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Abstract  Motility is an important function of the male gamete, which allows sperm to actively reach and penetrate the 
female gamete in organisms with internal and external fertilization. Sexual activity of some fish is generally seasonal and 
fertilization is external. Sperm, once differentiated in the gonad, remain there completely quiescent until they are released 
into the external medium, which is either freshwater or sea water. Various parameters such as ion concentrations (K+, Na+, 
Ca2+), osmotic pressure, pH, and temperature affect motility. In the present paper, we review the roles of these factors on 
sperm motility in the teleosts. Studying the effects of these factors on teleost sperm can help establish good activation 
and/or immobilizing media for improving either artificial fertilization or cryopreservation. 
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1. Introduction 
Fish sperm are widely divergent in form and structure[1]. 

It is not possible to construct a spermatic model for the 
‘fishes’, as is the case, for example for the snakes and 
mammals. They vary from aflagellate to biflagellate and 
have an enormous range of shapes, sizes, and structures; the 
number and location of organelles also vary[2, 3, 4]. Both 
light and electron microscopy of a wide spectrum of teleost 
sperm have demonstrated that important morphological 
differences can be found among species[5] and can be used 
for taxonomic purposes[2]. The structure of the spermato-
zoon is influenced by both reproductive mode and systematic 
position[6]. For example, the conclusion of Mattei and 
Mattei[7] based on the study of sperm of eight species of 
fishes from the orders Elopiformes and Anguilliformes 
supported the theory of other workers that these two orders 
should be grouped together in the super order Elopomorpha. 
Morphological differences in teleost spermatozoa indicate 
that submicroscopical morphology of these cells can be 
useful as additional characters in taxonomic classification as 
suggested by many researchers[2, 7, 8]. 

Study of the structure and morphology of fish sperm pro-
vides information for understanding their possible taxo-
nomic and evolutionary relationships at family[1, 9], sub-
family and species[10] levels, as well as for optimizing arti-
ficial reproduction, prevention of polyspermy problems and 
development of cryopreservation techniques[5]. Spermiogen 
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-esis and spermatozoon ultra-structure has been studied in a 
number of teleost fishes with those variations having phy-
logenetic importance reported[1, 11, 12]. 

Most of the externally fertilizing teleosts cannot swim in 
the male gonads. Sperm are only become motile and me-
tabolically active after release into the water. Within the 
gonad, high CO2 tension in semen maintains intracellular pH 
at ~7.2 with respect to sea water[13]. When sperm are 
spawned into seawater, the CO2 concentration decreases, H+ 
release and intracellular pH increases to 7.5-7.6. Dynein, the 
ATPase that drives the flagella, is inactive below pH 7.3, 
repressing motility and respiration[14, 15]. In most fresh-
water species, sperm usually moves for less than 2 min and in 
many cases is only highly active for less than 30 sec[16, 17, 
18, 19]. Some fish species such as the spotted wolfish 
(Anarhichas minor) and the 3- and the 15-spined stickle-
backs (Gasterrosteus aculeatus, and Spinachia spinachia 
respectively), which are characterized by release of eggs in a 
sticky gelatinous mass, have sperm which remains motile for 
a far longer period after release[20, 21, 22]. In a recent 
finding it was found that Perca fluviatilis (perch) sperm have 
the ability to swim for more than two hours in saline condi-
tions[23]. 

Sperm motility is the functional parameter that might be 
influenced directly and most significantly by sperm mor-
phology and structure of sperm. Differences are observed in 
many species of teleosts in terms of length of the flagellum, 
number of mitochondria of the sperm which all can affect 
motility[2, 24]. In some species, the longest sperm swim 
fastest at high energy costs[25]. In an experiment it was 
found that perhaps longer sperm had more ATP available for 
swimming and achieved a higher fertilization success[26] 
and even sperm with higher velocities of sperm is able to 
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fertilize a greater number of eggs[27]. Earlier it was men-
tioned that fish sperm remain quiescent in the genital tract 
and in the seminal plasma and they become transiently mo-
tile at spawning when released into the surrounding water. 
There are several factors that affect sperm motility such as 
pH, temperature, ions and osmolality[28, 29, 30] which lead 
to activation of axonemal movement. 

The aim of the present review is to discuss the structure 
and morphology of fish sperm and to discuss the effects of 
physical factors (e.g. temperature) and chemical factors (e.g. 
pH, ions, osmotic pressure) that affect the motility of fish 
sperm. 

2. Methodology 
An extensive search of PUBMED, ScienceDirect and the 

author’s files was done without limitations by language or 
species for citations relevant to fish sperm. Wider searches of 
citations relevant to morphology, physiology and signal 
transduction were also performed without limitations of 
language, species, or date, to broaden the background to this 
review. All papers that matched the search criteria and were 
relevant to this review were included. Diagrams were made 
using power point, collating data from references within the 
review and the table was generated in excel, by the same 
means. 

3. Morphology and Composition of Fish 
Sperm 
3.1. Anatomy 

Sperm are quite small cells and display similar general 
design in almost all species (Figure 1). It consists of head, 
mid-piece and flagellum. 

 
(a) 

 
(b) 

Figure 1.  (a) Schematic model of a sperm consisting head, mid-piece and 
tail[112], (b) Scanning electron micrograph: sperm cell of Tench (Tinca 
tinca) with main structures is mentioned[113]. Nucleus (N), midpiece (M), 
flagellum (F) and cytoplasmic channel (CC). Scale bar = 5 μm. 

3.2. Head 

A head varying in diameter, containing condensed pack-
ages of chromosome in the nucleus (which occupies a sig-
nificant portion of the head) and in some species the acro-
some, a membranous structure overlying the nucleus in the 
anterior part of the sperm head (Figure 1). A proper size and 
shape of spermatozoon head is a prerequisite for the entering 
of spermatozoon throughout the micropyle[5]. Generally, the 
sperm head in fishes is relatively small (2–4 μm) in relation 
to the total size of sperm. The exceptions were observed at 
Atlantic eel sperm[5, 31] and at sturgeons and paddlefish 
Polyodon spathula (Walbaum) with elongated sperm head 
up to 10 μm in length and over 2 μm in width, containing 
acrosome[5, 31, 32, 33, 34, 35, 36, 37] or acrosome less[38]. 

Different shapes of sperm head occur in chondrostean and 
teleostean fishes. For example, in northern pike Esox lucius 
Lit is regular, ball shaped[39, 40]; big sperm head in silver 
carp Hypophtalmichthys molitrix V.[41, 42]; ovoid in car-
dinal fish Apogon imberbis L.[43]; ornate in wrasse Tha-
lassoma pavo L.; kidney-like in  damselfish Chromis 
chromis L.; spherical in Mediterranean rainbow wrasse Co-
ris julis L.[8]; banana-shaped in Atlantic eel Anguilla an-
guilla L.[44, 45]; highly elongated in Mimagoniates barberi 
(Regan)[46]; crescent-shaped in Conger myriaster (Bere-
woort)[47]. In some species (e.g. in perch, Perca fluviatilis 
L.), the sperm head is laterally flattened[48]. 

3.3. Mid-piece 

Mid-piece consists of centriole and mitochondria and 
linked with head (Figure 1). Mitochondria contains at the 
base of the tail, contributing to power flagellar movement. 
The midpiece is similar to that of a mammalian sperm, ex-
cept for the fact that fish sperm contain fewer mitochondria 
and its flagellum is separated from the midpiece by a cyto-
plasmic channel[43]. In perch P. fluviatilis, only a single 
mitochondrion was found in the sperm head[48] while more 
than 20 mitochondria were found in the midpiece of ide Idus 
melanotus L.[5] and in cyprinids it varied from 2 to 10[2]. 
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In chondrostean and teleostean fishes, only the mito-
chondrial segment was found recognizable, while centriolar 
segment was hidden in so-called intranuclear channel[5]. In 
rainbow trout Oncorhischus mykiss (Walbaum), the distal 
centriole attached to the transverse axis system includes a 
free portion nesting on the proximal centriole, which varies 
in form between a circle and an ellipse. Same size of the both 
centrioles (30 nm length, 22 nm diameter) are arranged rec-
tangularly to the head base in a roughly cubical depression 
equivalent to an implantation groove[49]. 

3.4. Flagellum 

As the tails of sperm, flagella comprise the motile appa-
ratus necessary to the movement and penetration of sperm 
into the egg at fertilization. The flagellum which varies in 
length, depending on the species and contains the axoneme 
(Figure 1). The length of flagellum in coho salmon (O. 
kisutch) is about 2.6 μm[50], in channel catfish it is about 94 
μm[51] and in C. myriaster it is 37 μm in length[47]. Flag-
ellar length in cyprinid species varies from 36 to 60 μm[2]. 
The flagellum itself is composed from two central and nine 
peripheral doublet microtubules, so-called ‘‘9+2 com-
plex’’[41] (Figure 2). The 9+2 structure and molecular 
composition of the axoneme are well conserved among eu-
karyotic cilia and flagella from protozoa to human. The nine 
doublet microtubules are interconnected and the central pair 
bridge joins the inner microtubules. This characteristic 
composition, i.e. 9+2 structure with the central microtubules 
showing identical orientation were present in channel catfish 
Ictalurus punctatus (Rafinesque), coho salmon Oncorhyn-
chus kisutch (Walbaum), common carp Cyprinus carpio L., 
loach Misgurnus fossilis L., Siniperca (Siniperca chuatsi, 
Siniperca kneri, and Siniperca scherzeri)[5, 12, 41, 50, 51] 
while in Anguilliformes and Elopiformes present a ‘‘9+0’’ 
structure without central microtubules[7]. Some peculiarities 
in the flagellum were reported for some species: cells with 

two flagella were found in plainfin midshipman Porichtis 
notatus (Girard)[52] and channel catfish I. punctatus[51].  

 
Figure 2.  Schematic representation of the cross section of fish sperm 
flagellum showing the structure of axoneme. Axonemes are constructed 
from nine doublet microtubules and two singlet microtubules as shown by 
gray rings. The singlet microtubules at the center are joined by the central 
pair bridge. Nine doublet microtubules are connected with each other by 
interdoublet links and are surrounded by plasma membrane. 

4. Ionic Composition of Fish Milt 
Milt is defined as sperm plus seminal plasma. Seminal 

plasma (or fluid) has a unique composition: some compo-
nents support the sperm, while others reflect the functions of 
the reproductive system and the sperm[53]. Studies on se-
men characteristics are necessary to understand the basic 
biochemical processes that occur in sperm motility and 
during fertilization[54, 55, 56, 57, 58, 59], to evaluate the 
reproductive abilities of different fish species[25, 55, 60, 61, 
62], and to improve methods for short- and long-term storage 
of fish milt[63]. The ionic compositions of fish milt in dif-
ferent groups of fishes are summarized in Table 1.  

Table 1.  Ionic composition of the sperm and seminal plasma of different groups of fishes 

Family Species Ca2+ (mmol l-1) Na+  (mmol 
l-1) K+ (mmol l-1) Mg2+ (mmol l-1) Cl- (mmol l-1) References and 

comments 
 Cyprinids 0.3 – 12.5 94 – 107 39 – 78 0.02 – 1.2  [64, 65] 

Cyprinidae Cyprinus carpio 
10.69 ± 2.711 

11.54 ± 0.732 

8.74 ± 2.933 

71.25 ± 3.651 

59.00 ± 3.162 

58.12 ± 5.273 

78.87 ± 3.721 

73.01 ± 3.462 

77.56 ± 4.573 
 

110.62 ± 8.811 

96.25 ± 3.582 

102.12 ± 7.253 

[66] 
1Winter, 2Early 
spring, 3Late 

spring 
  2 ± 0.18 75 ± 3.2 82.4 ± 3.3 0.8 ± 0.04  [67] 

 Ctenopharyngodon 
idella 1.0 81.1 35.1 1.6  [68] 

 Tinca tinca 0.60 ± 0.2 18.40 ± 1.3 1.93 ± 0.6 0.45 ± 0.1  [69, 70, 71] 
 

Salmonidae 
 

Salmonids 
 

0.3 - 2.6 
 

103 – 140 
 

20 – 66 
 

0.8 – 3.6  [64, 65] 

 Salmo salar 1.3 103 22 0.9  [72] 

 Oncorhynchus 
mykiss 1.10 ± 0.26 122 ± 14.2 30.4 ± 4.5 0.85 ± 0.12  [73] 

  1.2 ± 0.3 159.8 ± 30.8 25.7 ± 4.1   [74] 
Acipenseridae Polyodon spathula 7.8 mg l-1 500 mg l-1 97.3 mg l-1 55 mg l-1  [69, 70, 71] 

 Acipenser fulvec-
sens 0.16 ± 0.05 25.6 ± 2.8 5.78 ± 0.49 0.21 ± 0.02 5.41 ± 2.79 [75] 
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5. Sperm Motility Characteristics 
Motility is a characteristic function of the male gamete, 

which allows sperm to actively reach and penetrate the fe-
male gamete in organisms with internal and external fertili-
zation. Sperm motility is acquired under the control of many 
extrinsic and intrinsic factors and is based on the specialized 
structure of the sperm flagellum. Generally, sperm of fishes 
spawning in brackish and sea water swim much longer than 
those of most freshwater species[76]. However, the duration 
of sperm motility is brief in most fish species and only lasts 
for 30 sec to few minutes[77]. 

Sperm of both freshwater and seawater fish are immotile 
in the male reproductive organ, or in electrolyte or nonelec-
trolyte solutions having similar osmolality to that of the 
seminal plasma, but gain potentiality for activation during 
transfer to the sperm duct. The physiological changes that 
occur after transfer is controlled by an endocrinological 
system, which regulate spermatogenesis and spermiation[64, 
65, 78]. Seminal plasma produced by the sperm duct pro-
vides an ionic environment that maintains the viability of 
spermatozoa after their release from the testes[79]. It has 
been already shown in the literature that there are several 
correlations between seminal plasma composition and sperm 
motility in some species; Atlantic salmon, Salmo salar[72], 
common carp, Cyprinus carpio[66], bleak, Alburnus albur-
nus[74], rainbow trout, Oncorhynchus mykiss[80], Persian 
sturgeon, Acipenser persicus[81] and chinook salmon, On-
corhynchus tshawytscha[82]. In freshwater species, matured 
sperm need a hypo-osmotic shock for triggering initiation of 
sperm motility[29]. Moreover, there are several factors that 
affect sperm motility such as temperature, pH, ions and 
osmolality[28, 29, 30, 83].  

5.1. Effect of Temperature 

The motility duration, fertilizing ability and velocity of 
sperm depend on temperature of the activation medium[5, 65, 
84] and of that of the broodstock holding tank[85]. Because 
the energetic resources of fish sperm are limited, an increase 
in velocity caused by a temperature rise in the swimming 
solution leads to a shorter duration of motility, and con-
versely, lowering the swimming temperature results in a 
prolonged duration of motility and reduced cell velocity[5, 
84]. The motility duration of grass carp, Ctenopharyngodon 
idella sperm is shorter than the common carp[86, 87]. It has 
been confirmed that sperm are motile for longer at 20°C than 
at 26 or 30°C in common carp or 30°C in grass carp[87], 
whereas in Siberian sturgeon, Acipenser baeri, sperm de-
creases when the temperature is increased from 10 to 17.5°C 
[85]. 

5.2. Effect of pH 

It has been shown that extracellular and intracellular pH, 
as well as the ionic composition of the activating solution, 
influences the initiation and duration of sperm motility[88]. 
The external pH probably influences the intracellular proton 
concentration, which subsequently affects the membrane 

potential, as well as motility behavior[89, 90]. In rainbow 
trout the pH of seminal plasma is usually 7.5 to 8.5. Carp 
sperm motility can be initiated in media with an external pH 
of 6.0 - 9.0[91, 92]. On the other hand, the internal pH of the 
sperm is about 1 unit below the external pH[60, 93]. 

5.3. Effect of Ions 

5.3.1. Potassium (K+) 

Among the above mentioned factors, K+ concentration is a 
key factor in combination with osmotic pressure that control 
sperm motility and allow it to be initiated in salmonids[49, 
84], sturgeons and paddlefish[53, 62, 67, 69, 70, 71, 81, 94, 
95]. It has been known since 1938 that millimolar level of 
extracellular K ion concentration ([K+]o) in the seminal tract 
is primarily responsible for keeping trout sperm inactive[96]. 
This phenomenon was further investigated by some scien-
tists and they showed that salmonid fish sperm motility can 
be initiated in K+-free medium, but not in K+-supplemented 
medium, which is similar to the seminal fluid[16]. This 
group also showed that cyclic adenosine monophosphate 
(cAMP) increases and reaches a plateau seconds after sus-
pending trout sperm in K+-free medium[97]. Although [K+]o 
and cAMP were known to influence motility, their rela-
tionship is still unknown. Potassium channel blockers like, 
Tetraethylammonium (TEA+), nonyltriethylammonium1, 
Ba2+, and Cs+, inhibited sperm motility initiation[98]. 

The above results obtained on induction of sperm motility 
suggest the hypothesis: ‘‘the inhibition of motility in sal-
monids is mainly due to K+ ion’’. In other words, membrane 
hyperpolarization caused directly by transmembrane K+ 
efflux is the first trigger for initiating sperm motility in 
salmonid fishes[99]. 

In cyprinids K+ ion also increases sperm velocity and 
motility and K+ channel inhibitors markedly inhibited the 
flagellar motion[67, 94, 95]. The potent effects of K+ ion 
were investigated in demembranated flagella; axonemal 
motility was found to be directly controlled by the ion con-
centration[69,70, 71]. It is also clear that the K+ concentra-
tions in diluents used for cryopreservation strongly influence 
the potential motility of carp sperm[100]. 

To date, the mechanism regulating mobility in sturgeon 
and paddlefish sperm has not been fully identified, but it 
presents quite striking similarities with that in salmonid 
sperm. A recent study by Alavi and his group showed that the 
potassium concentration in Acipenser persicus seminal 
plasma was 6.92±0.88 mmol l-1[81]. These findings indi-
cated that seminal plasma K+ is a major inhibitor of sperm 
motility in A. persicus. 

5.3.2. Calcium (Ca2+) 

Sperm motility can be initiated by alteration of the con-
centration of Ca2+  ions in many species, such as in cyprinids, 
extracellular Ca2+ ([Ca2+]o) is a prerequisite for the initiation 
of live sperm motility. Krasznai and his group found that 
sperm motility is initiated after 30 sec when 10-4 M NaCl was 
added to the swimming solution[95]. Also, when sperm were 
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demembranated with Triton X-100, they exhibited high 
motility in 10-6 and 10-5 M Ca2+. Verapamil, a Ca2+ channel 
blocker inhibited the motility of mature carp sperm predi-
luted and incubated in physiological solution (140 mM NaCl, 
10 mM KCl, 1 mM CaCl2, and 20 mM HEPES, pH 8.5), and 
completely eliminated the increase in intracellular Ca2+ 
([Ca2+]i). They also suggested that influx of [Ca2+]o through 
specific channels leads to induction of [Ca2+]i release from 
stores and initiates sperm motility through the calmodulin 
system. Except verapamil, several specific Ca2+ channel 
blockers (eg. flunarizine and the conotoxin family) also 
prevent the increase of [Ca2+]i in the common carp, and the 
initiation of sperm motility is subsequently suppressed[101]. 
In tilapia (Oreochromis mossambicus) it was also found that 
[Ca2+]i is required for activation of sperm motility and can 
prolong the motility period[102]. The Ca2+-sensitive fluo-
rescent probes have indicated [Ca2+]i increases in single 
sperm [103] and in sperm populations [90] upon initiation of 
motility. The contribution of [Ca2+]o and internal Ca2+ stores 
to the [Ca2+]i increase that occurs when motility is initiated 
still remains to be established. The river water into which 
sperm are spawned contains 0.3–0.4 mM Ca2+, enough to 
contribute to Ca2+ influx through specific sperm plasma 
membrane Ca2+ channels under physiological conditions. 

5.4. Effect of Osmotic Pressure on Sperm Motility 

Exposure to hypo-osmotic or hyperosmotic environment 
triggers the initiation of fish sperm motility. Sperm of 
freshwater fish become motile when diluted in a hypotonic 
solution[16, 67, 88, 104]. Sperm of freshwater Cyprinidae 
(goldfish, carp, crucian carp and dace) remained immotile 
when the semen was diluted in solutions of NaCl, KCl, 
mannitol or glucose iso-osmolar to the seminal plasma (300 
mOsm kg-1). The sperm became motile in media containing 
these solutes if the osmolality was lower than that of the 
seminal plasma (<200 mOsm kg-1), suggesting that motility 
is suppressed by the osmolality of the seminal plasma in the 
sperm duct and initiated by a decrease of osmolality upon 
spawning into freshwater[67]. Exposure to hyperosmotic 
seawater also triggers the initiation of sperm motility of 
marine fish species[16, 105, 106]. Sperm of the marine 
puffer fish are quiescent in their seminal plasma (around 300 
mOsm kg-1) and become motile when there is an increase in 
the osmolality of the surrounding medium (1200 mOsm kg-1) 
[105]. This hyperosmotic shock could induce an increase in 
the [K+]i[106] and in the Ca2+ concentration, and an internal 
acidification[105]. It has been proposed that these series of 
variations are the trigger for the activation of motility. 

For live bearing (internal fertilization) fishes, such as 
those of the freshwater genus Xiphophorus[107] and the 
marine ocean pout Macrozoarces americanus[108], sperm 
motility can be initiated by isotonic osmolalities but not by 
hypotonic or hypertonic osmolalities. Once initiated, the 
sperm of these species can remain continuously motile for as 
long as 1 week[109]. 

Recently, it was found that sperm motility in a euryhaline 
fish, medaka (Oryzias latipes) was initiated across a broad 

range of osmolalities varying from deionized water (25 
mOsm/kg) and HBSS (Hanks’ balanced salt solution) with 
hypotonic, isotonic, and hypertonic osmolalities ranging 
from 92 to 686 mOsm/kg[110]. A euryhaline fish (eg. tila-
pia), sperm had a similar but attenuated pattern of motility 
activation. The particular fish studied originated from 
brackish water and were acclimated to freshwater[102] or 
seawater[111]. For the freshwater acclimated tilapia, sperm 
motility could be activated by osmolalities ranging from 0 to 
400 mOsm/kg, with or without electrolytes, and Ca2+ was 
found to be required for motility activation[111]. For the 
seawater-acclimated tilapia, sperm motility could be acti-
vated by osmolalities from 0 to 500 mOsm/kg of NaCl with 
10 mM HEPES (N-2-Hydroxyethylpiperazone-n-2-Ethanesu
lfonic Acid), and the addition of Ca2+ caused increased mo-
tility in the presence of high osmolalities (1000 to 1400 
mOsm/kg)[111]. 
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