
American Journal of Signal Processing 2012, 2(1): 1-4
DOI: 10.5923/j.ajsp.20120201.01

Design and Implementation of a Semi-Unified High
Performance Signal Processing Coprocessor

Mojdeh Mahdavi*, Mohammad Amin Amiri

Department of Electronics, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran

Abstract Utilizing the DFT, the DHT, the DCT or the DST is an obvious choice in signal processing domain. This pa-
per describes the implementation of a semi-unified high performance coprocessor of transform length '8' for the synchro-
nous design in XC3S1400AN-4FG484 FPGA device of Xilinx Company. The operating frequency of 20 MHz is achieved.
The paper presents the trade-offs involved in designing the architecture, the design for performance issues and the possi-
bilities for future development.

Keywords Coprocessor, Discrete Transforms, Implementation

1. Introduction
Memory based Field Programmable Gate Arrays (FPGAs)

have the advantage of real-time in-circuit re-configurability
as opposed to other gate arrays of similar gate density. This
advantage translates into unlimited, in-circuit flexibility,
re-configurability and reliability, facilitating prototyping of
complex electronic designs[1]. The high capacity and per-
formance that FPGAs have achieved in recent years allow
them to accelerate digital signal processing (DSP) tasks.
FPGA devices have been used to implement Custom DSPs
since the beginning of this decade[2]. Usually, FPGAs are
used as VLSI replacement on low volume production or
prototyping devices which are to be eventually implemented
as ASICs. Their 100% testability and the possibility of
achieving a high degree of fault coverage makes them in-
creasingly attractive for complex designs with multiple (and
of course limited) iterations on their design cycles[1]. The
FPGA devices have benefited from the improvements in
VLSI technology, leading to higher speed and capability as
well as lower power consumption[2].

The discrete transform algorithms are very well known
and due to their versatility and very simple hardware im-
plementation are widely used in VLSI digital signal proc-
essing systems. The discrete Hartley transform (DHT) is
similar to the DFT, with the only difference that it deals only
with real computation. The discrete cosine transform (DCT)
has long been used in image and speech processing. The
JPEG standard till JPEG2000 used the DCT as the basis
function. The discrete sine transform (DST) is useful for spe-

* Corresponding author:
mahdavi@shahryariau.ac.ir (Mojdeh Mahdavi)
Published online at http://journal.sapub.org/ajsp
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

ctrum analysis, data compression, speech processing, bio-
medical signal processing and in many other applications.
These basic signal processing transforms are required in
almost all the phases of image and signal processing and
cover a large range of biomedical signal and image proc-
essing, for various imaging techniques and spectral analysis
of the signals[4].

A number of architectures are proposed for the realization
of these transforms[2-7]. However, a unified architecture,
which can compute all these transforms, can serve the pur-
pose of a general DSP chip, and therefore a unified archi-
tecture has been adopted to obtain all the transforms in a
single FPGA chip. The basic structure of all the transforms,
DFT, DCT, DHT and DST, are almost equivalent and this
property has been exploited in the design of the unified ar-
chitecture.

2. Discrete Transforms
This Section presents the transforms in detail and the

possibility of their implementation as the basic processing
elements. For a real sample sequence x(n), where n is (0,1,...,
N-1) the discrete transforms which are the DFT, the DHT,
the DCT and the DST, can be defined as:

DFT
1

0

2 2() () cos sin

0,1,2, , 1
() () ()

N

n

x y

kn knF k x n j
N N

k N
F k F k jF k

π π−

=

    = −        
= −

= +

∑


 (1)

)()()(kjFkFkF yx +=

DHT
1

0

2 2() () cos sin

0,1,2, , 1

N

n

kn knH k x n
N N

k N

π π−

=

    = +        
= −

∑


 (2)

2 Mojdeh Mahdavi et al.: Design and Implementation of a Semi-Unified High Performance
 Signal Processing Coprocessor

DCT

() ()
1

0

2 ().cos 2 1 / 2

1 0
0,1,2, 1 2

1

N

k
n

k

C k x n n k N
N

k
k N where

otherwise

ε π

ε

−

=

= +  

 == − = 


∑



 (3)

DST

() ()
1

0

2 ().sin 2 1 / 2

1
1,2, 2

1

N

k
n

k

S k p x n n k N
N

k N
k N where p

otherwise

π
−

=

= +  

 == = 


∑



 (4)

2.1. DHT based on Direct Algorithm

Let)(nx and)(kH be an 8-length Hartley Transform
pair. The corresponding formulation in matrix form is
[] [].[]H T X= where []T is an 88× cas (cosine and sine)
matrix [6].

Let
(0) () 0,1,2, ,7iS x i i= ∀ = 

 (5)
The transform matrix for the 8-DHT is therefore:

(0) 1 1.4142 1 0 1 1.4142 1 0
(1) 1 1 1 1 1 1 1 1
(2) 1 0 1 1.4142 1 0 1 1.4142
(3) 1 1 1 1 1 1 1 1
(4) 1 1.4142 1 0 1 1.4142 1 0
(5) 1 1 1 1 1 1 1 1
(6) 1 0 1 1.4142 1 0 1 1.4142
(7) 1 1 1 1 1 1 1 1

H
H
H
H
H
H
H
H

− − −  
   − − − −  
   − − −
  

− − − −  =   − − −
  

− − − −  
   − − −  
    

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)

x
x
x
x
x
x
x
x

  
  
  
  
  
  ⋅  
  
  
  
  
    

 (6)

We start by remarking initially that
2 (/ 2) 2 2(1)kk i N ki kicas cas k cas

N N N
π π ππ+     = + = −     

     
 (7)

Which follows from the addition of arcs formula:
() cos sincas cas casα β β α β α′− = ⋅ − ⋅

Where cas′ is the complementary cas function and
() cos() sin()cas α α α′ = − .

Clearly, modules of components on the 2nd column are
identical to the corresponding elements at the 6th column;
the same is true for the 3rd and 7th column. We can thus
consider new variables () ()()1 5x x+ and () ()()1 5x x− instead
of x(1) and x(5), () ()()2 6x x+ and () ()()2 6x x− instead of x(2)
and x(6) , and so on.

{ }
{ }
{ }
{ }

0 1

2 3

4 5

6 7

(1) ((0) (4)), (1) ((0) (4)) ,

(1) ((2) (6)), (1) ((2) (6)) ,

(1) ((1) (5)), (1) ((1) (5)) ,

(1) ((3) (7)), (1) ((3) (7))

S x x S x x

S x x S x x

S x x S x x

S x x S x x

= + = −

= + = −

= + = −

= + = −

 (8)

The first-order pre-additions as defined above always
yield at least a half of vanishing elements in the new trans-
form matrix. Although such an implementation requires only
two multiplications, we may go further and combine other
columns.

{ }
{ }

0 1

2 3

4

5

6

7

(2) ((0) (4)), (2) ((0) (4)) ,

(2) ((2) (6)), (2) ((2) (6))
{ (2) ((1) (5)) ((3) (7)),

(2) ((1) (5)) ((3) (7)),
(2) ((1) (5)) ((3) (7)),
(2) ((1) (5)) ((3) (7))}.

S x x S x x

S x x S x x
S x x x x
S x x x x
S x x x x
S x x x x

= + = −

= + = −

= + + +
= + − +
= + + −
= − − −

 (9)

Therefore
0

1

2

(2)(0) 0 1 0 1 0 0 .707 .707
(2)(1) 1 0 1 0 0 1 0 0
(2)(2) 0 1 0 1 0 0 .707 .707

(3) 1 0 1 0 1 0 0 0
(4) 0 1 0 1 0 0 .707 .707
(5) 1 0 1 0 0 1 0 0
(6) 0 1 0 1 0 0 .707 .707
(7) 1 0 1 0 1 0 0 0

SH
SH
SH
SH

H
H
H
H

   
   −   
   − −
   

−   = ⋅   − −
   

− −   
   − −   
      

3

4

5

6

7

(2)
(2)
(2)
(2)
(2)

S
S
S
S

 
 
 
 
 
 
 
 
 
 
 
  

 (10)

2.2. An Algorithm for the DFT Implemented by DHT

According to the definition of DFT and DHT the DFT data
Sequence is given by the following relation:

() ()Re(())
2

DHT k DHT N kDFT k + −
= (11)

() ()Im(())
2

DHT k DHT N kDFT k − −
= (12)

2.3. Fast Cosine Transform based on Direct Algorithm

According to the definition of DCT, for a given data se-
quence {x(n) : n 0,1, 2, , N -1}= 

, the DCT data sequence
{C(n) : n 0,1, 2, , N -1}= 

 is given by (equation (3)). The dis-
crete Cosine Transform is defined as a matrix multiplication
which is illustrated below[7-8].

(0) 1 1 1 1 1 1 1 1 (0)
(4) (2)
(2) (4)
(6) (6)
(1) (7)
(5) (5
(3)
(7)

C x
C x
C x
C x
C x
C x
C
C

α α α α α α α α
β δ β δ β δ β δ
δ β δ β δ β δ β
λ µ ν γ λ µ ν γ
µ ν γ λ µ ν γ λ
γ λ µ ν γ λ µ ν
ν γ λ µ ν γ λ µ

   
   − − − −   
   − − − −
   

− − − −   =   − − − −
   

− − − −   
   − − − −   

− − − −      

)
(3)
(1)

x
x

 
 
 
 
 
 
 
 
 
 
 
  

 (13)

Where 1 2α = , cos(/ 8)β π= , sin(/ 8)δ π= ,
cos(/16)λ π= , cos(3 /16)γ π= , sin(3 /16)µ π= , and
sin(/16)ν π= .

2.4. An Algorithm for the DST Implemented by DCT

In this part a method of composing the discrete sine
transform from the discrete cosine transform is demonstrated.
Let x (n): n 0, 1, 2,}, N-1, be a sequence of N data values[9].
Substituting m N k; k 1, 2… N into the discrete cosine
transform (equation (5)), results in:

1

0

2 (2 1)()() () cos
2

1,2, ,

N

N k
n

n N kC N k c x n
N N

k N

π−

−
=

+ −
− =

=

∑


 (14)

Since
(2 1)() (2 1)cos cos(2 1) cos

2 2 2
(2 1) (2 1)sin(2 1) sin (1) sin

2 2 2
n

n N k n kn
N N

n k n kn
N N

π π π

π π π

+ − +
= + ⋅ +

+ +
+ ⋅ = −

 (15)

Therefore
1

0

2 (2 1)() (1) ()sin
2

1,2, ,

N
n

N k
n

n kC N k c x n
N N

k N

π−

−
=

+
− = −

=

∑


 (16)

Let
() (1) (); 0,1, 2, , 1nx n x n n N= − = − (17)

And ()C m be the discrete cosine transform of sequence

 American Journal of Signal Processing 2012, 2(1): 1-4 3

()x n then:
1

0

1

0

2 (2 1)() (1) ()sin
2

2 (2 1)()sin ()
2

1,2, ,

N
n

N k
n

N

N k
n

n kC N k c x n
N N

n kc x n S k
N N

k N

π

π

−

−
=

−

−
=

+
− = −

+
= =

=

∑

∑


 (18)

Where, S(k) is the discrete sine transform (DST) of the
sequence x(n) . Therefore, the procedure for obtaining the
sine transform of the sequence x(n) is composed of three
steps.

1. Change the signs of all odd numbered data to the op-
posite sign to form a new sequence)(nx . (Notice that the
sequence number is counted from zero).

2. Compute the discrete cosine transform on the sequence
)(nx .

3. By reversing the sequence order of data which were
produced by step 2, the discrete sine transform of the se-
quence x(n) is obtained.

This procedure may be represented in the form of matrix
multiplication. Let []NS and []NC be the discrete sine and
cosine transforms of order N, respectively [13-15]. Then

[] [][]N N N NS I C D =   (19)

Where []NI is the opposite diagonal identity matrix, and
[]ND is the odd sign changing matrix defined as:

[]

1 0
1

1
1

1
0 1

ND

 
 − 
 
 = − 
 
 
 
 − 



 (20)

3. Coprocessor Architecture
3.1. DCT_DST Block

The DCT block is first implemented according to the di-
rect Algorithm (equation (13)) and then we have used this
DCT block to implement the DCT_DST block (equation
(19)). Figure. 1 illustrates the proposed architecture for
DCT_DST block. If the "S" input signal has the logic value
of zero, the DCT transform would be applied on the input
data vector and if the "S" input signal has the logic value of
one, the DST transform would be applied on the input data

vector.

Figure 1. Block diagram for proposed DCT_DST architecture

3.2. DHT_DFT Block

First, the DHT block is implemented according to the
Direct Algorithm using its matrix form in (equation (10)) and
then it is used to implement the DHT_DFT block (equations
(11), (12)). Figure. 2 is our proposed architecture. The
hardware is extracted from this data flow diagram. If the "S"
input signal has the logic value of zero, the DHT transform
would be applied on the input data vector and if the "S" input
signal has the logic value of one, the DFT transform would
be applied on the input data vector. The "I" signal is also
used to select the real or imaginary part of the DFT transform.
This signal is just for understanding the block diagram and is
ignored in the top module.

Figure 2. Block diagram for proposed DHT_DFT architecture

Figure. 3 shows the synthesized block diagram of the
Coprocessor. Figure 4. illustrates the simulation result of this
module. During this simulation all of the four transforms of
this coprocessor have been applied to an eight-bit data input.

If the "T_SEL" signal has the hexadecimal value of "00",
the outputs will be zero. Having the value of "01", the
"T_SEL" signal will lead the DST transform to the output.

Figure 3. Synthesized circuit of the Coprocessor

4 Mojdeh Mahdavi et al.: Design and Implementation of a Semi-Unified High Performance
 Signal Processing Coprocessor

Figure 4. Simulation result of the Coprocessor

The DCT transform will appear on the output when the
"T_SEL" signal has the value of "02". The values of "03" and
"04" will lead the DFT and DHT transforms on the output,
respectively.

3.3. Implementation Results

The whole architecture including the computation and
data path is modelled at Register Transfer Level in VHDL,
simulated and tested by a test bench using ModelSim simu-
lator and implemented in XC3S700An-4FG484 FPGA de-
vice of Xilinx Company. The Simulation result of the pro-
posed coprocessor has been shown on Figure 4.

The Hardware description of this architecture for DCT,
DST, DHT and DFT implementations of transform length '8'
was synthesized using Xilinx Series FPGA tool (ISE) and
mapped on the XC3S700An-4FG484 FPGA chip. In the
8-bit coprocessor implementation, the worst delay time is
about 48 ns and thus a frequency of 20 MHz is achieved. The
routed IP takes total of 3426 Slices which is 58 percent of the
chip. The total number of I/Os used in the design is 328
which are 88 percent of the total I/Os of this chip.

4. Conclusions
This paper has proposed an efficient mapping on FPGA of

a common Coprocessor. The DFT algorithm is implemented
by DHT, which is based on Direct Algorithm. The Direct fast
DCT algorithm is presented and then a method of computing
the discrete sine-transform from the discrete cosine trans-
form is demonstrated. For the future work we can implement
this coprocessor using DCT as the base transform for im-
plementing other transforms to obtain more surface reduc-
tion.

REFERENCES
[1] J. Davidson, "FPGA Implementation of a Reconfigurable

Microprocessor", IEEE Custom Integrated Circuits Confe-
rence, p.p.:3.2.1-3.2.4, 9-12 May 1993.

[2] Javier Valls Martin Kuhlmann Keshab K. Parhi, "Efficient
Mapping Of CORDIC Algorithms On FPGA" IEEE Work-
shop on Signal Processing Systems, p.p.336-345, 11-13 Oct.
2000.

[3] B.Das, S.Banerjee, "Unified CORDIC-based chip to realize
DFT/DHT/DCT/DST", IEE Proc. Comput. Digit. Tech., Vol.
149, No. 4, July 2002.

[4] A.S Dhar, S. Banerjee, "An array architecture for fast com-
putation of discrete hartley transform", IEEE Trans. Circuits
Syst., Vol. 38, No. 9, pp. 1095-1098, 1991 .

[5] Angarita, F.; Perez-Pascual, A.; Sansaloni, T.; Vails, "Effi-
cient FPGA implementation of CORDIC algorithm for cir-
cular and linear coordinates", International Conference on
Field Programmable Logic and Applications, p.p.535-538,
24-26 Aug. 2005.

[6] A.C. Erickson, B.S. Fagin, "Calculating the FHT in hard-
ware", IEEE Trans. Signal Processing, Vol.40, p.p.1341-1353,
June 1992.

[7] H. EL-Bannai, A. A. EL-Fattah, W. Fakhr, "An efficient
implementation of the 1D DCT using FPGA technology",
ICM 2003, Dec. 9-1 1, Cairo, Egypt, 2003.

[8] N.Ahmed, T.Natarajan, K.R.Rao, "Discrete cosine transform",
IEEE Transactions on Computers, Vol. C-23, Issue1, p.p.
90-93, Jan. 1974.

[9] J. Astola, D. Akopian, "Architecture-oriented regular algo-
rithms for discrete sine and cosine transform", IEEE Trans.
Signal Processing, Vol. 47, p.p.1109-1124, Apr. 1999.

	1. Introduction
	2. Discrete Transforms
	2.1. DHT based on Direct Algorithm
	2.2. An Algorithm for the DFT Implemented by DHT
	2.3. Fast Cosine Transform based on Direct Algorithm
	2.4. An Algorithm for the DST Implemented by DCT

	3. Coprocessor Architecture
	3.1. DCT_DST Block
	3.2. DHT_DFT Block
	3.3. Implementation Results

	4. Conclusions

