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Abstract The problemofdeveloping a model of network operation allowing us to objectively estimate the parameters of
the network flows distribution is very relevant nowadays. A mathematical model of a multichannel communications network
operation is developed based on the Erlang time distribution for each flow. Using the methods ofrelativity theory and random
processes theory, a mathematical tool is worked out to calculate the quality parameters of the network operation organisation
for the nodes such as mean value of delay-in-queue, mean number of requests on queue. Different variants are considered in
order to satisfy specific types of node operation. The criterion of network operation optimisation is suggested.
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1. Introduction

Mathematical modelling is nowadays a universal and
cogent aid in theory and practice of various fields. This is a
major method of investigation in economic, industrial and
technological systems. Besides, mathematical modelling is a
critical instrument of estimation and control. The
optimisation of transport networks operation would not be
efficient without mathematical modelling, since conducting
natural experiments for defining various structures of
relationships within the network is either very expensive or
simply not feasible in practice.

Traffic flow modelling developed into a branch of
mathematical science in the middle of the 20" century
(e.g.[2].[3]) when the first macroscopic (hydrodynamic)
models appeared to describe traffic flows in terms ofthe flux
(M. Lighthill, G. Whitham, P. Richards), alongside with the
first microscopic models (‘follow-the-leader’ theory) which
explicitly derived an equation of motion for each individual
vehicle (A. Reshel, L. Pipes, D. Gazis and others). In the
subsequent years, the class of models was extended
(e.g.[4-7],[13-14]). At present, the macroscopic approach in
most cases describes the traffic flow using a non-linear
system of hyperbolic equations (for flow density and speed)
with diffusion. In its turn, the microscopic approach mainly
uses the models like the ‘conscious driver’ model which
describe the vehicle acceleration as a function of its speed,
the distance after the leading vehicle (the leader) and the
difference in the speeds of the leading and going after
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vehicles (M. Treiber). Though more than half-a-century have
passed since the first fundamental works on traffic flow
modelling were written, many authors agree that the
problems of congestion and pre-congestion formation have
not been completely solved (K. Nagel, H. Mahmassani, M.
Schreckenberg and others). Therefore, developing a
microscopic model of transportation dynamics in the nodes
and estimation of their influence on the network flows
distribution seems to be relevant.

2. Model of the Network Nodes
Operation

While developing our own mathematical model of the
network operation we will present it in a traditional form of
oriented graph. A network is a graph each arc of which i
assigned to a certain number. A flow is a set of homogeneous
objects (requests) sent from one node to another. A flow is, thus,
a certain function prescribed for the graph arcs. In the case
studied, the flow in the graph is given as a function of density of
arrival distribution (arrival times of'service requests).

We will refer to the network flows as ‘non-conflict’ if they
are not crossed in the given sector of the network, and as
‘conflict’ otherwise. We will consider the node-points — the
points of sources or consumption of information and those of
conflict flows crossing — to be the vertices of a graph. The
node-points are connected by multichannel lines. We will
hold that time intervals distribution in each customer flow
obeys the Erlang distribution which makes it possible to
describe high density flows.

Let:

{lj } =set of graph arcs,

{ZJ. } =set of nodes.
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Then, an arc is part of a multichannel line between two

nodes. Assign the identification numbers WAY i ,

i € N to the lines. Then STREET i= Ul/ . And the
jew

graph could be given as the following matrix:

Asreprs =

=(S, 8, S, 8, CPrLCol AL AS AR AA1 kAl..BL BS BR AB1kB1..)

where

1. S1 u S2 = intersected lines forming Node 1;

2. S3 u S4 = intersected lines forming Node 2;

3. C= node type;

4. Pr =priority (main or secondary line);

= length of arc;

6. Col=number of flows on the arc;

7. AL = admissibility of turning to the left from Direction
A at Node 1;

8. AS = admissibility of direct motion from Direction A at
Node 2;

9. AR = admissibility of tuming to the right from
Direction A at Node 2;

10.AA1, AA2,etc. =parameter A in Direction A;

11. kA1, kA 2, etc. = parameter k in Direction A;

12. BL =admissibility of turning to the left from Direction
B at Node 1;

13. BS = admissibility of direct motion from Direction B
at Node 1;

14. BR =admissibility of turning to the left from Direction
B at Node 1;

15.11, AB2 etc.= parameter A in Direction B;

16. kB1, kB2 etc. = parameter k in Direction B.

The number of lines of the matrix equals the number of arcs.
in the graph.

2.1. Model of the Type 1 Node Operation

Let us consider a node-point (NP) in which the conflict
flows are crossed. A number of flows (the main ones) are
freely passing the NP. The customers of the rest of flows (the
secondary ones) are expecting sufficient time intervals
between arrivals of main flows in order to cross the NP. We
will call such a node-point a ‘type 1 node’.

The operation of a type 1 node is a mass service system.
The service time is the waiting time for a customer of a
secondary flow to cross the necessary main flows; the queue
size is a number of customers waiting for the possibility to
continue to move; the discipline (priority) is according to the
order of arrival at the NP.

Let the service time be distributed by the exponential law
with the g/ parameter. The customer flow is distributed by

the generalised Frlang the (k+))-folded
Ags Ao

Let us take n service channels with an unlimited queue.
With the help ofthe pseudostates method, as in[9], we made

law  with
A, parameters.

a differential equation system to determine the p . .()
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probabilities of i arrivals and p, (f) probabilities of m

busy service channels:
Prui(®) = =P, () (A + np) +
+ pr(ll-?z () A+ nup,,. @)
(i=1;2;3;..).
(2,(0)), = —(A s+ mu)p,, () +
+(m+Du-p,.,+ 24,00 2
(m=1,2,...,n).

(po(t)); =—A () +up(1). (3)

S EI R P

- Uy - ,
Figure 1. Pseudostates ofthe Erlang (k+])-folded distribution

In order to determine the p,{H- (Z) possibilities of the

systemdwelling in transitive states of the U, ; subset (Fig. 1)
we will make the following differential equation system:

(P2@) ==4 P20+ 24, pY1 (1)

)
(J=12,3,...k)
The initial conditions are as follows:
po (=1, pu’=0(m=1,2,3, ..5j=L...k. (5

(In our notations pmm)—ﬂhn for all m).
The r,(t) possibility ofdwelling inthe U, state equals:

Ty (8) = Py (1) + Z py. 6)
J=1
On solving the systemfor a stationary process going on for
alongtime, we obtained the fo llowing parameters of the type
1 node operation:
1) the possibility of no more than s customers in the

queue:
noom S (g J
m 1

|
=0 ! ”-J-: n
where
1
Do =
n J n )

a’ a aln 8
o 3 @ aln . ®

=0 J! n.l_g

n

2) the mathematical expectation of arrivals:
n+l

ntn- (1 0/)2

3) the mathematical expectation of the number of busy
channels:

M(l) = bp, 9
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= o’ 1
M(N) =bp, Z—' ;

(10)
l_z
n

4) the mean number of customers serviced or expecting:

M (X) =bpgyx

n+l n+l

ool a 1 a

+
Z_:(j—l)! n!
Jj=1 1-—

a+ 2
. n!n-(l—%)

2.2. Calculation of the Mean Service Time Value in the
Type 1 Node

(11)

Let a secondary flow customer need to cross L main flows
in the type 1 node to go on moving. We assume that time
intervals in the crossed flows are distributed by the Erlang
law with the (k;, ..., kp)-folded A, 4,,...,

correspondingly. We take into account that a customer
arrives at the NP at a random moment, irrespective of other
flows customers.

By the rules of calculations of numerical parameters of
random variables functions, as in[8], we obtained the
formula for calculation of the mean waiting time for a
secondary flow customer to cross the main flows:

REE )

i=1 an

A, parameters

(12)

L ki-1
ke +1+ (kg -1) [I—R(kl -1 Toxll)‘HLl Z R(n,TO/li)D

=2 " n=0

L ki-1
24 [R(kl -1 ] L: 2. R, M)D

i=2 i n=0

X

The mean delay of one secondary flow customer at the NP
inthe flow with A wmk distribution parameters (in seconds)
is:

o-m
W, =m, M()=""=,
l-«a

(13)

where

k-1
R(k—1,48) = Z((lt)”e_h)/n!
n=0

_A 1
a_k-,u, Iu_%mz)

Ty = an acceptable interval before further movement
(sec.).

2.3. Model of the Type 2 Node Operation

Now let us consider a node-point (NP) with cruciform
intersection of conflict flows. The channel is alternately
blocked for one of the non conflict flow group for a fixed
time to enable the crossing of the NP which we call a ‘type 2
node’.
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The Erlang distribution density is as follows:
P =20 [(k=1)! (>0). 14
The k-th order Erlang distribution function is given by:

k-1
F(k)(t):l—Z((M) e_’u)/n!:
n=0
—1-R(k—1,41), (t>0)

which is the possibility of time interval between two
neighbouring events being below .

Let us find out the mean value of N; — a number of
customers arriving at the given route point for a period of
time (0, t).

We  will the  restoration

H(t)=M(N,) - the mathematical expectation of arrivals

for the ¢ time, as in[1]. The Laplace transform for this
function is:

(15)

consider function

MO
s(=17(s)

Here f*(s) — an image of time distribution function.

*

H'(s)= (16)

For the Erlang distribution:

" A
S (S):—(/Hs)k' (17)
Then:
k
H'(s) = A (18)

s(A+s) =2
For a general case of the k-folded Erlang distribution it is
necessary to consider other than zero (k-1) roots:

F=A+9)" (19)
These roots are:
s = ﬂ,-(eza% —1),
, (20)
a=123..,k-1

(where i — an imaginary unit). For each root in the Laplace
function image expansion there is a certain term:

1

- ; . (21)
s; (17 6p) s =)
Therefore, the restoration function image is:
A ll—k
H = -
(s)= kSQ Y
k-1
_ 1 = (22)
/
s, (£1(5)) (53,
_ A Mk e Aty
ks2 s 2k = S kesj(s—s;)

Hereof, with the help of charts, we can find the original, i.e.
the H(t) restoration function — the number of customers
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arriving at the given route point for a period of time (0, ¢).
For the case when the Erlang distribution order is £k=2:

I 1

At 241
Hit)y=—-—+—c¢ . (23)
® 2 4 4
For the Erlang distribution with k=3:
H(t)zﬁ_l_FLe{ilt/Zx
3 3 343
(24)
x| sin ++/3
2
If k=4:
HU):£¢—§+le4”+
g8 8 8 25

+ %eﬂ (COS(&Z‘) + Sin(lt))

The delay in the NP is the waiting time in the queue in case
when the motion in the given direction is blocked.

For a type 2 node we suggest the following calculation of
the expected total delays-in queue in the given flow for the
time 7; during which the motion in the given direction is
not allowed:

T
W(T, )= [H,(0dt, icil;2y.  (6)
0

Inter alia, if the value of the & parameter of the Erlang

distribution equals two, then

I 2
i T
W(Tnﬂ«)zj.Hl(t)dt:ﬂT L
0 4 4
(27)
o T 1
_ b
84 84
If k=3:
w(T, /1)—_T-—1T,-—Le_Ei X
3 92 %)
ATA3 . ATW3) 2
x| 2cos —sin L2
2 2 94
If k=4:
W(T, 2y <21 -7 L _
8 8 516/1 29
—-——6%200427;)+—__
164

(where A= parameter of the Erlang distribution for the
given flow, i e {1;2} ).
The mean delay-in-queue for one cycle of distribution of
one customer in the given flow is:
T =W(T, A)/H,(T),
where T=T;+T7,..
To determine the total delays for one hour we will

(30)
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consider the following cases:

1) If the number of customers arriving at the NP for one
distribution cycle is less than the number of customers
leaving the NP for the period of time during which the
motion in the given direction is allowed, the queue to this
direction will not grow and the customers will pass for one
cycle.

Let nA1 be the number of non-conflict flows in Direction
A of Line 1, 2 =the mean interval between arrivals crossing
the NP in one flow (in seconds), 14i = parameter of the
Erlang distribution for flow i o f Direction Al.

nAl

> Hy
i=l1

given direction will disappear for one cycle and the total
delays per hour will be:
nAl 1
D W, Adi) |———, (D)
i=1 ( 1 2)
T; =time (sec.) during which the motion in Direction A of
Line 1 is not allowed;
T;=time (sec.)during which the motion of flows of Line 2
is not allowed;
The similar chaining for the flows of other directions is:
2) If ZHMi (T) - 72 nA > 0, then for the period of
i=1
time during which the motion in Direction A is allowed the
queue will not disappear. In this case the mean total
delays-in-queue to the given direction for the time 7; (sec.)
can be calculated by the formula:
nAl nAl
> W (T}, A4i)+ ZHM,(T)——nAl T, (32)
i=1 i=1
And the totaldelays perhour for the given direction can be
calculated as follows:

nAl Anl
ZW(Tl,/iAz)+(ZHMI(T)—711A1] T; |x
i=1 i=1 (33)

« 1
I +T,

For the rest of directions the chaining is similar.

T.
T) - 72 nAl <0, then the queue to the

(Tz)m =

3. Efficiency of the Network Operation
Organisation

The time of motion by the given route of network is made
up of the time of motion between the two neighbouring
nodes and that of spent on passing the node. The mean time
of motion between the two neighbouring nodes is calculated
by the formula:

|
Il

) (34)

<l
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where § = distance between the two neighbouring nodes;

Vv = mean speed of motion of customers in the flow.

Due to the fact that we demanded the same initial data for
developing the mathematical model for each sector of the
network, it is possible to perform the optimisation of the
network flows distribution.

The route of motion in the network is designed by
successive enumeration of nodes of the graph. In order to
choose the optimum route, the following integrated route
efficiency parameter can be introduced:

4
K.

K= a. ——+—,

; l ( i)max

where K; = the length of route; K, = the mathematical
expectation of the congestions in the given route; K3 = the
mathematical expectation of the time spent in ‘traffic jams’,
K; = the time of motion along the given route,

a,a,,a;,a, the of the
corresponding parameters.
The significance values are defined in such a way that the
following condition is observed:
4
z a; =1.
i=l1
It is necessary to take into account the significance of each
criterion for assessment of the route quality.
The optimum route is chosen according to the following

principle: K — min.

(35)

significance values

(36)

4. Conclusions

The authors’ mathematical model of network operation
suggested in the paper is based on the Erlang arrival time
distribution. This two-parameter law allows us to describe
flows of rather high density. The fact that the model takes
into account the intensity of requests in non-conflict flows
for each direction separately extends its range of application
and enables modelling the network with reorganised
(changed) structure without collecting additional empirical
data. More detailed argued deduction of the above equations
could be seen in the works referred[ 10-12].

The relevance of the developed model of network
operation has been empirically proved in an urban
transportation network. There are a great variety of
mathematical models to calculate different quality
parameters of traffic organisation by particular data of an
urban transportation network. But each of them needs
different initial data and a change in some parameter of one
part ofnetwork requires additional investigation into ways of
calculation of traffic schemes in other parts, which
complicates optimisation processes of traffic flows in the
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network and results in increase of data collection costs. The
suggested modelis devoid of this drawback.
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