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Abstract  The purpose of this article is to provide a stochastic model of network flows based on the Erlang time 
distribution for vehicles moving in succession, which allows us to describe the flows of high density. We used a graph 
representation and introduced a structure of matrices  и  to store all necessary information about 
the network flows for analytical modelling. In this paper, the classification of network nodes is given as well as the criteria 
of optimisation of flows distribution in the network nodes. We provide an algorithm of numerical method to find out the 
optimal parameters of control for the type 2 node. Using the graph representation of the model, we developed methods of 
determination of the optimal scheme of flows distribution within the network. 
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1. Introduction 
The accelerating increase in number of car owners results 

in considerable growth of traffic volume, regular traffic 
congestion and advance in the cost of motor trucking. Cities 
usually develop according to the fo llowing consistent 
pattern: at an early  stage the directions of arterial streets are 
laid but later the urban transportation infrastructure itself 
starts dictating the directional development. Therefore, 
optimal planning of networks and optimization of paths 
gain in importance. The problem of rational employment of 
already existing urban transportation networks by optimal 
organization of t raffic is also urgent. 

Mathematical models applied for analyzing transportatio
n networks vary according to the problems solved, 
mathematical apparatus, data used, and specification of 
traffic description (e.g.[1-2, 4-9, 16, 17]).The first 
macroscopic model was suggested by M. Lighthill and G. 
Whitham[8] in the middle of the last century parallel with 
the first microscopic models (‘follow-the-leader’ theory) 
which exp licit ly derived an equation of motion fo r each 
individual vehicle (А. Reshel, L. Pipes, D. Gazis and 
others).  

Frank A. Haigt[5] was the first to establish the 
mathematical investigation of traffic flow as a separate 
section of applied mathematics. At present there is 
voluminous literature on the subject. 

In order to efficiently  control urban traffic flows and  
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choose the optimal solutions of designing transportations 
networks we should consider a wide range of the flow 
features as well as the laws of impact of both external and 
internal factors on dynamic characteristics of traffic flow 
(e.g.[9],[16],[17]). The problems arise due to instability of 
traffic flow and divergence of the criteria of traffic control 
quality. The travel time for a concrete path is made up of 
the delays at intersections and the time of mot ion from one 
intersection to another. By  reducing the waiting t ime at 
intersections we could optimize the total travel t ime. 
Therefore, developing a microscopic model of 
transportation dynamics in  the nodes and estimation of their 
influence on the network flows distribution seems to be 
relevant. 

2. A Graph Representation of 
Transportation Network 

In stochastic models a t raffic flow is defined  as the result 
of interaction of vehicles on the segments of transportation 
network. A network is a graph each edge of which is 
assigned to a certain number. A flow is a certain function 
prescribed for the graph edges (e.g.[12]). In  the case studied, 
the flow in the graph is given as a function of density of 
arrival d istribution (arrival times of service requests). 

We hold that time intervals distribution in each customer 
flow (channel) obeying the Erlang distribution (e.g.[11]) is: 

.   (1) 
This law allows us to describe flows of rather high density. 

For example, the assumption of time intervals distribution 
for vehicles moving in succession according to the Erlang 
distribution is true for the intensity of 500 vehicles per hour 
on each lane. 
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We will refer to the network flows as ‘non-conflict’ if 
they are not crossed in the given sector of the network, and 
as ‘conflict’ otherwise. We will consider the node-points – 
the points of sources or consumption of informat ion and 
those of conflict flows crossing – to be the vert ices of a 
graph. The node-points are formed by crossing of 
multichannel lines. 

Let us consider a node-point (NP) in which the conflict 
flows are crossed as follows: a number of flows (the main 
ones) are freely passing the NP. The customers of the rest of 
flows (the secondary ones) are expect ing sufficient time 
intervals between arrivals of main flows in order to cross 
the NP. We will call such a node-point a ‘type 1 node’, as 
in[10, 13, 15]. 

We will call a node-point in which traffic is alternately 
blocked fo r one o f the non conflict  flow group fo r a fixed 
time to enable crossing a ‘type 2 node’, as in[10, 13, 15]. 

Let: 
 = set of graph edges, 

 = set of nodes.  
Then, a edge is part of a multichannel line between two  

nodes. Assign the identificat ion numbers , 

 to the lines. Then . 

And the graph could be given as the following combined 
matrices: 

2.1.   

where 
1) № = number of the matrix line  corresponding to the number of the graph edge linking Nodes 1 and 2 (the 

number of lines equals the number of edges); 
2) S1 и S2 = intersected lines forming Node 1;  
3) S3 и S4 – intersected lines forming Node 2;  
4) C = node type; 
5) Pr = priority (main or secondary line); 
6) L = length of edge; 
7) Col = number of flows on the edge; 
8) AL = admissibility of turn ing to the left from Direction A at Node 1; 
9) AS = admissibility of d irect motion from Direction A at Node 2;  
10) AR = admissibility of turn ing to the right from Direction A at Node 2;  
11)λА1, λА2, etc. = parameter λ in Direct ion А; 
12) kA1, kA2, etc. = parameter k in Direct ion А; 
13) BL = admissibility of turning to the left from Direction B at Node 1;  
14) BS = admissibility of d irect motion from Direction B at Node 1;  
15) BR = admissibility of turning to the left from Direction B at Node 1;  
16)λ1, λВ2 etc. = parameter λ in Direction B;  
17) kB1, kB2 etc. = parameter k in Direction В.  

2.2.   

where 
1) The line number is the number of the edge connecting the type 1 and 2 nodes  in the matrix ;  
2) S1 и S2 = intersected lines forming Node 1;  
3) λ Cline1, λCline2 etc. = parameter λ of flows arriv ing at Node 1 in Direct ion C of the line crossing the given edge in 

Node 1;  
4) kC line1, kC line2 etc. = parameter k of flows arriv ing at Node 1 in Direction C of the line crossing the given edge in 

Node 1;  
5) λ D line1, λD line2 etc. = parameter λ of flows arriv ing at Node 1 in Direction D of the line crossing the given edge in 

Node 1;  
6) kD line1, kD line2 etc. = parameter k of flows arriving  at Node 1 in  Direction C of the line crossing the given edge in 

Node 1.  
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3. Optimisation of Flows Distribution in 
the Network 

3.1. Determination of the Optimal Flow Distribution in a 
Node 

Let us consider the following problem: we must find out 
the optimal distribution of flows for a g iven node 

 from the known methods of the set 

. 
Depending on the aim pursued the criteria of 

optimization can be: 
1)  = weight of the vertex  (node-point) for 

the flow of the given direct ion; 
2)  = weight of the vertex ; 

3) = mean delay  of request in the chosen 
directions. 

For the type 1 node: 

1) , where М = set of chosen 

directions; 

2)  , where  = set of all 

directions; 

3) , where М = set of 

chosen directions. 
Here we used the following notation (as in[10]):  

= mean delay (seconds) at a node of one request of a 
secondary direction with λ and k  parameters of distribution: 

For the type 2 node: 

1) , where М = set of 

chosen directions, ; 

2) ; 

3) , where М = set of 

chosen directions, . 

Here we used the following notations (as in[10]): 

 (requests per second) = the total 

delay of all requests of a given flow for one regulated cycle 
 ;  

 = number of requests arriving at a given point of 
road for the time interval (0; t). 

Let: the g iven vertex (node-point)  
(with the order precision of ). The 
informat ion about incoming flows is given in he matrices 

 and .  
Lemma 1. The Erlang distribution parameters for 

incoming flows of the vertex  are 
given: 

1) in the matrix  in the line 

– in 
Direction В; 

2) in the matrix  in the line 

 in Directions С and D; 

3) in the matrix  in the line 

 – in 

Direction A.  
The optimal flow distribution in  the node is the solution 

to the problem (depending on the pursued objective): 
1) ; 

2) ; 

3) . 

3.2. Selection of the Optimal Parameters of the Type 2 
Node Operation 

Let us set the following task of optimization of the type 2 
node operation: to minimize the total hour delay of all 
requests  in the given node on condition of absence 
of congestion for each flow: 

, ;      (2) 

, ,     (3) 

where  = number of flows of Line №1;  = number 
of flows of Line №2. It is necessary also to fulfill the 
condition: , where М = the minimum t ime 
(seconds) necessary for a request to pass the type 2 node.  

The problem of mathematical (non-linear) programming 
is: 

   (4) 
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            (5) 

The results obtained are the optimal values of operation 
parameters . 

Specify the algorithm of numerical solution to the 
problem (4-5) as a relaxation process – the process of 
construction of successive approximations 

 for which  и 

.  
Step 1. Specify initial values:  

 

and 

  ;  

and the values for fulfillment of the algorithm 
; ; . 

Step 2. Find numerically (for example, by half-div ision 

method) the solution  to the equation 

, meeting the condition: 

.  

Step 3. Check the fu lfillment of other inequalit ies of the 
system with restrictions:   

, ; 

, ,. 

Step 4. If the conditions of Step 3 are fulfilled, compute 
 and go to Step 5. If the conditions of Step 3 

are not fulfilled, then find numerically (for example, by 

half-d ivision method) the solution  to the equation 

, meeting the condition: 

; check the fulfillment of other inequalities of the 

system with restrictions: 

, ; 

, . 

Then compute  and go to Step 5. 

Step 5. Assume  (in itial value ) and find numerically the solution  to the equation:  

 

The new value . 

Step 6. Repeat Steps 2-4 until . 
The author has proved that the successive approximations meet the conditions of convergence with the optimal solution 

: 

. 
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3.3. Determination of the Critical Values of the Erlang 
Distribution Parameters for the Type 2 Node 

As stated above, there is no congestion in the type 2 node 
under certain conditions (2-3). In the case where time 
intervals are distributed according to Erlang law (1), the 
given conditions are identical with the following inequality 
system:  

(6) 

Since , the approximate 

solution to the system for λ  parameter (with k parameter 
being known) is: 

 (7) 

If necessary, the value of λ parameter of the Erlang 
distribution for each flow preventing congestion in the type 
2 node can be found numerically  with any precision by 
solving the equation: 

 или .  (8) 

3.4. Selection of the Optimal Path for Flows in the Given 
Network (from the Preset Number) 

Assume there are a limited number of certain routs 
, from the node  to the 

node  given by enumeration of nodes in the order of 
their passing by the flow requests. 

Let the optimizat ion criterion be the following function: 

=weight of path, i. e.  t ime spent on passing the given path, 
where  = weight of the vertex   (node-point)for 
the flow of the given direct ion;; 

 = weight of the edge  for the flow of the given 

direction;; 

= set of edges of the path 

; 

= set of nodes of the path 

. 

Then the optimal path is determined by the solution to the 
following problem: 

 

Information about the network necessary for computation 
is given in  two connected matrices  и 

. 

3.5. Determination of the Optimal Path Between Two 
Nodes 

Let  us set the following task : to find the path from the 
vertex  to the vertex , meet ing condition: 

. Unlike the problem of the previous point, only 
the initial vertex  and final vertex  of the path are 
specified. 

Take into account that the chosen graph representation 
allows for each node to be adjacent to four other nodes at 
most. A node is shown as an intersection of two lines 

 and .  
Lemma 2. Let : 

,  (with the order 
precision of , ). 

The nodes х and у are adjacent  only when the matrix 
 has the following row:  

 or 

. 

Lemma 3. Let : 
, , 

 (with the order precision of 
, , ). 

In the graph there is a path , where 
х и у, у  and z are  adjacent  nodes only when the 
following conditions are fulfilled: 

Case 1) 
 ; 
The in itial data are g iven in  the fo llowing rows of the 

matrix : 

; ;

; 
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;  

 
Case 2) 

; 
The in itial data are g iven in  the fo llowing rows of the 

matrix : 

; ;

 

; 

; 
Case 3) 
 ; 
The in itial data are g iven in  the fo llowing rows of the 

matrix : 

;  ;

; 

; 

; 
Case 4) 
 ; 
The in itial data are g iven in  the fo llowing rows of the 

matrix : 

;  ;

; 

; 

; 
Case 5) 
 ; 

; 
The in itial data are g iven in  the fo llowing rows of the 

matrix : 

;  ;

; 

; 

; 
Case 6)  

; 
; 

The in itial data are g iven in  the fo llowing rows of the 
matrix : 

;  ;

 

; 

; 
Case 7) 

; 
; 

The in itial data are g iven in  the fo llowing rows of the 
matrix : 

;  ;

; 

; 

; 
Case 8) 

; 
; 

The in itial data are g iven in  the fo llowing rows of the 
matrix : 

;  ;

; 

; 

; 
Case 9) 
 ; 

; 
The in itial data are g iven in  the fo llowing rows of the 

matrix : 

;  ;

; 

;  

; 
Case 10)  

; 
; 

The in itial data are g iven in  the fo llowing rows of the 
matrix : 

;  ;

 

; 

; 
Case 11) 
 ; 

; 
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( ) 01 ≠jBλ

{ } { } { } 06,54,32,1 =∩∩ StrStrStrStrStrStr
{ } { } 04,32,1 ≠∩ StrStrStrStr
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;  ;

; 

; 

; 
Case 12)  

; 
; 

The in itial data are g iven in  the fo llowing rows of the 
matrix : 

;  ;

; 

; 

. 
Each edge of the graph is assigned to the number 

 – edge length; if the nodes are 
not linked by an edge then l(x,y) = ∞.  

In the course of fulfillment of the algorithm, the graph 
vertices and edges are colored and the values d(x) are 
computed which equal to the shortest path from vertex s=

 to vertex х which only includes the colored vertices: 

.  
In our case: l(x, y) = mean travel time of requests of the 

flow from vertex x  to vertex y  taking into account the delay 
at vertex х. 

The data necessary for solution to the problem will be 
stored in two arrays: 

MPlus – data on the nodes having permanent marks; 
MMinus – data on the nodes having temporal marks. 
Each element of array has the following structure:  

  и  

Str1 = line along which traffic has been flowing to the 
given node; 

Str2 = line, intersecting Str1;  
TimeCr = travel t ime d(x) to the given node from the 

initial po int of the path; 
Trassa – list of the nodes passed. 
Step 1. Specify the start and finish of the path. The initial 

node is denoted as n = 0 in the array MPlus and 4n in the 
array MMinus.  

Step 2. Define all node-points adjacent to node nth 
(Lemma 1) and record their data in the array MMinus 
numbered as (4n + 1), (4n + 2), (4n + 3).  

If vertices are not adjacent or traffic in this direction is 
banned then l(x,y) = ∞.  

Step 3. Compute the travel time from node nth to all 

adjacent  nodes which are not recorded in the array 
MMinus. 

Step 4. Select the min imum element in the field  
MMinus.TimeCr and record the data on a certain node in 
the array MPlus numbered as (n+1). Delete the data on this 
node from the array MMinus.  

Step 5. Repeat Steps 2-4 until node (n+1) in  the array  
MPlus coincides with the end of path. Then fin ish 
computing.  

Step 6. Display the array MPlus  – the list of nodes thru 
which the shortest path between the two given points of 
network goes.  

The given algorithm is author's modification of Dijkstra’s 
algorithm[3]. It is an iterative procedure where each vertex 
is marked – either by a permanent mark which shows the 
distance from th is node to a particular node or by a 
temporary mark when this distance is estimated from above. 

The implementation of the algorithm needs n2 operations 
(n is a number of the graph vertices). 

3.6. Determination of the Optimal Scheme of Flows 
Distribution in the Given Network (from the Preset 
Number) 

Specify the sub-graph  to be reorganized. 
Possible variants of reorganizat ion of flow distribution in 
the network are presented in the matrices  и 

, .  
If reorganization is aimed at minimizing the delays at 

nodes, then the criterion for optimization is he sum of nodes 
weights: 

. 

The optimal scheme of flow d istribution in the network is 
the solution to the problem: 

. 

If reorganization is aimed  at optimization of traffic flow 
along the given path  in the network, then the 
weight of path, i.e. the t ime spent on passing the given path 
should be taken as target function: 

  

where:  = weight of vertex  (node-point) for the 
flow in the g iven direction; 

 = weight of edge  for the flow in the given 
direction; 

= set of edges of the path; 
= set of vertices of the path. 

( ) ( )...4321 SSSSA iSTREETS = ( ) 1=iAL
( ) 01 ≠iAλ
( ) ( )...4365 SSSSA jSTREETS =

( ) 01 ≠jBλ

{ } { } { } 06,54,32,1 =∩∩ StrStrStrStrStrStr
{ } { } 04,32,1 ≠∩ StrStrStrStr

STREETSA
( ) ( )...2143 SSSSA iSTREETS = ( ) 1=iBL
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Then the optimal scheme of flow distribution in the 
network is the solution to the problem: 

 

4. Conclusions 
The above considered optimization problems present the 

probabilistic model of traffic flow developed by the author 
(e.g.[10, 13-15]). This model is based upon the hypothesis 
about the Erlang time d istribution for requests arriving in 
succession. The adequacy of this hypothesis for traffic 
flows was proved by experiments. The virtue of the 
developed model is the min imal number of in itial data 
necessary for computing the indices of quality of the 
network operat ion. The suggested graph representation of 
network allows us to solve the problems on optimization of 
traffic flows by optimal distribution in the nodes. If there 
are data files for a certain road segment in the urban 
transportation network organized according to the matrices 

 и , it will be easy to implement 
the algorithms of solutions to these problems using 
computer environment, e.g. DELPHI. 
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