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Abstract  An efficient Brain Computer Interface (BCI) is designed and implemented to allow disabled people to control 
the motion of wheelchairs. It uses a compact portable EEG sensor to capture 14 brain signals and wirelessly feed them to the 
PC. Four classes of motions are used: Forward, Backward, Left, and Right. The signals are obtained in a free-style manner 
without compelling users to perform pre-defined mental operations. This led to variations in the results that shed some light 
on the cognitive aspect of the problem. Principal Component Analysis (PCA) and Sub-Band Powers obtained from the 
Wavelet Transform are used to reduce the signal dimensionality from nearly 14000 to only 3. A Feed-Forward Neural 
Network with Back Propagation is used as a classifier. The average classification rate is 91 % on the overall and as high as 
97.5 % for some users. The effect of mother wavelet type and user dependence are also investigated. 
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1. Introduction 
Recent advances in technology have made it possible for 

severely handicapped people to act on their surrounding 
environment without the normal muscle and nerves 
pathways. Brain Computer Interface (BCI) systems make it 
possible for such disabled people to activate devices such as 
wheelchairs merely by their thoughts. BCI systems rely on 
the weak Electroencephalogram (EEG) signals that were first 
recorded by Berger in 1924[1]. These are generated at the 
surface of the scull as a result of the neural activity and are 
picked up by appropriately placed non-invasive electrodes. 
Since its first introduction by Vidal in 1973[2], BCI has 
received considerable attention over the last two decades 
[3-8]. Numerous research efforts have been deployed in an 
attempt to translate intentions and thoughts into real actions.  

Some of this work used the effect of facial gestures on 
EEG signals as a communication means with the outside 
world[9-11]. While such approaches may work with some 
users, they may not be acceptable for severely disabled 
people. In the context of our work, we are interested in BCI 
systems that rely on mere thoughts without any artifacts.  

BCI systems have been used in several applications such 
as cursor control[12], spelling and teletyping[13], answering 
questions[14], and composing music[15]. An important 
application of BCI is to assist severely disabled people in 
controlling the motion of wheelchairs as this offers them  
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valuable autonomous mobility[16-22]. In such systems, the 
users are usually required to perform one of several mental 
tasks such as movement imagination, geometric figure 
visualization, arithmetic operations, etc. These mental tasks 
are mapped into the various wheelchair motions directions. 
Classification is carried out in the usual way of extracting 
features form the EEG signals and then applying one of 
several classifiers to the feature vector. While some 
researchers used a time-series prediction approach and 
derived the features from the power of the predicted EEG 
signals[23], most others resorted to the wavelet transform 
[24-28]. The coefficients of the details resulting from the 
wavelet transform are used as features. The justification for 
using the wavelet transform is that it leads to a sub-band 
decomposition of the signal in hand. This naturally matches 
the fact that EEG signals are divided into five frequency 
bands that take on different power levels depending on the 
mental state. This is shown in Table 1. 

Table 1.  EEG Frequency Bands 

Band Frequency 
Range (Hz) 

Voltage 
Level (µV) 

Corresponding 
Brain Activity 

Delta 0.5 – 4 20 – 200 Sleeping 
Theta 4 – 7 < 20 Dreaming; Meditation 
Alpha 8 – 13 30 – 50 Relaxation 
Beta 13- 36 5 – 10 Problem solving 

Gamma above 36 5 – 10 Conscious Perception 

Several classifiers were used by researchers such as Linear 
Discriminants (LD)[23], Bayesian[29], Hidden Markov 
Model (HMM)[30], Support Vector Machine (SVM)[31], 
and Neural Networks[19, 32,33].  

The more recent work on BCI for wheelchair includes that 
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of Lin and Yang[20]. The eye blinking artifact is not 
removed but utilized to control the motion of the wheelchair. 
Carlson and Millan[21] use motor imagery to feed a 
Gaussian classifier. Fattouh et. al.[22] use the AffectivTM 
Suite of Emotiv to detect emotion changes in order to control 
the wheelchair. 

The most related work to ours is that of Vijay Khare     
et. al.[19]. They reported a real time BCI system that uses 8 
brain sensors from a medical stationary EEG sensor. They 
used the Wavelet Packet Transform along with a Radial 
Basis Function Neural Network (RBFNN). Their feature 
vector uses 21 detail coefficients. They reported a perfect 
classification rate[19]. 

In this work, we designed, implemented, and tested an 
efficient BCI system for wheelchair control. Even though 
our work carries some similarities with that of Khare et. al., it 
differs with the following contributions: 

●  We allow users to record their thoughts in a 
free-style manner without having to perform any given 
mental exercises that not all may be able to go through. 
Instead, each user is given the freedom to imagine the four 
motions of the wheel chair in an independent way. Even 
though this has made the recorded EEG signals less 
clustered hence harder to classify, it simplified the system 
use. In addition, it led to interesting variations in the 
results that shed some light on people’s perception of 
directions amongst other things. 

● A considerable simulation and testing effort was 
deployed to investigate the issue of feature selection. 
Inspired by the effect of mental state on the EEG 
sub-frequency bands powers, we used the average power 
of the details coefficients (corresponding to sub-band 
powers in the EEG signal), as features. We were able to 
reduce the signal dimensionality to only 3, resulting in a 
considerable speed-up of the BCI system training and 
testing time. 

● Our BCI system is compact and portable thanks to 
its wireless light weight headset. This allows maximum 
mobility for the users. 
The remainder of this paper is organized as follows. In 

section 2, we summarize the details of the signal 
measurement and data collection. In section 3, we provide 
the details of the overall BCI system, including the signal 
processing, feature selection, and input classification. In 
section 4, we summarize the performance assessment of our 
BCI system. A brief discussion of the mother wavelet effect, 
user dependence, and some cognitive aspects of the problem 
are also provided. Finally, in Section 5, we summarize and 
conclude our work.  

2. Data Collection 
The BCI implemented in this work uses the portable 

wireless headset from Emotiv[34]. It has a total of 16 
sensors, 2 reference signals and 14 channels: AF3, F7, F3, 
FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4. The 

sensors are applied to the scull surface using a saline 
solution and follow the 10-20 international standard. 
Nick-named “EPOC”, the headset uses a 128 Hz sampling 
rate with a 14 bit A/D resolution. It has a built-in fifth order 
sinc filter that cuts frequencies above 64 Hz. In addition, 
two notch filters suppress the 50/60 Hz interferences caused 
by the power lines. The EPOC has a 12-hr battery life and 
weighs around 7 Ounces. It comes in different packages 
including the CognitivTM Suite and AffectivTM Suite that 
provide ready packages for EEG analysis without direct 
access to the EEG signals. In our work, we used the more 
expensive Development Kit that allowed us to store and 
handle the EEG signals. Figs. 1-3 respectively show the 
headset, its sensor locations, and a sample of the picked-up 
signals. All channels are wirelessly transmitted to a USB 
module in the PC via a proprietary encoding/modulation on 
a 2.4GHz carrier. 

 

Figure 1.  Emotiv Headset[ 35] 

 

Figure 2.  Emotiv Headset sensor location[36] 

 

Figure 3.  Sample of measured EEG signals 
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It is known that various artifacts such as facial movements 
and eye blinks result in large spikes in the EEG signals. For 
example, Fig 4 shows the picked-up EEG signals with three 
eye blinks at the end. 

In order to limit the operation of our BCI system to brain 
thoughts only, we recorded all data without any such artifacts 
by asking the users not to make any facial gestures including 
eye blinks. Three volunteers participated in the data 
collection: User1 is a female student (age 23, left-handed), 
User2 is another female student (age 23, right-handed), and 
User3 is a male adult (age 50, right-handed). All subjects 

were normal in the sense they had no disability. The intent 
was to collect data from some handicapped people, but this 
was not possible at the time of preparation of this initial work. 
Each subject recorded a total of 100 samples for each of the 
four motions: Forward, Backward, Right, and Left. The 
recording was carried out at different time intervals and 
mental conditions. Each recording was about eight-seconds- 
long during which the user is asked to relax with eyes open 
and think of one of the four directions. Ten of the 100 
recordings were used for testing purposes and the remaining 
90 for training the classifier. 

 

Figure 4.  EEG signal with three fast eye blinks[37] 

3. BCI System 
The proposed BCI system is shown in Fig. 5. 

 
Figure 5.  Overall BCI System 
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Based on previous reports[19], it was clear that 14 
sensors were more than needed for this problem. Hence, the 
first intent was to reduce the redundancy in the EEG signals. 
PCA was used for this purpose. Each measurement was 
organized in a matrix of size 14 by 999. Let Xik be such a 
matrix corresponding to measurement “i" (i = 1,…90) of 
class “k” (k = 1,…4). After making Xik zero mean, The 14 
by 14 covariance matrix Ck of class “k” is obtained by 

𝑪𝑪𝑘𝑘 =  𝑬𝑬{𝑿𝑿𝑖𝑖𝑖𝑖  𝑿𝑿𝑖𝑖𝑖𝑖𝑇𝑇 }                (1) 
Where “T” denotes the transpose operations and the 

expected value is carried out by averaging over the 90 
measurements. Next, an Eigen analysis is performed on Ck 
to yield 

𝑪𝑪𝑘𝑘 =  𝑷𝑷𝑘𝑘𝑇𝑇𝚲𝚲𝑘𝑘𝑷𝑷𝑘𝑘                  (2) 
Where the 14 by 14 unitarian matrix Pk is made up of the 

fourteen eigenvectors as its rows, and 𝚲𝚲𝑘𝑘  is a diagonal 
matrix made up of the 14 eigenvalues (all non negative) 
arranged in descending order of magnitude. 

The data redundancy is removed by keeping only the “m” 
largest eigenvalues and neglecting the smaller ones along 
with their eigenvectors. Let 𝑷𝑷𝑘𝑘𝑚𝑚  denote the “m” by 14 
reduced eigenvector matrix obtained by keeping the “m” 
eigenvectors (rows) corresponding to the largest “m” 
eignvalues. The reduced data matrix 𝑿𝑿𝑖𝑖𝑖𝑖𝑚𝑚  of size “m” by 999 
is obtained by 

𝑿𝑿𝑖𝑖𝑖𝑖𝑚𝑚 =  𝑷𝑷𝑘𝑘𝑚𝑚𝑿𝑿𝑖𝑖𝑖𝑖                   (3) 
The choice of “m” is rather subjective. Fig. 6 shows the 

mean squared error between Xik and 𝑿𝑿𝑖𝑖𝑖𝑖𝑚𝑚  averaged over all 
classes and measurements for various values of m. 

 
Figure 6.  Mean squared error between Xik and 𝑿𝑿𝑖𝑖𝑖𝑖𝑚𝑚  versus the number of 
“m” largest eigenvalues taken 

It can be seen from Fig. 6 that keeping the 6 or 7 largest 
eigenvalues is a good compromise between reducing the 
problem dimensionality and loss of data. A rough initial 
classification using the K Nearest Neighbours (KNN) 
showed that after the 7th eigenvlue, little effect on the 
performance is obtained. Hence, it was decided to reduce the 
problem dimensionality to 999 by 7 only. This is equivalent 
to saying that 7 of the 14 signals picked-up may be omitted 
without considerable loss of performance. This is in 
agreement with the previous results that use only an 
eight-signal EEG system[19]. 

Next, the reduced EEG signal is concatenated into a 999*7 
vector onto which a wavelet transform is applied. In an effort 
to find a closer matching wavelet to the EEG signal in hand, 
different types of mother wavelets have been tested. A 
five-level decomposition is used leading to details d1-d5 and 
approximation a5. These five levels conveniently map to the 
5 frequency sub-bands of EEG signals shown in Table 1. 
Taking into account the sampling rate of 128 Hz, this 
important mapping is shown in Table 2 below.  

It is known that the Beta band is the most dominant during 
problem solving. Hence, we expect that “d2” to be the focus 
of the feature vector as it contains the most discriminatory 
information for this current application. Since the users 
record the data in a meditation-like session, we also expect 
the Alpha and Theta (corresponding to d3 and d4 
respectively) to be of importance. This observation shall be 
validated by the experimental testing in the next section.  

Table 2.  EEG sub-bands and corresponding wavelet coefficients 

Wavelet 
Coefficients 

Frequency Range 
(Hz) 

Corresponding EEG 
Band 

d1 32 –64 Gamma 
d2 16 – 32 Beta 
d3 8 – 16 Alpha 
d4 4 – 8 Theta 
d5 2 – 4 Upper Delta 
a5 0 – 2 Lower Delta 

Previous approaches use the coefficients of the wavelet 
transform as features. For example Vijay Khare et. al. use 21 
of the wavelet coefficients as input to the NN classifier. In 
our work, the average power in each sub-band (the mean of 
the squared terms of a1 and d1-d5) is calculated and used as a 
feature candidate. This is motivated by the argument stated 
above related to the variations of the power in the EEG 
sub-bands due to various mental states. As shall be shown in 
the next section, extensive testing narrowed down the feature 
vector to size 3, resulting in a considerable speedup of the 
BCI system’s training and testing. Finally, using National 
Instrument’s data card, the decision of the classifier is output 
as one of four bits (using the USB as a virtual parallel port of 
the laptop PC). Hence, our BCI system provides direct 
switching to the wheelchair motors via relays. For testing 
purposes, we connect the four bits to four LEDs. 

4. Results 
In order to find an optimum feature vector, we performed 

an extensive testing using the average powers of the details 
and approximation of the wavelet transform. In this we were 
guided by the a-priori expectations that d2 should be our 
focus. Table 3 shows the overall classification results for 
different feature vector sizes using dB5 as mother wavelet.  

The three-point vector made up of the average powers of 
d2, d3, and d4 led to the best overall classification rate, hence 
shall be used in what follows. This corresponds to the 
average powers of the beta, alpha, and delta bands. 
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Table 3.  Feature Vector Size Effect on Classification Rate 

Feature Vector Size Features Classification Rate (%) 
6 a5; d1-d5 86 
4 d2-d5 82.5 
3 d2-d4 91 
3 d1-d3 85 
2 d1-d2 82.5 
2 d2-d3 81 
1 d2 66.7 

It is a fact that the degree of correlation between the 
wavelet and the signal in hand has an effect on the 
decomposition coefficients. Hence, our BCI system was 
tested using different types of mother wavelets. The results 
are summarized in Fig. 7. Even though the effect of the 
wavelet type was not very pronounced, dB5 seemed to lead 
to the best results hence was adopted in all the subsequent 
testing. Fig. 8 summarizes the overall classification rate for 
the four directions. It can be observed that the Forward 
direction is the most favorable. This observation was 
consistent in all the testing we performed. With the human 
senses naturally geared forward, it is expected that people 
tend to perceive the forward direction easiest. In addition, it 
may be favored because it is generally related to an 
optimistic and progressive perception of life events. 

 

Figure 7.  Effect of the Wavelet type on the classification rate 

 

Figure 8.  Overall Classification Rate Using dB5 

 

Figure 9.  Classification Rate Using dB5 Wavelet for User1 

 

Figure 10.  Classification Rate Using dB5 Wavelet for User2 

 

Figure 11.  Classification Rate Using dB5 Wavelet for User3 

Due to the free-style data collection in our work, we left 
the users with the freedom to perceive the four directions in 
their own ways. This had two implications. First, we 
expected the performance to vary from one user to another. 
Figs. 9-11 depict the classification rate for each user. As can 
be seen, user 2 seems to have the most “consistent” way of 
perceiving the four directions and led to the highest 
classification rate of 97.5%, while it is 85% and 90% for 
users 2 and 3 respectively. User1 (left-handed) perfectly 
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classified the “Left” class but made some errors with “Right”, 
while Users 2&3 (right-handed) showed an opposite 
behavior. Again, this observation was consistent throughout 
all the tests we performed (with different mother wavelets 
and different feature vector size). 

Second, we expected the system to be heavily 
user-dependent. To verify this, we used the data of user2 as 
training and tested the system with data from users 1&2. The 
classification rate results are shown in Table 4. Except for 
the Forward direction, all other directions performed quite 
poorly. Interestingly, this also seems to indicate that the 
Forward direction is not only the most favorable amongst 
people, but also that they tend to perceive it in a simlar 
manner. 

Table 4.  Classification rate (in %) when the system is trained on User2 and 
tested with Users 1&3 

 Backward Forward Left Right 
User1 0 99 37 11 
User2 0 68 2 7 

5. Conclusions 
An efficient and portable Brain Computer Interface (BCI) 

was designed, built, and tested to assist disabled people in 
controlling wheelchairs. The Emotiv[31] portable wireless 
headset was used to pickup 14 EEG signals off users’ scalps. 
Three volunteers (User1 a left-handed female of age 23, 
User2 a right-handed female of age 23, and User3 a 
right-handed male of age 50) helped to collect the needed 
EEG data. Four classes were used: Forward, Backward, Left, 
and Right. The EEG data was recorded in a free-style manner 
without compelling the users to perform various mental 
operations that are mapped to the motion directions. This has 
caused the signals to be less clustered hence harder to 
classify. On the other hand, it simplified the system use and 
resulted in anticipated variations that shed light on some 
cognitive aspects of the problem. It also allowed us to more 
genuinely test the user dependence of our BCI system.  

Principle Component Analysis (PCA) was used to reduce 
the signal redundancy and keep only seven of the fourteen 
EEG signals. The wavelet transform with a five-level 
decomposition was applied to the concatenated 7 signals. 
Several types of mother wavelet were tested. The dB5 
wavelet led to best classification rates. The average powers 
of the details d1-d5 and approximation a5 (corresponding to 
the average powers of the EEG sub-frequency bands) were 
investigated as possible feature vector components. This is 
justified by the fact EEG sub-frequency bands exhibit 
different power levels under different mental states. The beta 
band is known to be most prominent during problem solving. 
Extensive testing showed that, as expected, d2 
(corresponding to the Beta EEG band) is the most important 
detail level along with the alpha and delta bands. This may be 
explained by the fact that data recording was done in a 
meditation-type manner. Hence, the dimension of our 

problem was considerably reduced from nearly 14000 to 
only, leading to a much efficient training and testing of the 
BCI system. The overall average classification rate is 91% 
and ranges between 85 and 97.5%.  

The free-style data collection in our work resulted in 
variations in the results as well as a heavy user-dependency. 
Despite the different consistency levels in perceiving the 
four directions, all users systematically performed best with 
the “Forward” direction. With the human senses naturally 
geared forward, it is expected that people tend to perceive the 
forward direction easiest. In addition, it may be favored 
because it is generally related to an optimistic and 
progressive perception of life events. In another expected 
variation, User1 (left-handed) perfectly classified the “Left” 
class but made some errors with “Right”, while Users 2&3 
(right-handed) showed an opposite behavior.  

The user dependency of our BCI system was demonstrated 
when it was cross tested with inputs from other non-training 
users. All directions were very poorly classified except for 
the “Forward” . Interestingly, this also seems to suggest that 
the forward direction is not only the most favorable amongst 
people, but also that they tend to perceive it in a very close 
manner.  

The results of the classifier are output as four bits through 
the USB port of a laptop PC (emulated as a virtual parallel 
port) using National Instrument’s data card. Hence, our BCI 
system provides direct switching to the wheelchair motors 
via relays. For a quick testing, we connected the four bits to 
four LEDs. 

We are currently working to extend the initial results of 
this work by testing other classifiers, enabling the system to 
operate in real-time, and using data from disabled people. 
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