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Abstract  In the present paper, a maximin zero suffix method introduced by Sharma et al (2014) has been extended to 
solve the quadratic transportation problem (QTP). The proposed method is better than the existing methods in the literature 
for solving QTP because it is free from any huge algebraic computation and drawing of graphs of quadratic cost functions to 
search absolute point. The algorithm of the proposed method has been given and a numerical example has been presented to 
explain its application. The proposed method is very simple, easy to understand and apply for any practitioners who have not 
much knowledge of mathematics.  
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1. Introduction  
The classical transportation problem (CTP) is a particular 

class of linear programming problem (LPP) and deals with 
the distribution of goods (or products) from m sources 
(plants or suppliers) to n destinations (warehouses or 
customers). The main objective in CTP is to determine the 
amount of goods to be shipped from each source to each 
destination so as to maintain the demand and supply 
requirements at the minimum total transportation cost. In 
CTP, the cost of transporting one unit of goods from a source 
to a destination is independent of the amount of goods 
shipped.   

The classical transportation problem (CTP) is defined as 
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where ijc = Unit transportation cost from i th source to j
th destination 

ia =  Amount of goods available at i th source. 

jb =  Amount of goods required at j th destination 

ijx =  Amount of goods transported from i th source to 

j th destination. 
m =  Number of sources. 
n =Number of destinations. 
CTP, being a well structured problem, has been studied 

extensively in the literature. It was Hitchcock (1941) who 
firstly developed the basic transportation problem and 
suggested constructive method of solution. Later on, Dantzig 
(1963) formulated the CTP as an LPP and provided the 
solution. A number of researchers have worked to find 
suitable methods of solving CTP using different assumptions 
including Charnes and Cooper (1954), Shih (1987), Arsham 
and Khan (1989), Adlakha and Kowalski (1999), Ji and Chu 
(2002), Korukoglu and Balli (2011), Sudhakar et al (2012), 
are some among others. Recently Sharma et al (2013) have 
introduced an easy and interesting method named, “A 
modified zero suffix method” for finding optimal solution 
for CTP. 

 



56 Shambhu Sharma et al.:  A Maximin Zero Suffix Method for Quadratic Transportation Problem  
 

In the real life situation, per unit transportation cost of 
goods does not remain always constant. Generally, it 
decreases with the increase in the volume of transported 
goods but not always. Sometimes, it has also been seen that it 
increases with the increase in the volume of the transported 
goods due to highway congestion (restriction of over 
loading). This idea leads to a new dimension of the CTP and 
generally it has been observed that per unit cost ijc  is a 

function of the amount shipped ijx . If the per unit 

transportation cost ijc in CTP is a quadratic function 

( )ij ijf x  of ijx , then CTP is termed as  the quadratic 

transportation problem (QTP). In QTP, the cost coefficients 
are quadratic functions, and in CTP the cost coefficients are 
constants. 

Mathematically, the quadratic transportation problem 
(QTP) is defined as  
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There is no any efficient direct algorithm to solve QTP in 
the literature. However, QTP and its indirect solution 
techniques have been discussed by researchers including 
Hochbaum et al (1992), Megiddo and Tamir (1993), 
Eduardo et al (2003), Cosares and Hochbaum (1994) are 
some among others. The techniques developed by these 
researchers are very much complicated and time-consuming. 
Recently, Adlakha and Kowalski (2013) have introduced an 
analytical algorithm for QTP which is based on finding 
absolute point (AP) in QTP by tracing graph for each 
quadratic cost function which is time-consuming and tedious 
and needs computer application for tracing graphs of each 
quadratic cost function. 

In the present paper, “A maximin zero suffix method” 
introduced by Sharma et al (2014) for solving assignment 
problems has been extended to solve QTP. To use this 
method, firstly estimated cost matrix of the QTP has to be 
obtained and then” A maximin zero suffix method” can be 
applied on the estimated cost matrix. This method is very 

simple, easy to apply and free from drawing graph of each 
quadratic cost function. An example of QTP from Adlakha 
and Kowalski (2013) has been considered to explain the 
“Maximin zero suffix method” for finding optimal solution.  

2. Estimated Cost Matrix 
Firstly each quadratic cost is estimated to be constant cost. 

Then idea developed by Sharma et al (2014) is used to solve 
it. Per unit transporting cost of goods from i th source to j

th destination is 2
ij ij ij ij ija x b x c+ +  where 0ija ≠ . If 

0ija =  and 0ijb ≠ , the problem is linear transportation 

problem (LTP). If 0ija =  and 0ijb = , the problem is a 

classical transportation problem (CTP). 
The possible allocation to the ( ),i j th cell lies from 0 to 

min { },i ja b . The maximum possible allocation to the 

( ),i j th cell is min{ },i ja b  and the corresponding cost is 

( ){ } ( ){ }2
min , min ,ij i j ij i j ij ija a b b a b c d+ + =

(say). The minimum possible allocation cost there is ijc  for 

the case of non allocation. Corresponding to the quadratic 
allocated cost matrix we have an n n×  estimated cost 

matrix ijd   . Note that in the classical transportation 

problem at most cost is ( ){ }min ,ij i jc a b  and at least 

cost is 0 in the case of non - allocation. 

3. A Maximin Zero Suffix Method 
Our goal is to find the minimum possible allocation cost 

which is possible when we allocate the lowest estimated cost 
cell. 

To obtain the minimum allocated cost, we search the least 
cost cell in the estimated cost matrix for possible allocation. 
After subtracting the lowest cost of each row from  the 
corresponding row and then subtracting the lowest cost of 
each column from the corresponding column we get at least 
one zero in each row and each column in the transformed 

estimated cost matrix ijd ′
 

. The lowest cost cells in each 

row and each column are detected by these zeros. On 
minimum cost distribution, zero cells (Lowest cost cells) 
should be assigned as far as possible satisfying the demand 
and supply conditions.  Our aim is to assign zero cells one 
by one satisfying corresponding demand and supply 
conditions in such a manner that over all transporting cost 
becomes optimal one. The question is to which zero cells 
should be allocated firstly for getting an optimal 
transportation schedule. 
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To overcome this critical situation we focus on two zero 
cells ( ),p q  and ( ),r s  of the transformed estimated cost 

matrix. Let ( ),p q  cell is assigned and ( ),r s  cell is not 
assigned. It means that r th supplying source is not used for 
s th demand destination. Then r th supply must be assigned 
to other demand. To assign r th supply for minimum cost 
we select a cell in the r th row whose cost is the next lowest 

cost in it’s row. Let rvd ′  is the next minimum in the r th 
row. Then r th supply must be assigned to v th demand. So 
the excess cost in the absence of not assigning to ( ),r s  cell 

is rvd ′ . Also in the absence of not assigning to the ( ),r s
cell, s th demand is not taken by the r th supply. To assign 
a value to the s th demand for minimum cost, we select a 
cell in the s th column whose cost is the next smallest in its 

column. Let usd ′  is the next minimum in the s th column. 
Then s th demand must be fulfilled by the u th supply. So 
the excess cost in the absence of not assigning to the ( ),r s  
cell, the assignment cost may be increased at most by 

maximum of ( ),rv usd d′ ′  = max{lowest cost in its row, 

lowest cost in its column excluding itself} = suffix value of 
zero of the ( ),r s  cell. Similarly, in case of not assigning to 

the ( ),p q cell we may have to face excess cost which is 

equal to the suffix value of zero of the ( ),p q cell. Note that 

ijd ′  is the value of ijd  in the transformed estimated cost 

matrix. We conclude that to get minimum transportation cost 
it is better to assign that zero cell whose suffix value is the 
greatest one. 

The methodology of the paper is to block the path of 
exceeding cost above the optimal one in the process of 
assigning the zero cells. This is done by finding suffix value 
of all zeros of the transformed table and assignment is done 
to the cell having greatest suffix value. Then we have to 
delete the row/column of assigned cell to get the reduced 

table. The process is continued in the reduced table till all the 
demand and supply are exhausted. 

4. Algorithm 
The algorithm of maximin zero suffix method for finding 

an optimal solution of quadratic transportation problem 
(QTP) consists of the following steps:   

Step 1. Construct the estimated cost matrix ijd   where 

( ){ } ( ){ }2
min , min ,ij ij i j ij i j ijd a a b b a b c= + +  

Step 2. Subtract the least element of each row from all the 
elements of the corresponding row of the estimated cost 
matrix 

Step 3. Subtract the least element of each column from all 
the elements of the corresponding column obtained in step 2 

to get the transformed estimated cost matrix ijd ′
 

 

Step 4. Find the suffix value of each zero cell  ( ),p q  
using the following formula. Suffix value of the cell

( ), max min ,minpj iq
j q i p

p q d d
≠ ≠

 ′ ′=  
 

 

Step 5. Assign the cell having the greatest suffix value and 
delete the exhausted row/column to get the reduced 
estimated cost matrix  

Step 6. In the reduced table update ijc  for those cells 

whose { }min ,i ja b is reduced by k as 

{ }{ }ij ij ijd a k b′ − +  

Step 7. Repeat steps 2 to 6 till all the demands and 
supplies are exhausted. 

5. A Numerical Example 

Let us consider the cost matrix ( )ij ijf x for the QTP 

given in Adlakha and Kowalski (2013). 
 

Table 1. 

 1D  2D  3D  Supply 

1O  22x x+  23 2x x+  2 4x x+  2 

2O  2 3x x+  22 2x x+  23x x+  2 

3O  23 3x x+  22 3x x+  24x x+  2 

Demand 1 4 1  

 
Step 1. Estimated cost matrix of the given QTP is 
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Table 2. 

 1D  2D  3D  Supply 

1O  22 1 1 3× + =  23 2 2 2 16× + × =  21 4 1 5+ × =  2 

2O  21 3 1 4+ × =  22 2 2 2 12× + × =  23 1 1 4× + =  2 

3O  23 1 3 1 6× + × =  22 2 3 2 14× + × =  24 1 1 5× + =  2 

Demand 1 4 1  

Where { }min ,ij i jx a b=  

Step 2. Subtracting the row minimum from the respective row in table 2, we get 

Table 3. 

 1D  2D  3D  Supply 

1O  0 13 2 2 

2O  0 8 0 2 

3O  1 9 0 2 

Demand 1 4 1  

 

Step 3. Subtracting Column minimum from the respective column in table 3, we get 

Table 4. 

 1D  2D  3D  Supply 

1O  0 5 2 2 

2O  0 0 0 2 

3O  1 1 0 2 

Demand 1 4 1  

 

Step 4. Suffix Value of each zero in table 4 is shown in table 5 along with the allocated amount to be shipped.                     

Table 5. 

 1D  2D  3D  Supply 

1O  
1 

20  
 

5 2 1 

2O  00  10  00  2 

3O  1 1 10  2 

Demand 1 4 1  

 

Step 5. Reduced estimated cost matrix with updated 12 5 (3 1 2) 0d ′ = − × + =  has been obtained and shown in table 6 
along with suffix value of zeros and allocated amount to be shipped 

  

 



 American Journal of Operational Research 2016, 6(3): 55-60 59 
 

Table 6. 

 2D  3D  Supply 

1O  
1 

20  
 

2  

2O  00  00  2 

3O  1 10  2 

Demand 4  3 1  

 
Now repeating steps 2 to 6 we get 

Table 7. 

 2D  3D  Supply 

2O  
2 

10  
 

2  

3O  1 10  2 

Demand 1 1  

 

Table 8. 

 2D  3D  Supply 

3O  
1 

1 
 

1 

0 
 

2 
 

Demand 1 1  

 
Finally an optimal transportation table is as follows:  

 1D  2D  3D   

  1  1   

1O     2 

   2   

2O     2 

   1  1 
2 

3O     

 1 4 1  

 
The minimum cost for the given QTP can be obtained as 

( ) ( ) ( ) ( ) ( )2 2 2 2 2Minimum cost 2 1 1 3 1 2 1 2 2 2 2 2 1 3 1 4 1 1

                             3 5 12 5 5
                             30

= × + + × + × + × + × + × + × + × +

= + + + +
=

 

It would be recalled that the total minimum transportation cost for the above QTP obtained by Adlakha and Kowalski 
(2013) is also 30. 
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6. Optimality Criteria and Convergence 
of the Algorithm 

Since we have used the method of minimizing the excess 
transporting cost corresponding to a cell by assigning the 
lowest cost cell in each row and each column, there is no 
chance that the cost obtained according to this process is 
higher than the optimal cost. 

As the number of rows and the number of columns are 
finite and at each iteration one row or one column is deleted, 
the algorithm will terminate in a finite number of steps. The 
number of iterations will be at most m + n and at least    
max (m, n). 

7. Concluding Remarks 
A maximin zero suffix method has been introduced to 

solve the quadratic transportation problem (QTP). The 
proposed method is better than all existing methods in the 
literature for solving QTP because it is free from any huge 
algebraic computation and drawing of graphs of quadratic 
cost functions to search absolute point. The algorithm of the 
proposed method has been given and the application of the 
proposed method has been explained by a numerical 
example. The proposed method is very simple, easy to 
understand and apply for any practitioners who have not 
much knowledge of Mathematics and therefore useful for 
managerial decisions. The proposed maximin zero suffix 
method for solving QTP can be extended to the polynomial 
transportation problem (PTP) in which the cost coefficients 
are higher than second degree polynomials. 

The future research on the proposed method is to apply the 
method for solving real-world problem. For using this 
method to solve real-world problems a computer program 
must be developed because the real-world problems consist 
of several sources and destinations which is difficult to 
handle manually. Since the proposed method is easy to apply 
and understand, it can be easily applied to solve real-world 
problems.  
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