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Abstract  The problem of developing a model of network operation allowing us to objectively estimate the parameters of 
the network flows distribution is very relevant nowadays. A mathematical model of a multichannel communicat ions network 
operation is developed based on the Erlang time d istribution for each flow. Using the methods of relat ivity theory and random 
processes theory, a mathematical tool is worked out to calculate the quality parameters of the network operation organisation 
for the nodes such as mean value of delay-in-queue, mean number of requests on queue. Different variants are considered in 
order to satisfy specific types of node operation. The criterion of network operation optimisation is suggested. 
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1. Introduction 
Mathematical modelling is nowadays a universal and 

cogent aid in theory and practice of various fields. This is a 
major method of investigation in economic, industrial and 
technological systems. Besides, mathematical modelling is a 
critical instrument of estimat ion and control. The 
optimisation of transport networks operation would not be 
efficient without mathematical modelling, since conducting 
natural experiments for defining various structures of 
relationships within the network is either very expensive or 
simply not feasible in practice. 

Traffic flow modelling  developed  into a b ranch o f 
mathemat ical science in the midd le o f the 20th  centu ry 
(e.g .[2],[3]) when  the first macroscop ic (hydrodynamic) 
models appeared to describe traffic flows in terms of the flux            
(M. Lighthill, G. Whitham, P. Richards), alongside with the 
first microscopic models (‘follow-the-leader’ theory) which 
explicit ly derived an equation of mot ion for each indiv idual 
vehicle (А. Reshel, L. Pipes, D. Gazis and others). In the 
subsequent  years , the class  o f models  was  extended 
(e.g.[4-7],[13-14]). At p resent, the macroscopic approach in 
most cases describes the t raffic flow using  a non-linear 
system of hyperbolic equations (for flow density and speed) 
with diffusion. In its turn, the microscopic approach main ly 
uses the models like the ‘conscious driver’ model which 
describe the vehicle accelerat ion as a function of its speed, 
the distance after the leading vehicle (the leader) and the 
difference in  the speeds of the lead ing and  go ing  after  
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vehicles (М. Treiber). Though more than half-a-century have 
passed since the first fundamental works on traffic flow 
modelling were written, many authors agree that the 
problems of congestion and pre-congestion formation have 
not been completely solved (К. Nagel, H. Mahmassani, М. 
Schreckenberg and others). Therefore, developing a 
microscopic model of t ransportation dynamics in the nodes 
and estimation of their influence on the network flows 
distribution seems to be relevant. 

2. Model of the Network Nodes 
Operation 

While developing our own mathematical model o f the 
network operat ion we will present it in a trad itional form of 
oriented graph. A network is a graph each arc of which is 
assigned to a certain number. A flow is a set of homogeneous 
objects (requests) sent from one node to another. A flow is, thus, 
a certain function prescribed for the graph arcs. In the case 
studied, the flow in the graph is given as a function of density of 
arrival distribution (arrival times of service requests). 

We will refer to the network flows as ‘non-conflict’ if they 
are not crossed in the given sector of the network, and as 
‘conflict’ otherwise. We will consider the node-points – the 
points of sources or consumption of information and those of 
conflict flows crossing – to be the vertices of a graph. The 
node-points are connected by mult ichannel lines. We will 
hold that time intervals distribution in each customer flow 
obeys the Erlang distribution which makes it possible to 
describe high density flows. 

Let: 
{ }jl  = set of graph arcs, 

{ }jz  = set of nodes.  
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Then, an arc is part of a mult ichannel line between two 
nodes. Assign the identification numbers iWAY _ , 

Ν∈i  to the lines. Then 


Wj
jliSTREET

∈

=_ . And the 

graph could be given as the following matrix: 

( )...11...11Pr4321 kBBBRBSBLkAAARASALColLCSSSS
ASTREETS

λλ=
=  

where 
1. S1 и S2 = intersected lines forming Node 1;  
2. S3 и S4 = intersected lines forming Node 2;  
3. C =  node type; 
4. Pr = p riority (main or secondary line); 
5. L = length of arc;  
6. Col = number of flows on the arc; 
7. AL = admissibility of turning to the left from Direction 

A at Node 1;  
8. AS = admissibility of direct motion from Direction A at 

Node 2;  
9. AR = admissibility of turning to the right from 

Direction A at Node 2; 
10. λА1,  λА2, etc. = parameter λ in Direct ion А; 
11. kA1, kA2, etc. = parameter k in Direction А; 
12. BL = admissibility of turning to the left from Direction 

B at Node 1;  
13. BS = admissibility of direct motion from Direction B 

at Node 1;  
14. BR = admissibility of turning to the left from Direction 

B at Node 1;  
15. λ1,  λ В2 etc. = parameter λ in Direction B;  
16. kB1, kB2 etc. = parameter k in Direction В. 
The number of lines of the matrix equals the number of arcs. 

in the graph.  

2.1. Model of the Type 1 Node Operation 

Let us consider a node-point (NP) in which the conflict 
flows are crossed. A number of flows (the main ones) are 
freely passing the NP. The customers of the rest of flows (the 
secondary ones) are expecting sufficient t ime intervals 
between arrivals of main flows in  order to cross the NP. We 
will call such a node-point a ‘type 1 node’. 

The operation of a type 1 node is a mass service system. 
The service t ime is the waiting t ime for a customer of a 
secondary flow to cross the necessary main flows; the queue 
size is a number of customers waiting for the possibility to 
continue to move; the discipline (prio rity) is according to the 
order of arrival at the NP. 

Let the service time be d istributed by the exponential law 
with the µ  parameter. The customer flow is d istributed by 
the generalised Erlang law with the (k+l)-folded 

kλλλ ...,,, 10  parameters. 
Let us take n service channels with an unlimited queue. 

With the help of the pseudostates method, as in[9], we made 
a differential equation system to determine the )(tp in+  

probabilit ies of i  arrivals and )(tpm  probabilit ies of m 
busy service channels: 

     (1) 

    (2) 

)()())(( 100
/

0 tptptp t µλ +−= .        (3) 

 
Figure 1.  Pseudostates of the Erlang (k+l)-folded distribution 

In order to determine the )(tp j
in+  possibilities of the 

system dwelling in transitive states of the Un+i subset (Fig. 1) 
we will make the fo llowing differential equation system: 

( )
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inj
j

injt
j

in

=
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The init ial conditions are as follows: 
p0

(0)(0)=1,  pm
(j)=0 (m=1, 2, 3, …;  j=1,…, k).   (5) 

(In our notations  pm
(0)≡pm  for all m). 

The  rm(t) possibility of dwelling in the  Um state equals: 

( )

1
( ) ( )

k
j
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j
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=

= +∑ ,              (6) 

On solving the system for a stationary process going on for 
a long t ime, we obtained the fo llowing parameters of the type 
1 node operation: 

1) the possibility of no more than  s customers in the 
queue: 

0
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2) the mathematical expectation of arrivals: 
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3) the mathemat ical expectation of the number of busy 
channels: 
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4) the mean number of customers serviced or expecting: 
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2.2. Calculation of the Mean Service Time Value in the 
Type 1 Node 

Let a secondary flow customer need to cross L main flows 
in the type 1 node to go on moving.  We assume that time 
intervals in  the crossed flows are d istributed by the Erlang 
law with  the (k1, …, kL)-folded kλλλ ...,,, 10  parameters 
correspondingly. We take into account that a customer 
arrives at the NP at a random moment, irrespective of other 
flows customers. 

By the rules of calculations of numerical parameters of 
random variab les functions, as in[8], we obtained the 
formula for calculation of the mean waiting time for a 
secondary flow customer to cross the main flows:  
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The mean delay of one secondary flow customer at the NP 
in the flow with  λ  и k distribution parameters (in seconds) 
is: 
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Т0  = an acceptable interval before further movement 
(sec.). 

2.3. Model of the Type 2 Node Operation 

Now let us consider a node-point (NP) with cruciform 
intersection of conflict flows. The channel is alternately 
blocked fo r one o f the non conflict  flow group fo r a fixed 
time to enable the crossing of the NP which we call a ‘type 2 
node’. 

The Erlang distribution density is as follows: 
)0()!1()()( 1)( >−= −− tkettf tkk λλλ . (14) 

The k-th order Erlang distribution function is given by: 
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which is the possibility of time interval between two 
neighbouring events being below t.   

Let us find out the mean value of Nt – a number of 
customers arriving at the given route point for a period of 
time (0; t). 

We will consider the restoration function 
)()( tNMtH =  – the mathemat ical expectation of arrivals 

for the t time, as in[1]. The Laplace transform for this 
function is: 
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= .                (16) 

Here )(* sf  – an image o f t ime distribution function. 
For the Erlang distribution: 
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Then: 
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For a general case of the k-folded Erlang distribution it is 
necessary to consider other than zero (k-1) roots: 
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These roots are: 
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(where i – an imaginary unit). For each root in the Laplace 
function image expansion there is a certain term: 
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Therefore, the restoration function image is: 
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Hereof, with  the help of charts, we can find the orig inal, i.e.  
the )(tH  restoration function – the number of customers 
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arriving at the given route point for a period of time (0; t). 
For the case when the Erlang distribution order is  k=2: 
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For the Erlang distribution with k=3: 






















+










×

×+−= −

2
3cos3

2
3sin

33
1

3
1

3
)( 2/3

tt

ettH t

λλ

λ λ

.   (24) 

If k=4: 
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The delay in the NP is the waiting t ime in  the queue in case 
when the motion in the given direction is blocked. 

For a type 2 node we suggest the following calcu lation of 
the expected total delays-in queue in the given flow for the 
time  Тi  during which the motion in the given direction is 
not allowed: 

∫=
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Inter alia, if the value of the k  parameter of the Erlang 
distribution equals two, then 
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If 3=k : 
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If 4=k : 
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(where λ  = parameter of the Erlang distribution for the 
given flow, }2;1{∈i  ). 

The mean delay-in-queue for one cycle of distribution of 
one customer in the given flow is: 

)(),( THTWT i λλ= ,            (30) 

where  T=T1+T2.. 
To determine the total delays for one hour we will 

consider the following cases: 
1) If the number of customers arriv ing at the NP for one 

distribution cycle is less than the number of customers 
leaving the NP for the period of t ime during which the 
motion in the given direction is allowed, the queue to this 
direction will not grow and the customers will pass for one 
cycle. 

Let  nА1 be the number of non-conflict flows in  Direction 
A of Line 1, h = the mean interval between arrivals crossing 
the NP in one flow (in seconds), λАi = parameter of the 
Erlang distribution for flow i of Direction A1. 

If ( )
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given direction will disappear for one cycle and the total 
delays per hour will be: 
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Т1 = time (sec.) during which the motion in Direction A of 
Line 1 is not allowed; 
Т2 = time (sec.) during which the motion of flows of Line 2 

is not allowed;  
The similar chaining for the flows of other directions is: 
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− >∑ , then for the period of 

time during which the motion in Direction A is allowed the 
queue will not disappear. In this case the mean total 
delays-in-queue to the given direction for the time Т1 (sec.) 
can be calculated by the formula: 
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And the total delays per hour for the given direction can  be 
calculated as follows: 
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For the rest of direct ions the chaining is similar. 

3. Efficiency of the Network Operation 
Organisation 

The time of motion by the given route of network is made 
up of the time of mot ion between the two neighbouring 
nodes and that of spent on passing the node. The mean time 
of motion between the two neighbouring nodes is calculated 
by the formula: 

v
St = ,                 (34) 
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where S = distance between the two neighbouring nodes; 
v  = mean speed of motion of customers in the flow. 
Due to the fact that we demanded the same in itial data for 

developing the mathematical model fo r each sector of the 
network, it  is possible to perform the optimisation of the 
network flows distribution. 

The route of motion in the network is designed by 
successive enumeration of nodes of the graph. In order to 
choose the optimum route, the following integrated route 
efficiency parameter can be introduced: 

( )
4

1 max

i
i

ii

KK
K

α
=

= ⋅∑ ,         (35) 

where К1 = the length of route; К2 = the mathemat ical 
expectation of the congestions in the given route; К3 = the 
mathematical expectation of the time spent in ‘traffic jams’, 
К4 = the time of motion along the given route, 

4321 ,,, αααα  = the significance values of the 
corresponding parameters. 

The significance values are defined in  such a way that the 
following condition is observed: 

4

1
1i

i
α

=
=∑ .              (36) 

It is necessary to take into account the significance of each 
criterion for assessment of the route quality. 

The optimum route is chosen according to the following 
principle: min→K . 

4. Conclusions 
The authors’ mathematical model of network operation 

suggested  in the paper is based on the Erlang arrival time 
distribution. This two-parameter law allows us to describe 
flows of rather high density. The fact that the model takes 
into account the intensity of requests in non-conflict  flows 
for each direction separately extends its range of application 
and enables modelling the network with reorganised 
(changed) structure without collecting additional empirical 
data. More detailed argued deduction of the above equations 
could be seen in the works referred[10-12]. 

The relevance of the developed model of network 
operation has been empirically proved in an urban 
transportation network. There are a great variety of 
mathematical models to calculate d ifferent quality 
parameters of traffic organisation by particular data of an 
urban transportation network. But each of them needs 
different in itial data and a change in some parameter of one 
part of network requires additional investigation into ways of 
calculation of traffic schemes in  other parts, which 
complicates optimisation processes of traffic flows in the 

network and  results in increase of data collection costs. The 
suggested model is devoid of this drawback. 
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