3 (fiz,) + ()

JjeDb;

nel;
=weight of path,i. e. time spent on passing the given path,
where fi(z,) = weight of the vertex z, (node-point)for
the flow o fthe given direction;;

,u(lj) = weight of the edge l/ for the flow of the given
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direction;;

D,- = set of  edges of  the path
WAY(zy,2,),i =12,...k ;

V.. = set of  nodes of the  path

WAY(zy,2,), i =12,...k .

Then the optimal path is determined by the solution to the
following problem:

WAY opt = mjn{ﬂ(WA Y(ZO’Zp))}

Information about the network necessary for computation

is given in two connected matrices ASTREETS U

BINTERSECTION .

3.5. Deter mination of the Optimal Path Between Two
Nodes

Let us set the following task : to find the path from the

vertex Z, to the wvertex Z, , meeting condition:
HOVAY,(0,2,) = 2 (f(z,) + (1)

JED;

nevl;

—> min . Unlike the problem of the previous point, only
the initial vertex z, and final vertex Z, of the path are

specified.

Take into account that the chosen graph representation
allows for each node to be adjacent to four other nodes at
most. A node is shown as an intersection of two lines
Str1 and Szr2 .

Lemma 2. Let:

x=StrINStr2, y = Str3n Str4 (with the order

precision of Szl w0 Str2, Str3 u Stra)-
The nodes x and y are adjacent only when the matrix

) or

S S, ..

Agrrpers has the following row:
(ASTREETS )i = (Sl S, 8 S,
(ASTREETS )_/ = (S3 Sy
Lemma 3. Let:
x = Strl m Str2 ,
z = Str5s N Stré6

Strl u Str2, Str3 u Strd, Str5 u Stré).
In the graph G (z, )there is a path (x, y, =), where

v =S8Str3Str4
(with the order precision of

x u y, y and z are adjacent
following conditions are fulfilled:
Case 1)

{Str1,Str2}  {Str3, Stra}  {Str5,81r6} £ 0 ;

The initial data are given in the following rows of the

nodes only when the

matrix  Agqpeere

(ASTREETS)[ Z(Sl S, S S,
(241), # 0;

L) (48) =1
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(ASTREETS)j:(S3 Sy S5 S )
(241), =0

Case 2)
{Str1, Str2}  {Str3, Stra} ~ {Str5,5tr6} # 0 ;

The initial data are given in the following rows of the

matrix Agqpeere

(ASTREETS)i Z(S3 Sy S5, ) >
(AB1), # 0

A =S, S, S, S, .. :

J

( STREETS) ( 5 6 3 4 ) >
(4B1), = 0;

Case 3)

{Str1, Str2} {Str3,Strd ) {Str5,Str6} # 0;

The initial data are given in the following rows of the

(BS) =1

matrix Agppers -

(ASTREETS ),‘ = (Sl S2 S3 S4 ) 5 (AS)I = 1 ;
(241), = 0;

(ASTREETS)]' =(S; S S5 8, .) :
(4B1), = 0;

Case 4)

{Str1,Str2} N {Str3,Stra4} ~ {Str5,5tr6} = 0;
The initial data are given in the following rows of the

matrix  Agqpeere

(ASTREETS)i = (S3 S4 Sl S2 ), (BS)[ =1;
(AB1), % 0

(ASTREETS)/' = (S3 S, S5 S )
(241), % 0;

Case 5)

{Str1,Str2} N {Str3, Str4} ~ {Str5, Str6} = 0
{Str1,Str2} {Str3,Strd} = 0;
The initial data are given in the following rows of the

matrix Agppeere

(ASTREETS),- = (SI S, § S, ), (AR)I. =1;
(141), % 0;

(ASTREETS)j = (S3 S, S S ) ;
(A41), #0;

Case 6)

{Str1, Str2} N {Str3, Strd}  {Str5,Str6} = 0
{Str1,Str2} ~ {Str3,Strd} = 0 ;

The initial data are given in the following rows of the
matrix Agppers

(ASTREETS)iZ(S3 S, S S, )’
(AB1), # 0

(BR)i =1;

(ASTREETS)j = (Ss Ss S5 S, )
(4B1), #0;

Case 7)

{Str1,Str2}  {Str3,Stra}~ {Str5,Str6} = 0
{Str1,Str2} N {Str3,Strd} # 0;

The initial data are given in the following rows of the

matrix Agpeers -

(ASTREETS)i = (Sl S, S S, ) ’
(241), # 0;

(ASTREETS )_j = (Ss S S5 S, ) g
(4B1), = 0;

Case 8)

{Str1,Str2} N {Str3,Str4}  {Str5,Str6} = 0 ;
{Str1, Str2} " {Str3,Stra} = 0 ;

The initial data are given in the following rows of the

(AR)i =1;

matrix A

STREETS
(ASTREETS)i = (S3 S, S S, ), (BR),- =1;
(AB1), 2 0;
(ASTREETS )j = (S3 S, S S ) ;
(441), #0;
Case 9)

{Str1,Str2} " {Str3,Str4} N {Str5,5tr6} = 0
{Strl, Str2} {Str3,Strd} = 0 ;
The initial data are given in the following rows of the

matrix Agpeers

(ASTREETS)i = (Sl S, 5 5, ) ’
(A41), #0;

(ASTREETS )j = (S3 Sy S5 S ) ;
(241), % 0;

Case 10)

{Str1,Str2} ~ {Str3,Stra}  {Str5,Stré6} = 0 ;
{Str1,Str2} {Str3,Strd4} = 0;

The initial data are given in the following rows of the

(AL) =1;

matrix ASTREETS :

(ASTREETS)i = (S3 S, S S, ), (BL)I, =1;
(4B1), = 0

(ASTREETS)j = (Ss S Sy S, ) ;
(4B1), #0;

Case 11)

{Str1, Str2} ~{Str3,Stra} N {Str5,Str6} =0
{Str1,Str2} N {Str3,Strd} # 0;
The initial data are given in the following rows of the

matrix Agpeers
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(ASTREETS )i =(Sl S, S, S, ), (AL)[ =1;
(241), 2 0;

(ASTREETS)/' = (Ss Se S; S, ) ;
(4B1), #0;

Case 12)

{Str1, Str2} N {Str3, Stra4}  {Str5,Str6} = 0 ;
{Str1,Str2}~{Str3,Strd4} = 0 ;
The initial data are given in the following rows of the

matrix Agppeere

(ASTREETS)i = (S3 S, S S, ), (BL)I. =1;
(AB1), #0;

(ASTREETS)j = (S3 S, S S ) ;
(A41), #0.

Each edge of the graph is assigned to the number
l(xa y) = f(x)+ ,Ll(lxy) — edge length; if the nodes are

not linked by an edge then /(x,y) = .
In the course of fulfillment of the algorithm, the graph
vertices and edges are colored and the values d(x) are

computed which equal to the shortest path from vertex s=

Z, to vertexx which only includes the colored vertices:

d(x) = min{d(x), d(y)+1(x, )} |

In our case: /(x, y) = mean travel time of requests of the
flow from vertex x to vertex y taking into account the delay
at vertex x.

The data necessary for solution to the problem will be
stored in two arrays:

MPlus — data on the nodes having permanent marks;

MMinus — data on the nodes having temporal marks.

Each element of array has the following structure:

Strl Strl
Str2 Str2
MPlus, = u MMinus, =
TimeCr TimeCr
Trassa Trassa

Strl = line along which traffic has been flowing to the
given node;

Str2 = line, intersecting Strl;

TimeCr = travel time d(x) to the given node from the
initial point of the path;

Trassa — list of the nodes passed.

Step 1. Specify the start and finish of the path. The initial
node is denoted as n = 0 in the array MPlus and 4n in the
array MMinus.

Step 2. Define all node-points adjacent to node n'"
(Lemma 1) and record their data in the array MMinus
numbered as (4n + 1), (4n + 2), (4n + 3).

If vertices are not adjacent or traffic in this direction is
banned then /(x,y) = .

Step 3. Compute the travel time from node n™ to all

Problems of Optimisation of Flows Distribution in the Network

adjacent nodes which are not recorded in the array
MMinus.

Step 4. Select the minimum element in the field
MMinus.TimeCr and record the data on a certain node in
the array MPlus numbered as (n+1). Delete the data on this
node from the array MMinus.

Step 5. Repeat Steps 2-4 until node (n+1) in the array
MPlus coincides with the end of path. Then finish
computing.

Step 6. Display the array MPlus — the list of nodes thru
which the shortest path between the two given points of
network goes.

The given algorithm is author's modification of Dijkstra’s
algorithm[3]. It is an iterative procedure where each vertex
is marked — either by a permanent mark which shows the
distance from this node to a particular node or by a
temporary mark when this distance is estimated from above.

The imp lementation of the algorithm needs n” operations
(n is a number of the graph vertices).

3.6. Deter mination of the Optimal Scheme of Flows
Distribution in the Given Network (from the Preset
Number)

Specify the sub-graph {Z” }ney to be reorganized.
Possible variants of reorganization of flow distribution in

the network are presented in the matrices (ASTREETS)i u

(BINTERSECTION )i » le K.

If reorganization is aimed at minimizing the delays at
nodes, then the criterion for optimization is he sum of nodes
weights:

/Lli({zn }neV) = Z/ui (z,).

The optimal scheme of flow distribution in the network is
the solution to the problem:

p_opt=ming > 44,(z,)¢
! nelV
ieK
If reorganization is aimed at optimization of traffic flow
along the given path (;- p) in the network, then the
weight of path, ie. the time spent on passing the given path
should be taken as target function:

1WA (2,2,)) = 2 (i (z,)+ #,(1)
iekK
neV
Jjeb;
where: fi.(z,) = weight of vertex z, (node-point) for the
flow in the given direction;
yl.(lj) = weight of edge lj for the flow in the given
direction;
D=set of edges of the path;
V =set of vertices of the path.
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Then the optimal scheme of flow distribution in the
network is the solution to the problem:

M _opt =min ,ul.(WAY(zo,zp))}

4. Conclusions

The above considered optimization problems present the
probabilistic model of traffic flow developed by the author
(e.g.[10, 13-15]). This model is based upon the hypothesis
about the Erlang time distribution for requests arriving in
succession. The adequacy of this hypothesis for traffic
flows was proved by experiments. The virtue of the
developed model is the minimal number of initial data
necessary for computing the indices of quality of the
network operation. The suggested graph representation of
network allows us to solve the problems on optimization of
traffic flows by optimal distribution in the nodes. If there
are data files for a certain road segment in the urban
transportation network organized according to the matrices

A u B

STREETS INTERSECTION °
the algorithms of solutions to these problems using
computer environment, e.g. DELPHI.

it will be easy to implement
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