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Abstract  The present paper proposes the mathemat ical model of ferrofluid lubricated slider bearing with an inclined pad 
surface ( plate or pad ) including combined effects of porosity, an isotropic permeability, slip velocity at both the ends, and 
squeeze velocity under an oblique magnetic field. From the Reynolds’s equation of the above model, expressions for bearing 
characteristics like load capacity, frict ion on moving slider, coefficient of friction and centre of pressure are obtained which 
can be solved numerically to examine the exploration of its possible effects on the system. Various sizes of the porous matrix 
at both the ends are also discussed for the possible optimization of the bearing characteristics. 
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1. Introduction 
Ferrofluid  or Magnetic fluid [1] are stable collo idal 

suspensions containing fine ferromagnetic part icles 
dispersing in a liquid, called carrier liquid ( in our case 
water ), in which  a surfactant is added to generate a coating 
layer p reventing the flocculation of the particles. When an 
external magnetic field  is applied, ferrofluids experience 
magnetic body forces depends upon the magnetization of 
ferromagnetic part icles. Owing to these features ferroflu ids 
are useful in many applications like in sensors, sealing 
devices, filtering apparatus, etc.[2,3]. 

Wu[4] in an innovative analysis , dealt with the case of 
squeeze film behaviour for porous annular disks in which he 
showed that owing to the fact that fluid can flow through the 
porous material as well as through the space between the 
bounding surfaces, the performance of a porous walled 
squeeze film can differ substantially from that of a solid 
walled squeeze film. Later[5] extended the above analysis[4] 
by introducing the effect of velocity slip to porous walled 
squeeze film with porous matrix appeared in the above plate. 
They found that the load capacity decreases due to the effect 
of porosity and slip. Prakash and Vij[6] investigated a porous  
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inclined slider bearing without the effect of magnetic flu id 
and found that porosity caused decrease in the load capacity 
and friction, while it increased the coefficient of frict ion. 
Gupta and Bhat[7] found that the load capacity and friction 
could be increased by using a transverse magnetic field on 
the bearing and a conducting lubricant. 

With the advent of ferrofluid, Agrawal[8] studied its 
effects on a porous inclined bearing and found that the 
magnetizing of particles in the lubricant increased its load 
capacity without affecting the friction on the moving slider. 
Recently, many authors[9-17] have analysed effects of 
ferrofluid  as lubricant in their study and found the increase of 
efficiency of the bearing performance over conventional 
from d ifferent viewpoints. 

In all above investigations, none of the authors considered 
both the porous plates in their study. The porous layer in the 
bearing is considered because of its advantageous property 
of self lubricat ion. With this motivation the study of 
behaviour of an inclined slider bearing with the porous 
matrix attached to both the plates (that is upper and lower) is 
proposed here with a ferroflu id lubricant under a magnetic 
field oblique to the lower surface. A lso, effects of slip 
velocity and anisotropic permeability at  both the porous 
plates, as well as squeeze velocity when the upper plate 
approaches to lower one are included. The ferrofluid flow 
model considered here is due to R. E. Rosensweig[1]. 

A ferro flu id lubrication model is derived for the above 
problem and the various sizes of upper and lower porous 
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matrix is considered for computation of various bearing 
characteristics like load capacity, frict ion, coefficient of 
friction and center of pressures. Also, above characteristics 
have been computed for two different cases of anisotropic 
permeabilities at upper and lower porous matrix. The 
ferrofluid used in the computations are water based. 

2. Formulation of the Mathematical 
Model  

A schematic d iagram of the system under study is 
presented in Fig.1 consists of a ferrofluid film of thickness h 
within an inclined pad surface ( stator ) and a slider of length 
A  in the x-direct ion and width B in y-d irection, A<< B. The 
value of h is h2 at the inlet and h1 at the outlet. This film 
thickness h is given by 

2 2 1( ) /h h h h x A= − − .                (1) 
The slider and stator both have attached porous matrix of 

thickness l2 and l1 ( metres ) respectively. Both the porous 
matrix are backed by a solid wall. The slider moves with a 
uniform velocity U in the x-d irect ion. Also, stator moves 
normally towards the slider with a uniform velocity

/h dh dt
•

= , where t is time in seconds. 
The basic flow equations governing the above 

phenomenon based on R. E.  Rosensweig model are given 
by[13]  

, (2) 

,                     (3) 

,                    (4) 

  ,                     (5) 
,                (6) 

where 0,  ,  ,  ,  , ,  ,  pρ η µ µq M H  are density, film 
pressure, fluid  viscosity, flu id velocity, free space 
permeability, the magnetizat ion vector, magnetic field vector 
and magnetic susceptibility respectively. 

By combining above equations (2) to (6) under the usual 
assumption of lubrication, neglecting inertia  terms and that 
the derivatives of velocities across the film predominate, 
one- dimensional equation governing the lubricant flow in 
the film region yields 

2
2

02

1 1
2 

u p H
xz

µ µ
η

∂ ∂  = − ∂∂  
,        (7) 

where u  is the film fluid  velocity in the x-direction and H is 
the magnetic field strength. 

Solving equation (7) under the slip boundary conditions 
given by Sparrow et.al.[5] and modified by Shah et.al.[14] 
with the addition of slider velocity U to[5] 

 when ,  when 

 ,               (8) 
where  

, ;  ( i =1,2), 

being  slip parameter , are porosities in the x- 

direction and are permeabilit ies in the x- direction in 
the porous region, yields 

 
Figure 1.  Slider bearing with inclined pad surface 
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where  

1 2 1 2 .s s s hs s= + +     
Substituting the above value of u in the integral form of continuity equation 

0
0

  0,
h

hu dz w w
x
∂

+ − =
∂ ∫                                             (10) 

where w is the axial component of the fluid velocity in the film, one obtains 

3 23
21 2 2 1 2

0 0
2 2 2

1 1 1 1 1 0.
6 2 2 2 2 2 h

s s h s h s s hUh h h hp H w w
x s s s s x s s

µ µ
η

       ∂ ∂   − + − + − + + + − =        ∂ ∂           
 (11) 

Using Darcy’s law, the velocity components of the fluid in the porous matrix are given as follow: 
For upper porous region: 

2
1 0

1
2

xu P H
x

ψ
µ µ

η
∂  = − − ∂  

 ( in x – d irection ),                             (12) 

2
1 0

1
2

zw P H
z

ψ
µ µ

η
∂  = − − ∂    

( in z – d irection ),                             (13) 

where ,x zψ ψ are fluid permeabilit ies  in the upper porous region in x and z direction respectively, and P is the fluid 
pressure in the porous region. 

For lower porous region: 

2
2 0

1
2

xu P H
x

ϕ
µ µ

η
∂  = − − ∂  

 ( in x – d irection ),                             (14) 

2
2 0

1
2

zw P H
z

ϕ
µ µ

η
∂  = − − ∂    

( in z – d irection ),                             (15) 

where ,x zϕ ϕ  are fluid permeabilities in the lower porous region in x and z direction respectively, and P is the fluid pressure 
in the porous region. 

Substituting equations (12) and (13) in the continuity equation for upper porous region 

1 1 0
u w
x z

∂ ∂
+ =

∂ ∂
 ,                                                  (16) 

yields 
2 2

2 2
0 02 2

1 1 0
2 2

x zP H P H
x z

ψ ψ
µ µ µ µ

η η
∂ ∂   − + − =   ∂ ∂   

,                       (17) 

which on integration with respect to z across the upper porous matrix ( h, h+l1 ), one obtains 
2

2 2
0 0 12

1 1
2 2

xz

z h

P H p H l
z x

ψψ µ µ µ µ
η η=

∂ ∂   − = −   ∂ ∂   
,                       (18) 

using Morgan-Cameron approximat ion[6,11] and that the surface 1z h l= +  is non-porous.  
Substituting equations (14) and (15) in the continuity equation for lower porous region 

2 2 0
u w
x z

∂ ∂
+ =

∂ ∂
,                                                  (19) 

yields 
2 2

2 2
0 02 2

1 1 0
2 2

x zP H P H
x z

ϕ ϕ
µ µ µ µ

η η
∂ ∂   − + − =   ∂ ∂   

,                          (20) 

which on integration with respect to z across the lower porous matrix ( −  l2, 0 ), one obtains 
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2
2 2

0 0 22
0

1 1
2 2

xz

z

P H p H l
z x

ϕϕ µ µ µ µ
η η=

∂ ∂   − = − −   ∂ ∂   
,                            (21) 

using Morgan-Cameron approximat ion[6,11] and that the surface 2z l= −  is non-porous. 
Considering the normal component of velocity across the film porous interface are continuous, so that 

1 0 2 + ,   hw h w w w
•

= = , equations (18), (21) and (11) yields 

2
0

1
2

fg p H
x x x

µ µ∂  ∂  ∂ − =  ∂ ∂ ∂  
,                                       (22) 

where 

2 2
1 2 1 2 1

1 (12 4 4 ) 12 ( )
12 x xg h hs hs h s s s l l

s
ψ ϕ

η
 = + + + + +  , 1

2(2 )
2

s Uh
f hs x h

s

•

= + + , 

which is the Reynolds’s type equation for the considered  
phenomenon. 

Here, magnetic field is considered to be vanish at the inlet 
and outlet of the bearing and inclined at an angle φ  with the 
x-axis. Thus,  

( )(cos ,0,sin ),     ( , )H x x zφ φ φ φ= =H ,   (23) 
and  

2 ( )H Kx A x= − ,                  (24) 
where K being a quantity chosen to suit the dimensions of 
both sides of equation (24).  

Such a magnetic field attains a maximum at the middle of 
the bearing producing magnetic pressure. On the other hand 
a constant field cannot produce magnetic pressure because  
(d / dx) H2 = 0. The direct ion of the magnetic field  is 
significant since H  has to satisfy the equations 

0∇ • =H , 0∇× =H ,              (25) 
so H  arises out of a potential and φ  satisfies the equation 

2

2cos
2( )

A x
x z Ax x
φ φφ ∂ ∂ −
+ = −

∂ ∂ −
,        (26) 

whose solution is determined from equations 
2 2 2cosec ( )C Ax xφ = − ,     

2 2 1/ 2(2 ) [ 4sin( )] ,C x A C A Cz− = −    (27) 
C being an arbitrary constant. 

Introducing the dimensionless quantities 
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= , 
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equations (1) and (24) implies respectively 

2

1

( 1) ,  0 X 1 ;  ,
h

h a a X a
h

= − − ≤ ≤ =  

and  

2 2 (1 )H KA X X= − . 
Also, equation (22) transforms to 

1 (1 )
2

d d dEG p X X
dX dX dX

µ∗  − − =    
,   (28) 

where 
2 2

1 21 2 1 2(12 4  4   ) 12 ( )x xG h h s h s h s s s l lψ ϕ= + + + + +

1 26 6  (2  ).E SsX s h h s= − + +
 

Equation (28) is known as dimensionless Reynolds’s 
equation.  

3. Expressions of Bearing 
Characteristics 

Since the pressure is neglig ible on the boundaries of the 
slider bearing compared to inside pressure, solving equation 
(28) under boundary conditions 0p =  when 0,1X = . 

The dimensionless film pressure p  is obtained as: 

0

1 (1 )
2

X E Qp X X dX
G

µ∗ −
= − + ∫ , 

where  
1

0
1

0

1

E dX
G

Q
dX

G

=
∫

∫

. 

The load carrying  capacity W , friction on the moving 
slider F, coefficient of friction f and the  x- coordinate of the 
centre of pressure X  are expressed respectively in 
dimensionless forms as 

12
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where   
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B A B A

z

uW p dxdy F dxdy
z

η
=
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4. Calculation of Results  
The various bearing characteristics like load capacity, 

frictional force on the moving slider, the coefficient of 
friction and x- coordinate of centre of pressure are computed 
for various sizes of upper and lower porous matrix for    

xϕ = 0.00001(m2), xψ = 0.001(m2) and for xϕ  = 0.001(m2), 

xψ  = 0.00001(m2), using Simpson’s one third rule with step 
size 0.1, for the fo llowing values of the parameters : 

0.64xη = , 0.81xm = ,
7

0 4 10µ π −= × (kgms-2A-2),

0.05µ = , 910K = (A2m-4), 0.15A = (m), 1 0.05h =

(m), 0.012η = ( kgm-1s-1), 1.0U = (ms-1), 0.005h
•

= −  

(ms-1), 2.0a = (m). 

5. Discussion of Results  
The mathematical model o f water based ferrofluid  

lubricated slider bearing with an inclined pad surface 
including combined effects of porosity, anisotropic 
permeability, slip velocity at both the ends, and squeeze 
velocity is proposed under an oblique magnetic field. The 
results of various bearing characteristics ( refer Section 3 ) 
are obtained for the various values of the parameters ( refer 
Section 4 ) are presented graphically as follows: 

From the Figs. 2-9 the following observations are made: 

 

Figure 2.  Dimensionless load capacity  for various values of  

and  for = 0.00001, = 0.001 

 
Figure 3.  Dimensionless load capacity  for various values of  

and for = 0.001, = 0.00001 

 
Figure 4.  Dimensionless friction force on the moving slider  for 

various values of  and  for   = 0.00001, = 0.001 

 

Figure 5.  Dimensionless friction force on the moving slider  for 

various values of  and for = 0.001, = 0.00001 

(1) In Figs. 2 and 3, the d imensionless load capacity 

for various values of lower  porous matrix  and values 

of upper  porous matrix  are d isplayed for the constant 

values of = 0.00001, = 0.001 and = 0.001, = 
0.00001, respectively. 
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Figure 6.  Dimensionless coefficient of friction  for various values of 

 and for = 0.00001, = 0.001 

 

Figure 7.  Dimensionless coefficient of friction  for various values of 

 and for = 0.001, = 0.00001 

 
Figure 8.  Dimensionless the x –ordinate of the centre of pressure for 

various values of  and  for   = 0.00001, = 0.001 

 
Figure 9.  Dimensionless the x –ordinate of the centre of pressure  for 

various values of 
 

and 
 

for = 0.001, = 0.00001 

It is observed from the Fig.2 that the dimensionless load 
capacity decreases with the increase of porous matrix 
thickness  as well as .The decrease rate of load  

capacity is slow with respect to . It is observed from 
Fig.3 that, the dimensionless load capacity decreases with 

respect to but its behaviour is almost remains same with 

respect to . The maximum d imensionless load capacity is 

obtained when = = 0 but with the d isadvantage that 
the bearing has no self lubricating property. This behaviour 
of decrease in load capacity with the insertion of porous 
matrix also agrees with the conclusions of[5,6]. According 
to[5] the above trends for squeeze film bearing can be 
obtained because of the physical process as under : 

The presence of the porous medium provides a path for the 
flu id to come out easily form the slider bearing to the 
environment. The higher the permeability, the more readily 
does flu id flow through the porous material. Thus, the 
presence of the porous material decreases the resistance to 
flow in x – direction and as a consequence the load carrying 
capacity is reduced. The effect of velocity slip  is to decrease 
the resistance encountered by the fluid flowing in the gap 
itself and, by this means, to diminish the load carrying 
capacity. 
(2) In Figs. 4 and 5, the dimensionless friction force on the 
moving slider F  for various values of lower porous matrix 

2l  and values of upper porous matrix 1l  are d isplayed for 
the constant values of xϕ = 0.00001, xψ = 0.001 and xϕ = 
0.001, xψ = 0.00001, respectively.  

It is observed that the same behaviour is obtained for F
as we have discussed in (1) for W  with respect to 1l  and 

2l . 
(3) In Figs. 6 and 7, the dimensionless coefficient of 

friction f  for various values of lower  porous matrix 2l  
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and the values of upper matrix 1l are displayed for the 

constant values of xϕ = 0.00001, xψ = 0.001 and xϕ = 

0.001, xψ = 0.00001, respectively.  

It is observed that f  increase with the increase of 1l and 

2l . 
(4) In Figs. 8 and 9, the dimensionless x – coordinate of the 
centre of pressure Y  for various values of lower porous 

matrix 2l  and  the values of upper  porous matrix 1l  are 

displayed for the constant values of xϕ = 0.00001, xψ = 

0.001 and xϕ = 0.001, xψ = 0.00001, respectively. 
It is observed that the position of the centre of pressure 

does not affect much with respect to 1l  and 2l . 
Also, one can obtain the following cases for the specific 

values of the parameters: 

(a) When l1= 0, h
•

= 0, the case of[12] is obtained from 

equation (28) as  

1 (1 ) ,
2

d d dEG p X X
dX dX dX

µ∗  − − =    
  

where 
2 2

21 2 1 2(12 4  4   ) 12  ,xG h h s h s h s s s lϕ= + + + +

1 26  (2  ).E s h h s= +
 

(b) When µ∗=0, the non- ferroflu id case[6] is obtained   
from equation (28) as 

d d p dEG
dX dX dX

 
= 

 
, 

where 
2 2

1 21 2 1 2(12 4  4   ) 12 ( ),x xG h h s h s h s s s l lψ ϕ= + + + + +

1 26 6  (2  ).E SsX s h h s= − + +
 

6. Conclusions  
The present paper proposes the mathemat ical model of 

water based ferrofluid lubricated slider bearing with an 
inclined pad surface includ ing combined effects of porosity, 
anisotropic permeability, slip velocity at both the ends, and 
squeeze velocity under an oblique magnetic field. The results 
of various bearing characteristics are presented graphically.  

The porous layer in the bearing is considered because of 
its advantageous property of self lubrication. With this 
motivation the present study is proposed.  

Based upon the formulation in Sect ion 2, and Results & 
discussion ( Section 4 and 5 ) the fo llowing conclusions can 
be made for designing slider bearing: 

(1) Because of having the self lubrication property of the 
porous plate bearings, it is suggested to have both the porous 

plate for better self lubrication. 
(2) Better load capacity is obtained when the thickness of 

l1 and l2 are small. 
(3) Small thickness of l2 has more influence on better load 

capacity when l1= 0 and xϕ = 0.00001, xψ = 0.001 . 
(4) Small thickness of l1 has more influence on better load 

capacity when l2= 0 and xϕ = 0.001, xψ = 0.00001 . 
(5) It should be noted that a constant magnetic field does 

not enhance the bearing characteristics in this model due to 
Rosensweig since /H x∂ ∂  = 0 in equation (7). 
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