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Abstract  This paper analyze the stability, misadjustment, and convergence performance of the Wavelet Transform (WT) 
domain least mean square (LMS) Newton adaptive filtering algorithm with first order and second order autoregressive (AR) 
process. The wavelet transform domain signal provides a means of constructing of more orthonormal correlated input signals 
than other transform. The wiener filter with AR input process are assumed to be stationary, and the Stationary Wavelet 
Transform (SWT) is used as transform algorithm to provide more correlated input signal than other integral transform. The 
simulation result of this work shows that Wavelet-domain LMS-Newton algorithm provides better performance result than 
other transform domain algorithm for both first order and second order AR process. Structure of the SWT based 
LMS-Newton adaptive algorithm for time-varying process has been also discussed in this paper. Finally, Computer 
simulations on the SWT based LMS-Newton adaptive algorithms are demonstrated to validate the analysis presented in this 
paper, and the simulation result shows that the structure of SWT domain LMS-Newton adaptive algorithm provides better 
denoising of a noisy signal than other transform domain LMS-Newton adaptive algorithm. 
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1. Introduction 
The computation complexity of the time-domain adaptive 

filtering algorithms such as LMS algorithms, gradient 
adaptive lattice, and Least Square algorithms increases 
linearly with the filter order[1]-[4], and it is difficult to use 
such filter in high speed real time applications[5]. The 
frequency domain LMS algorithms using fast Fourier 
Transform (FFT) reduces the number of mathematical 
computations and the orthogonal transform provides more 
computation counts[6]-[8]. The convergence rate depends on 
the input autocorrelation matrix and decreases radically with 
higher input correlation. The transform domain algorithms 
updated the filter coefficients that can be applied for the case 
of higher input correlation to obtain higher convergence 
rate[9][10]. The transform domain adaptive filter achieved 
rapid convergence of the filter coefficients for non-white 
input signal with a reasonably lower computational 
complexity than simpler LMS based system. The gradient 
based LMS algorithm having convergence rate dependency 
on the input signal statistics but the LMS-Newton (LMSN)  
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algorithm is another powerful alternatives for larger 
eigenvalue spread of the input correlation matrix.  

The step size (µ) of LMS and the reference signal power 
play an important role in the stability and convergence of the 
LMS adaptation process. The fixed value of µ responds to 
stationary channel, and for the time-varying channel variable 
step-size LMS algorithm has been proposed to obtain better 
performance for non-stationary channel[11]-[13]. The 
Normalized LMS (NLMS) uses variable step-size (µ) 
algorithm to optimize convergence speed, stability, and 
performance. The time-variable step-size (µ) is implemented 
based on the power estimation of the input signals[14]. The 
larger µ is used for non-stationary and smaller µ is used for 
stationary without considering the convergence rate[15][16]. 
Further, modification on NLMS is proposed named as 
VS-NLMS in which µ is decided by the estimation of input 
signals, and it achieves a faster convergence rate with 
maintaining the stability of the NLMS[17]. The proposed 
VS-LMS with time-varying step-size (µ) improves the 
output signal to noise ratio (SNR) and the convergence speed. 
A new type of criteria is proposed using output error with 
step-size value (µ) from a big value α2 and smaller one α1 to 
provide faster tracing speed and smaller misadjustment[18]-
[20]. The stability and convergence properties of transform - 
domain LMS algorithm has been investigated in[21], the 
authors also analyzed the effects of the transforms and power 
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normalization in various adaptive filters for both first order 
and second order AR process. In the same work they stated 
that the power normalization increases the difficulty for 
analyzing the stability and convergence performance. The 
LMS-Newton algorithm avoids the slow convergence of the 
LMS algorithm for highly correlated input signal[15], this 
property should be very useful in DWT-LMS algorithm and 
is used in this work. 

In[21]-[23], the authors analyze the transform-domain 
adaptive filters with discrete Fourier transform (DFT), 
discrete Cosine transform (DCT), discrete Hartely transform 
(DHT), and discrete Sine transform (DST) for first-order and 
second-order AR input process with their stabilities  and 
convergence performance for input power normalization. 
The result of the work[24] shows that the DCT-LMS and 
DST-LMS provides the better convergence performance for 
both first and second order AR process than the DFT-LMS 
and DHT-LMS. In this paper, we analyze the Discrete 
Wavelet Transform (DWT) in adaptive filtering algorithm in 
form as DWT-LMS Newton adaptive filters for both first 
order and second order AR process to enhance 
Misadjustment to measure the steady-state convergence, and 
MSE performance. This paper also discuss the design of the 
DWT-LMS for the time-varying AR process, the 
time-varying block by block basis data is processed by using 
ε-decimated DWT algorithm. The simulation study in our 
work shows that SWT-LMS Newton adaptive filter provides 
better stability, misadjustment, and convergence 
performances than that of DFT-LMS and DCT-LMS for both 
first order and second order AR process[23]. 

2. Analytical Form of 
Transform-Domain LMS-Newton 
Algorithm 

The LMS-Newton algorithm estimates the second order 
statistics of the wide-sense stationary signal. The algorithm 
avoids the slow convergence of the LMS algorithm for 
highly correlated input signal. The LMS-Newton algorithm 
minimized the MSE at instant (n+1) if[15] 

)(ˆ)(ˆ)()1( 1 nnnn wgRww −−=+ µ         (1) 
where µ is a convergence factor that is used to protect the 
algorithm form divergence due to noisy estimate of input 
auto-correlation matrix R and the gradient vector gw (R). 

)(ˆ nR is the estimation of the auto-correlation matrix, 
namely, R≈E[u(n)uH(n)], u(n) is the input signal vector. The 
unbiased estimate of R for stationary input signal is as: 
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Here, the Hermitian transpose (H) is used for input 
complex vector. Again, the estimation on both sides of (2) 

gives, 
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The estimation for R requires infinite memory location for 
large n. Another form of estimation of the autocorrelation 
matrix by introducing a small factor α, in the range 0<α<0.1 
to provide the good balance of input signal information. The 
resulting equation to calculate the inverse matrix )(ˆ 1 n−R  
that is required for LMS-Newton algorithm can be given 
using the Matrix inverse Lemma as[21]: 
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with α(n)= α. The coefficient updating formula (1) can be 
written using the estimate of gradient vector as[22]: 

)()(ˆ)(2)1()( 1 nnnnn uReww −+−= µ    (5) 
where,  

e(n)=d(n)-wH(n-1)u(n)           (6) 
d(n)=desired signal, w(n-1)=weighting vector at iteration 

n-1; )1(ˆ 1 −−R =δI (δ is positive constant less than 0, and I is 
unity matrix); w (0) =[0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅]T 

The transform domain LMS transformed the input signal 
vector u(n) in a more convenient vector  s(n), s(n)=Tu(n), 
where TTH=I, the transform matrix of following form as: 
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where, i, l=0, 1, ⋅⋅⋅⋅⋅⋅⋅, N-1; ki=1/√2 for i=0 and 1 for 

otherwise, )(~ tψ and )(~ tφ are wavelet function and 
scaling function respectively. The autocorrelation matrix for 
the transform-domain input signal vector s(n) is given by: 

Rs=TRTH                    (8) 
The misadjustment of the adaptive filter is the ratio of the 

excess mean square error (MSE) and minimum MSE in the 
steady-state which is a measure of the noise in the filter 
output due to fluctuations in the filter coefficients. The 
formula for misadjustment based on the expression for 
weight noise covariance is given as[24][25]: 
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The result can be used for the transform-domain LMS 
adaptive filters and is given by: 
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Stability can be determined by the condition of M of finite 
value and we must choose µ within the range 0<µ<1/tr (R) ; 
for the case of (9), and 0<µ<1/tr Rs; for the case of (10). 

3. Wavelet Packet Transform Based 
LMS Algorithm 

The wavelet packet transform of the signal x(n) can 
denoted as[25][26]: 

y(n)=Vpx(n)                  (11) 
y(n) is the M×1 wavelet packet transform signal vector, Vp 
the 2J×2J wavelet packet decomposition for the J series as 
follows[27]-[29]:  
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The LMS algorithm is used as: r(n)=WT(n)y(n) 
where W is the weighted vector of LMS algorithm, r(n) is 

the output signal of LMS. The error of the filter is as: 
e(n)=d(n)-r(n)                (13) 

where d(n) is the desired signal, and we have: 
W(n+1)=W(n)+2µe(n)r*(n)           (14) 

where µ is the step-size parameter.  

3.1. Algorithm Performance Analysis 

The cross-correlation vector Py between the desired signal 
d(n) and the wavelet packet transform signal y(n) is as: 

Py=E{d(n)y(n)}=E{d(n)Vpx(n)}=VpPx     (15) 
Where, Px is the cross-correlation between the input signal 

x(n) and the desired signal d(n). The auto-correlation matrix 
Ry of the wavelet packet transform signal is as:  

Ry=E{y(n)yT(n)}=E{Vpx(n)xT(n)Vp}=VpRxVp (16) 
where Rx is the autocorrelation matrix of the signal x(n). The 
wiener optimal solution of wavelet packet domain is as: 

Wopt=R-1
yPy= R-1

yVpPx= R-1
yVpRxR-1

xPx=R-1
yVpRxW0(17) 

Here, W0=R-1
xPx; the time domain wiener solution. The 

MSE of wavelet packet domain is derived in appendix A and 
is given as: 

J(W)=σ2
d -WT(n)Py               (18) 

The minimum error in the mean square error is as: 
Jmin=σ2

d –W0Py=σ2
d – PxR-1

xPy            (19) 
The minimum MSE in wavelet domain is equal to that of 

time domain and can be written after further solving (19) and 

can be given as[30][31]: 
Jw
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d – PxR-1

xPx               (20) 

3.2. Convergence Analysis of Wavelet Transform 
Domain LMS Adaptive Filter with AR Process 

AR(P) model for univariate time series are Markov 
process, and Pth order AR process to generate the data yt is as: 

1

P
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where ak; k=1, 2, 3, …, P are AR coefficients and εt a white 
sequence with εt ⊥εs for t≠s. The M order N×N 
autocorrelation matrix RN can be given according to[23] as: 
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where, c1, c2, …, cM are constant and ρk for all k are the M 
poles of low pass filter with ρk∈[0, 1] for all k.  

3.2.1. Eigenvalue Spread for First Order AR Process 

The first order Markov signals can be obtained by passing 
a white noise through a one-pole low-pass filter. The N by N 
autocorrelation matrix of AR (1) or Markov-1 process is 
obtained from (23) as:  
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The autocorrelation matrix W
NR in the wavelet domain 

for AR (1) process is the autocorrelation matrix of the 
Markov-1 process of the wavelet transform domain input 
signal of the same parameter ρ that is: N

W
N WRR ≈ ; 

where W is the N×N order wavelet transform matrix. Now, 
putting the value of the wavelet transform matrix from (B. 10) 
of appendix-B, we have the following form as: 
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The Toeplitz matrix W
ND  defined by the first row of (25) 

as: 
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Now, substituting the corresponding elements from (25) 
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for even value of l 
The power spectrum of the wavelet domain input AR(1) 

process can be written as[26]: 
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Now, considering a=0.5{1+(-1)2ρ}, we have (30) in the 
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Again considering ρ1=ρa, we have above equation in the 
following form as: 
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3.2.2. Eigenvalue Spread for Second Order AR Process 

The characteristic equation for second order AR (2) 
process is given as[32]: 

1+a1z-1+a2z-2=0                  (35) 
The pole of the filters ρ1, and ρ2 is defined by the 

characteristics equation with the following form of transfer 
function as: 
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The N×N correlation matrix of the AR(2) process can be 
defined as:  
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The following matrix is defined as[25]: 
DN=c1D1

N+c2D2
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Where, 
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and WN is the Nth wavelet transform matrix defined in (B. 10) 
of appendix-B. The numerical value of the matrix DN of (40) 
has been calculated in appendix-C and is given as: 
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if c=c1+c2, and s=c1ρ1+c2ρ2 then (44) can be written as: 
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where, ρa=1+ρ1, ρb=1-ρ2, and ρx=1+ρ2, ρy=1-ρ2. The power spectrum of the input with AR(2) process can be written as: 
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∞
−

=−∞
= ∑P R                                (47) 

Now, we can find RDWT
N(l,l) from (44) and is given as: 
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2
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If lll cc 2211
~ ρρρ += ; l=0, 1, …, N-1, the (50) can be written as: 

{ } all ll
l

DWT
N ρρρ ~~)1(1

2

~
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where, { }ρ~)1(1
2
1 la −+= . Now, (50) can be written as: 

1
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Eigen value maximum when cos(ω)= −1 and minimum when cos(ω)=1. The Eigenvalue spread is given as: 

Eigenvalue spread=
( )
( )2

2

min
~1

~1
a
amas

ρ
ρ

λ
λ

+
−

= ,
22

2
min

2 (1 )
2 (1 )

masλ ρ ρ
λ ρ ρ

 − −
=   + + 





                     (51) 

where, 2211
~ ρρρ cc += for 1=l . 

4. Structure of Wavelet Transform LMS 
Algorithm 

Signal in most of engineering applications are 
non-stationary, and Fourier transform encountered difficulty 
to analyze the time-frequency property[33][34]. The wiener 
filter is assumed to be stationary but the stationary 
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assumption of the noisy signal cannot completely satisfied in 
many applications[35]. The SWT domain signal vector v(k) 
in the matrix form can be expressed as: 

)()( kk Ψxν =                   (52) 
where, x(k)=[…, x(k+1), x(k), x(k-1), …]T , ψ is the wavelet 
transform matrix whose row vector is ψmn as: 

ψmn=[…, ψmn(k-1), ψmn(k), ψmn(k+1), …]T (53) 
The SWT-transformed signal vector v(k) can be expressed 

in the following form as: 
v(n)=[dJ-1, dJ-2, …, dL, sL]          (54) 

The smooth and details components at level j can be 
expressed as: 

sj-1=H[J-j]sj and dj-1=G[J-j]sj             (55) 
The low pas filter H and high pass filter G denoted by the 

sequence {hn}n∈z and {gn}n∈z with gn=(-1)nh1-n; where hn’s 
satisfy the orthogonaligy condition hnhn+2j=0; j=0, 1, 2, …., 
SWT on N samples of signal x(n) yields[35]: 

{ 1 1( ) (0), , ( 1), ,J J
k kn N− −= −ν d d   2 2(0), , ( 1), ,J J

k k N− − −d d   
 

(0), , ( 1), ,L L
k k N −d d    }(0), , ( 1)L L

k k N −s s    (56) 
where, x(n)={x0[0], …, x0[N-1], …, xk[0], …, xk[N-1], …, 
xk-1[0], …, xk-1[N-1]}. The SWT provides the same length of 
both smooth and details components and this property is very 
useful in time-varying application of wiener filter in block by 
block basis.  The SWT-domain based LMS algorithm 
provides the system output signal y(k) that can be 
represented in the following form: 

y(n)=WJ(n)vJ(n)                  (57) 
where, J=1, 2, …, L; L is the level of decomposition. The 
weighting vector for each level can be denoted as: 

WJ(k)=[W1(0), …, W1(N-1), …, W2(0), …, 
W2(N-1), …,  WL(0), …, WL(N-1)]           (58) 

The SWT domain (v(n) ) of the input signal x(n) as in (57) 
having the following form as: 

{ 1 1( ) (0), , ( 1), ,n N= −ν d d  ,),1(,),0( 22
 −Ndd    

,),1(,),0(  −NLL dd  })1(,),0( −NLL ss      (59) 
The SWT based LMS algorithm according to (5) can be 

represented as: 
)()(ˆ)(2)1()( 1 nvnnnWnW J

J
JJJ −+−= Reµ     (60) 

where, eL(n)=vL
d(n)-WL(n-1)vL(n) 

vL
d(n)=L level SWT domain signal of the desired signal 

d(n), in vector form vL
d(n )=[ vL

d(0), vL
d(1), …, vL

d(N-1)].  
The convergence factor and misadjustment for each level 

of the SWT domain signal is governed according to the 
algorithm as discussed in section 2 of this paper.  The MSE 
cost function of each level can be written in the following 
form as: 

J(m)=E[eL(m)eL(m)}               (61) 

5. Result 
The misadjustment of the adaptive filter measures the 

amount of noise in the filter output and increases with the 
step-size parameter. Lower amount of misadjustment 
indicates the better denoising performance of the filtering 
algorithm. Let us consider a multi-tone signal of the 
following form as: 

y(n)=sin(0.1πn)+ cos(0.1πn)+ sin(0.2πn)     (62) 
The toeplitz matrix Ry of the autocorrelation matrix of the 

multi-tone signal y(n) in (62) before any transformation is 
shown in Fig. 1(a). The toeplitz matrix after application of 
DCT and DWT in the multi-tone signal y(n) is shown in Fig. 
1(b) and Fig. 1(c) respectively. The misadjustment curve in 
Fig. 1(d) shows that the misadjustment increases of the three 
cases as input toeplitz matrix, DCT based input toeplitz 
matrix, and DWT based input autocorrelation matrix. The 
DWT-based curve shows the better performance because it 
provides less misadjustment value for all values of µ than 
other two. 

 
Figure 1(a).  Autcorrelation matrix of the input multi-tone signal without any tranformation 
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Figure 1(b).  Autocorrelation matrix of the DCT transformed based multi-tone signal 

 
Figure 1(c).  DWT based autocorrelation matrix of the input multi-tone signal 
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Figure 1(d).  Misadjustment result of input autocorrelation matrix, DCT and DWT based input autocorrelation matrix 

 
Figure 2.  Eigenvalue spread of DFT-LMS, DCT-LMS, and DWT-LMS for AR (1) input process 

The eigenvalue spread of DFT-LMS and DCT-LMS for AR(1) process is shown in Fig. 2, details of the work has been 
discussed in the work[23][36]. The eigenvalue spread of DWT-LMS analyzed in this paper with the same procedure is also 
shown in Fig. 2, the result shows that DWT-LMS achieves the smaller eignenvalue spread than DFT-LMS and DCT-LMS at 
some upper region of the area of (ρ). Hence, DWT-LMS gives the best convergence performance for the AR(1) input process. 
The eigenvalue spread for DFT-LMS and DCT-LMS for AR(2) input process has been analyzed in the work[25] and the 
result is also shown in Fig. 3(a) and Fig. 3(b). In the work[25], DCT-LMS achieves the smaller eigenvalue spread than other 
and provides the best convergence performance for the AR(2) process. 

The autocorrelation matrix RN for LMS with AR(2) process without any transformation is calculated in (37), and the same 
calculation for the multi-tone siganl is calculated in this paper with ρ1 and ρ2, and the 3D-plot of the matrix is shown in Fig. 
4(a). 

The matrix 1
ND , 2

ND , and ND  in (41) and (40) after applying DWT in the input AR(2) process is shown in Fig. 4(b), Fig. 

4(c), and Fig. 4(d) respectively. Now, we compute the matrix 1DWT DWT
N N N

−=X R D ; where RN is given in (37) and DWT
ND is 
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given in (43) and plotted in Fig. 4(d). The distribution of DWT
NX  is shown in Fig. 5(a) for the sample value of N=30, the 

result shows that most elements of DWT
NX  is very close to zero and the only the diagonal elements having values close to 0.6. 

The distribution of DWT
NX  is very important factor to compute the eigenvalue spread of the autocorrelation matrix VN; that 

obtained after DWT. 

 
Figure 3(a).  Eigenvalue spread of DFT-LMS for second-order lowpass AR process 

 
Figure 3(b).  Eigenvalue spread of DCT-LMS for second-order lowpass AR process 
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Figure 4(a).  Autocorrelation matrix RN before any transform for AR(2) input process 

 

Figure 4(b).  Matrix 
1
ND  after DWT in the AR(2) process 
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Figure 4(c).  Matrix 
2
ND  after DWT in the AR (2) process 

 
Figure 4(d).  Matrixn DN after DWT in the AR(2) process 
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Figure 5(a).  3D plot of the matrix 
DWT
NX  involved in DWT-LMS eigenvalue spread calculation 

 
Figure 5(b).  Eigenvalue spread of DWT-LMS for second-order lowpass AR process 
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Figure 6.  Denoising performance of DCT-Leaky LMS and SWT-Leaky LMS for AR(2) process 

The convergence relation for DWT-LMS can be obtained 
from (51) for real roots of |ρ1|, |ρ2|<1 with second-order input 
case. The eigenvalue spread can be plot for DWT-LMS with 
given real or complex values of ρ1, and ρ2. The 3D plot of the 
eigenvalue spread of DWT-LMS is in Fig. 5(b), the result 
shows that the value converges to zero when both roots 
deviate from the origin. The eigenvalue spred of DFT-LMS, 
DCT-LMS, and DWT-LMS for second-order AR process as 
in Fig. 3(a), 3(b), and 5(b), and the result shows that 
DWT-LMS provides the best convergence performance 
among them. Hence, the lower value of the eigenvalue 
spread of DWT-LMS provides the lowest noise term in the 
output of the denoise signal. To support the above analytical 
result, the signal in (62) is passed through a 2nd order AR 
filter as given below: 

y(n)=y(n)+0.5y(n-1)+0.33y(n-2)+v(n)       (63) 
where, v(n) is white gaussian noise with mean zero and 
variance σ2; a=[1 0.5 0.33] is the AR coefficients. The 
original multi-tone and output of the AR filter as noisy signal 
is shown in Fig. 6(a) and Fig. 6(b). The DCT algorithm as 
in[40] is used in Leaky LMS-Newton adaptive filter[36] 
which is known as DCT-Leaky LMS-Newton algorithm 
which is actually same as LMS with better denoising 
performances. In this paper. the AR(2) output signal is 

passed through DCT-Leaky LMS and SWT-Leaky LMS 
with considering µ=0.01 and γ=0.1, the value of µ is 
considered depending on the stability  condition, details of 
the mathematical analysis is discussed in sectin II. The 
denoising signal of DCT-Leaky LMS and SWT-Leaky LMS 
is shown in Fig. 6(c) and Fig. 6(d), the result shows that 
SWT-Leaky LMS provides better denoising performance 
than DCT-Leaky LMS. The error of the denoised signal from 
the actual is given in the below Table-1. From the table it can 
be concluded that SWT-Leaky LMS provides more 
denoising than DCT-Leaky LMS for each sample value. 

Table 1.  Denoising Error of DCT-Leaky LMS and SWT-Leaky LMS 
Number of 

sample 
Error for DCT-Leaky 

LMS 
Error for SWT-Leaky 

LMS 
0 2.1893 0.1746 
1 2.9146 0.6288 
2 3.1273 1.1566 
3 2.5611 1.5034 
4 1.2481 1.2635 
5 -0.0587 0.6573 
6 -1.0500 0.0807 
7 -1.7193 -0.7298 
8 -1.8562 -1.1723 
9 -1.6414 -1.2298 
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The learnign curve J(n) or MSE of both DCT-Leaky LMS 
and SWT-Leaky LMS with the same parameter through the 
same noisy channel is shown in Fig. 6(f) and Fig. (g). From 
the result it is shown that the maximum value of the learning 
curve of SWT-Leaky LMS is close to 2 at initial sampling 
point an it converge to zero after 10 sample points, in the 
other hand DCT-Leaky LMS provides high value of J(n) as 
upto 10 and it repeated to the maximum after 30 sample 
points. So, SWT-Leaky LMS provides better convergence 
performance than DCT-Leaky LMS algorithm.  

6. Conclusions 
The stability and convergence performance of DFT-LMS, 

DCT-LMS, DHT-LMS, and DST-LMS has been analyzed in 
details in work[25], and the result shows that DCT-LMS and 
DHT provides better convergence performance than other. In 
this work, we have designed DWT-LMS Newton  adaptive 
or SWT-LMS Newton adaptive, or in simply DWT-LMS or 

SWT-LMS adaptive filtering algorithm and the 
performances is compared with the DCT-LMS adaptive 
filtering algorithm for first-order and second-order AR 
process as developed in the early work[25]. From the 
comparison result it is shown that DWT-LMS provides 
better misadjustment, convergence,and denoisingperforman
ce than that of DCT-LMS adaptive filtering algorithm for 
both AR(1) and AR(2) process. For example, if ρ=0.8 then 
eigenvalue spread of DCT-LMS is 1.8 and for DWT-LMS is 
1.37 for AR(1) process. The eigenvalue spread of DCT-LMS 
is 2.63 and for DWT-LMS is 0.25 for ρ1=0.59 and ρ2= 0.79 
respectively with AR(2) process. From talble-1, it is also 
concluded that SWT-LMS provides less denoising error in 
each sample value than DCT-LMS adaptive algorithm. 
Hence, the DWT-LMS provides better misadjustment, 
convergence or eigenvalue spread, and denoising 
performance than others as presented in work[25]. In future 
the SWT-LMS algorithm can be applied for higher order AR 
process and other type of input process like MA and ARMA 
process. 

APPENDIX A: MSE of Wavelet Packet Domain Signal 
J(W)=E{e2(n)}=E{[d(n) −r(n)]2}=E{[d(n)-WT(n)y(n)]2}  
The error function in wavelet domain can be written by replacing the input signal in wavelet transform domain as: 

J(W)= E{[d(n) −WT(n)Vpx(n)]2}                                    (A.1) 
J(W)= E{[d(n) −WT(n)Vpx(n)]×[d(n)-WT(n)Vpx(n)]} 
J(W)=E{d2(n)}−2WT(n)VpPx+WT(n)VpE{d(n)x(n)}+WT(n)VpE{x(n)xT(n)}W(n)Vp 
Now, E{d2(n)}=σ2

d is the variance of the desired signal d(n).  
Px=E{d(n)x(n)}; the cross-correlation between d(n) and x(n) 
Py=VpPx; Cross-correlation vector in wavelet domain 
Rx=E{x(n)xT(n)}; autocorrelation matrix of x(n) 
Ry=VpRxVp; autocorrelation matrix in wavelet domain 
W(n)=R-1

yPy; filtering weighting vector in wavelet domain 
Substituting those parameters we have the solution as: 

J(W)= σ2
d −2WT(n)VpPx+ WT(n)VpRxWVp                              (A.2) 

APPENDIX B: Algorithm in Generating a Wavelet Matrix 
Let us assume W be an N by N matrix of the following form: 

W=WI                                               (B.1) 
Where I is also N by N unity matrix, the alternative form of (B.1) can be written as: 

W=W[δ1 δ2 … δN ]=[ Wδ1 Wδ2 … WδN ]                          (B.2) 
Where δi for i=1, 2, …, N is the ith column of I. Equation (B.2) implies that the wavelet transform on δi; i=1, 2, …, N 

provides N column vectors and the vectors form a wavelet matrix. The 1 scale wavelet transform of a column vector x of 
length N can be expressed as[31][38]: 

y1=W1
(N) x                                            (B.3) 

The two scale wavelet coefficients can be represented as: 
y2=W’2

(N) x                                           (B.4) 
where W’2

(N) can represented of the following form as: 









=

2/

)2/(
1)(

2 0
0'
N

N
N

I
WW                                     (B.5) 

where W1
(N)  and W1

(N/2)  corresponds to 1 scale wavelet transform matrix of length N and N/2. Now, the 2 scale wavelet 
transform matrix for the input vector x can be represented by integrating (B.4) and (B.5) as: 
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                          (B.6) 

A k scale wavelet transform matrix can be generated by the procedure in (B.6) and can be represented in the following form 
as: 

Wk
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Now, assume the high pass and low pass filter response of the form, h=[h0, h1, …, hm-1], and g=[g0, g1, …, gm-1], then we 
have the wavelet two functions of the form as: 

ψ =[0 h1 h0 0]; 







=

10

01

00
00
hh

hh
ψ  

φ =[0 g1 g0 0]; 







=

10

01

00
00
gg

gg
φ  

The first scale matrix W1
(N) can be written in the form as: 









=

φ
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W )(
1

N                                            (B.8) 

The transform matrix for the Haar wavelet can be written of the form as[39][40]: 
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In the case of Haar transform the scaling and wavelet values have been given in[41] with[h0, h1]=[1/2, 1/2] and[g0, g1]=[1/2, 
-1/2]. The wavelet transform matrix can be written as: 

.
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APPENDIX C: Determination of Wavelet Domain Auto Correlation Matrix with 
AR(2) Process 

Using (B.10) and (39), we have 
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Again, D1
N= WH
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Similarly, D2
N= WH

N{ Diag(WNR2
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N }, and we have the numerical value as: 
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