
American Journal of Signal Processing 2012, 2(1): 1-4 
DOI: 10.5923/j.ajsp.20120201.01 

 

Design and Implementation of a Semi-Unified High 
Performance Signal Processing Coprocessor 

Mojdeh Mahdavi*, Mohammad Amin Amiri 

Department of Electronics, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran 

 

Abstract  Utilizing the DFT, the DHT, the DCT or the DST is an obvious choice in signal processing domain. This pa-
per describes the implementation of a semi-unified high performance coprocessor of transform length '8' for the synchro-
nous design in XC3S1400AN-4FG484 FPGA device of Xilinx Company. The operating frequency of 20 MHz is achieved. 
The paper presents the trade-offs involved in designing the architecture, the design for performance issues and the possi-
bilities for future development. 
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1. Introduction 
Memory based Field Programmable Gate Arrays (FPGAs) 

have the advantage of real-time in-circuit re-configurability 
as opposed to other gate arrays of similar gate density. This 
advantage translates into unlimited, in-circuit flexibility, 
re-configurability and reliability, facilitating prototyping of 
complex electronic designs[1]. The high capacity and per-
formance that FPGAs have achieved in recent years allow 
them to accelerate digital signal processing (DSP) tasks. 
FPGA devices have been used to implement Custom DSPs 
since the beginning of this decade[2]. Usually, FPGAs are 
used as VLSI replacement on low volume production or 
prototyping devices which are to be eventually implemented 
as ASICs. Their 100% testability and the possibility of 
achieving a high degree of fault coverage makes them in-
creasingly attractive for complex designs with multiple (and 
of course limited) iterations on their design cycles[1]. The 
FPGA devices have benefited from the improvements in 
VLSI technology, leading to higher speed and capability as 
well as lower power consumption[2]. 

The discrete transform algorithms are very well known 
and due to their versatility and very simple hardware im-
plementation are widely used in VLSI digital signal proc-
essing systems. The discrete Hartley transform (DHT) is 
similar to the DFT, with the only difference that it deals only 
with real computation. The discrete cosine transform (DCT) 
has long been used in image and speech processing. The 
JPEG standard till JPEG2000 used the DCT as the basis 
function. The discrete sine transform (DST) is useful for spe- 
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ctrum analysis, data compression, speech processing, bio-
medical signal processing and in many other applications. 
These basic signal processing transforms are required in 
almost all the phases of image and signal processing and 
cover a large range of biomedical signal and image proc-
essing, for various imaging techniques and spectral analysis 
of the signals[4]. 

A number of architectures are proposed for the realization 
of these transforms[2-7]. However, a unified architecture, 
which can compute all these transforms, can serve the pur-
pose of a general DSP chip, and therefore a unified archi-
tecture has been adopted to obtain all the transforms in a 
single FPGA chip. The basic structure of all the transforms, 
DFT, DCT, DHT and DST, are almost equivalent and this 
property has been exploited in the design of the unified ar-
chitecture. 

2. Discrete Transforms 
This Section presents the transforms in detail and the 

possibility of their implementation as the basic processing 
elements. For a real sample sequence x(n), where n is (0,1,..., 
N-1) the discrete transforms which are the DFT, the DHT, 
the DCT and the DST, can be defined as: 
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2.1. DHT based on Direct Algorithm 

Let )(nx  and )(kH  be an 8-length Hartley Transform 
pair. The corresponding formulation in matrix form is 
[ ] [ ].[ ]H T X=  where [ ]T  is an 88×  cas (cosine and sine) 
matrix [6]. 

Let 
(0) ( ) 0,1,2, ,7iS x i i= ∀ = 

             (5) 
The transform matrix for the 8-DHT is therefore: 
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(7) 1 1 1 1 1 1 1 1

H
H
H
H
H
H
H
H

− − −  
   − − − −  
   − − −
  

− − − −  =   − − −
  

− − − −  
   − − −  
    

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)

x
x
x
x
x
x
x
x

  
  
  
  
  
  ⋅  
  
  
  
  
    

  (6) 

We start by remarking initially that 
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Which follows from the addition of arcs formula: 
( ) cos sincas cas casα β β α β α′− = ⋅ − ⋅  

Where cas′ is the complementary cas function and 
( ) cos( ) sin( )cas α α α′ = − . 

Clearly, modules of components on the 2nd column are 
identical to the corresponding elements at the 6th column; 
the same is true for the 3rd and 7th column. We can thus 
consider new variables ( ) ( )( )1 5x x+  and ( ) ( )( )1 5x x−  instead 
of x(1) and x(5), ( ) ( )( )2 6x x+  and ( ) ( )( )2 6x x−  instead of x(2) 
and x(6) , and so on. 
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The first-order pre-additions as defined above always 
yield at least a half of vanishing elements in the new trans-
form matrix. Although such an implementation requires only 
two multiplications, we may go further and combine other 
columns. 
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2.2. An Algorithm for the DFT Implemented by DHT 

According to the definition of DFT and DHT the DFT data 
Sequence is given by the following relation: 

( ) ( )Re( ( ))
2
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=           (11) 

( ) ( )Im( ( ))
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2.3. Fast Cosine Transform based on Direct Algorithm 

According to the definition of DCT, for a given data se-
quence {x(n) : n 0,1, 2, , N -1}= 

, the DCT data sequence 
{C(n) : n 0,1, 2, , N -1}= 

 is given by (equation (3)). The dis-
crete Cosine Transform is defined as a matrix multiplication 
which is illustrated below[7-8]. 
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Where 1 2α = , cos( / 8)β π= , sin( / 8)δ π= , 
cos( /16)λ π= , cos(3 /16)γ π= , sin(3 /16)µ π= , and 
sin( /16)ν π= . 

2.4. An Algorithm for the DST Implemented by DCT 

In this part a method of composing the discrete sine 
transform from the discrete cosine transform is demonstrated. 
Let x (n): n 0, 1, 2,}, N-1, be a sequence of N data values[9]. 
Substituting m N k; k 1, 2… N into the discrete cosine 
transform (equation (5)), results in: 
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Let 
( ) ( 1) ( ); 0,1, 2, , 1nx n x n n N= − = −         (17) 

And ( )C m  be the discrete cosine transform of sequence 
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Where, S(k) is the discrete sine transform (DST) of the 
sequence x(n) . Therefore, the procedure for obtaining the 
sine transform of the sequence x(n) is composed of three 
steps. 

1. Change the signs of all odd numbered data to the op-
posite sign to form a new sequence )(nx . (Notice that the 
sequence number is counted from zero). 

2. Compute the discrete cosine transform on the sequence 
)(nx . 

3. By reversing the sequence order of data which were 
produced by step 2, the discrete sine transform of the se-
quence x(n) is obtained. 

This procedure may be represented in the form of matrix 
multiplication. Let [ ]NS  and [ ]NC be the discrete sine and 
cosine transforms of order N, respectively [13-15]. Then 

[ ] [ ][ ]N N N NS I C D =                   (19) 

Where [ ]NI is the opposite diagonal identity matrix, and
[ ]ND is the odd sign changing matrix defined as: 
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3. Coprocessor Architecture 
3.1. DCT_DST Block 

The DCT block is first implemented according to the di-
rect Algorithm (equation (13)) and then we have used this 
DCT block to implement the DCT_DST block (equation 
(19)). Figure. 1 illustrates the proposed architecture for 
DCT_DST block. If the "S" input signal has the logic value 
of zero, the DCT transform would be applied on the input 
data vector and if the "S" input signal has the logic value of 
one, the DST transform would be applied on the input data 

vector. 

 
Figure 1.  Block diagram for proposed DCT_DST architecture 

3.2. DHT_DFT Block 

First, the DHT block is implemented according to the 
Direct Algorithm using its matrix form in (equation (10)) and 
then it is used to implement the DHT_DFT block (equations 
(11), (12)). Figure. 2 is our proposed architecture. The 
hardware is extracted from this data flow diagram. If the "S" 
input signal has the logic value of zero, the DHT transform 
would be applied on the input data vector and if the "S" input 
signal has the logic value of one, the DFT transform would 
be applied on the input data vector. The "I" signal is also 
used to select the real or imaginary part of the DFT transform. 
This signal is just for understanding the block diagram and is 
ignored in the top module. 

 
Figure 2.  Block diagram for proposed DHT_DFT architecture 

Figure. 3 shows the synthesized block diagram of the 
Coprocessor. Figure 4. illustrates the simulation result of this 
module. During this simulation all of the four transforms of 
this coprocessor have been applied to an eight-bit data input. 

If the "T_SEL" signal has the hexadecimal value of "00", 
the outputs will be zero. Having the value of "01", the 
"T_SEL" signal will lead the DST transform to the output. 

 
Figure 3.  Synthesized circuit of the Coprocessor 
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Figure 4.  Simulation result of the Coprocessor 

The DCT transform will appear on the output when the 
"T_SEL" signal has the value of "02". The values of "03" and 
"04" will lead the DFT and DHT transforms on the output, 
respectively. 

3.3. Implementation Results 

The whole architecture including the computation and 
data path is modelled at Register Transfer Level in VHDL, 
simulated and tested by a test bench using ModelSim simu-
lator and implemented in XC3S700An-4FG484 FPGA de-
vice of Xilinx Company. The Simulation result of the pro-
posed coprocessor has been shown on Figure 4. 

The Hardware description of this architecture for DCT, 
DST, DHT and DFT implementations of transform length '8' 
was synthesized using Xilinx Series FPGA tool (ISE) and 
mapped on the XC3S700An-4FG484 FPGA chip. In the 
8-bit coprocessor implementation, the worst delay time is 
about 48 ns and thus a frequency of 20 MHz is achieved. The 
routed IP takes total of 3426 Slices which is 58 percent of the 
chip. The total number of I/Os used in the design is 328 
which are 88 percent of the total I/Os of this chip. 

4. Conclusions 
This paper has proposed an efficient mapping on FPGA of 

a common Coprocessor. The DFT algorithm is implemented 
by DHT, which is based on Direct Algorithm. The Direct fast 
DCT algorithm is presented and then a method of computing 
the discrete sine-transform from the discrete cosine trans-
form is demonstrated. For the future work we can implement 
this coprocessor using DCT as the base transform for im-
plementing other transforms to obtain more surface reduc-
tion. 
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