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Abstract  This paper investigates inventory-production systems where items fo llow constant deterioration. The objective 
is to develop an optimal policy  that min imizes total average cost. The quadratic demand technique is applied to control the 
problem in order to determine the optimal production policy, holding cost and cost of deterioration. Sensitivity analysis is 
conducted to study the effect of the cost parameters on the objective function. 

Keywords  Production, Inventory, Deteriorat ion, Shortage, Quadratic demand 

 

1. Introduction 
The purpose of the present paper is to give a new 

dimension to the inventory literature on time varying 
demand patterns. Researchers have extensively discussed 
various types of inventory models with linear trend (positive 
or negative) in demand. The main Limitation in linear 
time-vary ing demand rate is that it implies a uniform change 
in the demand per unit t ime. This rarely happens in the case 
of any commodity in  the market. In  recent years, some 
models have been developed with a demand rate that 
changes exponentially with time. Demands for spare parts of 
new aeroplanes, computer chips of advanced computer 
mach ines, etc. decrease very rapidly  with t ime. Some 
modellers suggest that this type of rapid change in demand 
can be represented by an exponential function of time. The 
present authors feel that an exponential rate of change in 
demand is extraord inarily  high and the demand fluctuation of 
any commodity in the real market cannot be so high .A 
realistic approach is to think o f accelerated growth (or 
decline) in the demand rate in  the situations cited above and 
it can be best represented by a quadratic function of time. 
Thus, this paper has the scope of direct application in the 
very practical situations noted above. 

Goods deterio rate and  their value reduces with  t ime. 
Elect ron ic p roducts may  become obsolete as technology 
changes. Fashion tends to depreciate the value of clothing 
over time. Batteries die out as they age. The effect of time is 
even more critical for perishable goods such as foodstuff and 
cigarettes. The effect of deterioration and time/age is that the 
classical inventory model has to be readjusted K. Heng, J.  
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Labban, R. Linn (1) 
In general, deterioration is defined as decay, damage, 

spoilage, evaporation, obsolesce, pilferage, loss of utility or 
loss of marg inal value of a commodity that results in 
decrease of usefulness from the original one. The decrease or 
loss of utility due to decay is usually a function of the 
on-hand inventory. It is reasonable note that a product may 
be understood to have lifet ime, which ends when utility 
reaches zero. 

The continuously decaying/deterioration of items is 
classified as age-dependent ongoing deterioration, and 
age-independent ongoing deterioration. Blood, fish, 
strawberry are some of the examples of the fo rmer while 
alcohol, gasoline and radioactive chemical and grain 
products are examples of the latter H. Wee (4). 

Haip ing and Wang (7) developed an economic policy 
model for deteriorat ing items with time proportional demand. 
Donaldson (8) derived an analytical solution to the problems 
of obtaining the optimal number of replenishments and the 
optimal replen ishment times of an EOQ model with a 
linearly time dependent demand pattern, over a finite time 
horizon. Zangwill (9) developed a discrete-in-time dynamic 
programming algorithm to solve an inventory model by 
allowing the inventory levels to be negative where the 
demand pattern is time dependent. Following  

The approach of Donaldson (8), Murdeshwar (6,)Sahu and 
Sukla (10) has tried to derive an exact solution for a fin ite 
horizon inventory model to obtain the optimal number of 
replenishments, optimal replen ishment times and the optimal 
times at which the inventory level falls to zero, assuming the 
demand rate to be linearly t ime dependent and shortages. 
Hamid (3) presented a heuristic  model for determining the 
ordering schedule when inventory items are subject to 
deterioration and demand changes linearly over time and 
obtained an optimal replenishment cycle length. Goswami 
and Chaudhuri (1) presented an EOQ model for deteriorating 
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items with shortage and linear t rend in  demand. Bradshaw 
and Erro l (2), published a paper in which they derived 
unbounded control policies for a class of linear time 
invariant production-inventory systems. 

This paper investigates inventory-production systems 
where items follow constant deterioration. The objective is 
to develop an optimal policy that minimizes the cost 
associated with inventory and production rate. The quadratic 
demand technique is applied to control the problem in order 
to determine the optimal production policy. Sensitivity 
analysis is conducted to study the effect of the cost 
parameters on the objective function. 

2. Assumptions and Notations 
The following assumptions and notations have been used 

in developing the model.  
(i) The demand rate is assumed to be 
( ) 2ctbtatR ++= , a , b  and c are constants. Such that 

.0,0,0 >>> cba Here a stands for the initial demand 
rate and b for the positive trend in demand. 

(ii) The production rate Say ( )tRk γ= , where >γ 1. A  

fraction θ , 10 << θ  of the on-hand inventory 
deteriorates per unit time.  

(iii) The lead-time is zero and shortages are not allowed. 
(iv) Unit holding cost 1C  per unit time and unit 

deterioration cost 3C  per unit time are known and 
constants. 

(v) C  is the total average cost for the production cycle 
and S  is the stock level reached in the cycle. 

(vi) The set up cost is not considered in this model because 
it is taken to be fixed for the whole cycle time. 

(vii) Planning horizon is finite.  

3. Mathematical Formulation and 
Solution 

Let q  be the inventory level at any time t  )0( 2tt ≤≤ . 
The differential equations governing the system in the 
interval ),0( 2t  are  

( )tRkq
dt
dq

−=+θ , 10 tt ≤≤           (1) 

)(tRq
dt
dq

−=+θ , 21 ttt ≤≤           (2) 

The stock level in itially is zero. Production begins just 
after t=0, continues up to 1tt =  and stops as soon as the 
stock level becomes S. Then the inventory level decreases 
due to demand and deterioration both till it  becomes zero  at 

2tt = . The cycle then repeats itself. Our objective is to 

determine the optimum values of 1,, tCS and 2t . The 
intensity of deterioration is very low in itially but it increases 
with time. However, it remains bounded for 1>>t   

Using the value of ( )tR  , the two equations (1) and (2) 
take the form 

( )( )21 ctbtaq
dt
dq

++−=+ γθ , 10 tt ≤≤  (3) 

and ( )2ctbtaq
dt
dq

++−=+θ , 21 ttt ≤≤   (4) 

The solution of equation (3) with init ial conditions is 

( ) ( )( )dtctbtatqe
t

t 2

0

11 +++−= ∫ θγθ

 
or  

( ) 







−−−++−=

126232
1

42232 tctbtactbtatq θθθγ (5) 

Neglecting the powers of θ  greater than 1. 

Similarly, the solution of equation (4) also is (neglecting the powers of θ  greater than 1) 

( ) ( ) ( )∫ ++−′= dttctbtaCtq θθ expexp 2

 
or  

( ) 







+++−−−+−′=

126232
1

42232 tctbtactbtattCq θθθθ                  (6) 

For 1tt = , Sq =  

( ) 









+++−−−+−′=∴

126232
1

4
1

2
1

2
1

3
1

2
1

11
tctbtactbtattCS θθθ

θ                 (7) 

From (6) and (7) we get the relation  

( ) 







+−+−+−+=

22
1

2

1

2
1

11
ttttttattSq θθ

θ
θθ
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







−++−+

26322

2
1

3322
1 tttttb θθθ

+ 







−++−

312433

3
1

44
1

33
1 ttttttc θθθ

            (8) 

Using the condition 0=q  for 2tt = in equation (8), we get 

=S 







−++− 21

2
2

2
1

12 22
tttttta θθθ









−+−−+

23622

2
21

3
2

3
1

2
1

2
2 ttttttb θθθ

 









−++−+

341233
1

3
2

4
2

4
1

3
1

3
2 ttttttc θθθ

                               (9) 

Now the average holding cost becomes 

( ) ( ) ( ) 









+= ∫ ∫

1 2

102

1
t t

t

dttqdttq
t
CtH

 

( )












−−−++−= ∫

1

0

42232

2

1

126232
1

t

dttctbtactbtat
t
C θθθγ  

(∫+
2

1

t

t

( ) 







+−+−+−+

22
1

2

1

2
1

11
ttttttattS θθθθθ

 

+ 







−++−

26322

2
1

3322
1 tttttb θθθ + 








−++−

312433

3
1

44
1

33
1 ttttttc θθθ  

Now substituting the value of S from (9) and simplifying we get 

( ) =tH











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
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
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


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
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6410346012
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21
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4
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                  (10) 

The average cost due to deterioration in the total cycle t ime is 

( ) ( ) ( )











++−++= ∫∫

21

0

2

0

2

2

3
tt

dtctbtadtctbta
t
C

td γ  

( ) ( ) ( )



 −+−+−= 3

2
3
1

2
2

2
121

2

3

32
ttcttbtta

t
C

γγγ                              (11) 

From (10) and (11) the total average cost of the inventory I 

C ( )( )2
121

2
2

3
221

2
2

3
1

2
1

2

1 33633
6

tttttttttta
t

C
θθθγθγ +−+−+−


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( )2
2

2
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4
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24
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( ))2
1

3
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5
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3
2

5
2

5
1

4
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( ) ( ) ( )



 −+−+−+ 3

2
3
1

2
2

2
121

2

3

32
ttcttbtta

t
C

γγγ                           (12) 

By putting 21 ztt = (where 0<z<1) in equation (12), we get  

C ( )23
2
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2

3
2

2
2

2
2

33
2

2
2

2

2

1 33633
6
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2
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4
2
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2
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2
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2
3
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2

2
2
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22

2

3

32
ttzcttzbtzta
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γγγ                       (13) 

For calculating the optimum value of C  we differentiate it partially  with respect to 2t  and equate them to zero. Thus we 
get the following equation:- 

2dt
dC ( )2

222
3

2
2

1 6626323
6

ztzttzztzaC θθθγγ +−+−+−

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2

2
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3 18249241638
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( ))23
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3
2
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3
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2
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( ) ( ) 



 −+−+ 2

32
3 1

3
21

2
tzczbC γγ                                  (14)

This equation gives us the optimum value of 2t  which, 
when substituted equation (13), give the total average cost, 

provided 02
2

2

>
dt

Cd
. Equation (14) is highly  non-linear in 

2t  and cannot be solved analytically. Th is equation, 
therefore, can be solved by some suitable numerical method 
like Newton-Raphson, and optimal value of 2t  can be 

obtained. This optimal value of 2t  gives the minimum cost 
of the system in question. We have solved this equation on 
computer for a set of values of the parameters with the help 
of Newton-Raphson method. A numerical example is given 
below as an illustration. 

3.1. Example-1  

Let θ=0.02, ɣ=2.0, z=0.7, C1=5.0, C3=60, a=200, b=40, 
c=10 in suitable units. 

The solution for optimal values of 1t and 2t is 

0345.14,5534.1t 21 == ∗∗ t , which gives minimum 

average cost C
*

=10395.3646 
Following are a number of tables representing the optimal 

values of 1t , 2t and C as also the no-production interval 

12 tt − . 

4. Sensitivity Analysis 
We have discussed the effects of the different parameters. 
(i) Increase in the value of γ  decreases the value of 1t ,

2t  and C. 
(ii) Increase in the value of the parameterθ , decrease the 

values of 1t , 2t and C. 

(iii) Increase in the value of holding cost 1C increases the 

value of the cost 1t , 2t and decreases the value of C. 

(iv) Increase in the value of deterioration cost 3C  

increases the value of the cost 2t  and C. However the values 

of 1t decrease. Increase in  the value of a, decreases the value 

of C, 1t , 2t . Increase in the value of b, increases the values of 

,  and C.  

(v) Increase in the value of c, decreases the value of C, ,

. 
(vi) Keeping these variations in mind of the decision 

maker of the inventory system can control the parameters so 
as to optimize the objective function. The decision maker 
may control particularly the holding cost and the cost of 
deterioration for min imizing the total average cost.  

1t 2t

1t

2t
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Table 1.  Variations in parameters 

     Parameter     t1        t 2           C    t2-t1 

……………………………………………………………………………………………………………….  
     0.005   1.5880  14.8152  10733.5044  13.2272 
     0.010   1.5828  14.7280  10677.6608  13.1452 

θ   0.015   1.5785  14.6057  10534.0876  13.0272 
     0.020   1.5534  13.8345  10395.3646  12.2811 
     0.025   1.5732  12.3273  10165.5343  11.7541 

……………………………………………………………………………………………………………..... 
     1.3   13.0202  26.2543  20546.0034  13.2341 
     1.5   9.7654  21.3454  17861.1234  11.5800 

ɣ     1.7   5.4560  16.7234  15332.2341  11.2674 
     1.9   2.8776  13.5431  12546.2341  10.6655 
     2.1   0.8834  11.2396  08537.7582  10.3562 

……………………………………………………………………………………………………………………………………………. 
     190   2.8854  16.4725  12164.0551  13.5871 
     200   1.6043  14.7843  10633.6035  13.1800 

a   210   1.4872  14.3172  09558.8551  12.8300 
     220   0.6623  12.9956  07440.6742  12.3333 
     230   0.2547  12.5427  04786.2316  12.2880 

…………………………………………………………………………………………………………………………………………… 
     35   3.1437  4.4910  6689.7036  1.3473 
     40   3.2827  4.6896  6706.7988  1.4069 

b   45   3.4539  4.9342  6726.3891  1.4803 
     50   3.6927  5.2754  6749.9902  1.5827 
     55   4.1103  5.8719  6782.2915  1.7616 

……………………………………………………………………………………………………………………………………………. 
     8   3.6306  5.1867  6868.5703  1.5561   
     10   3.2827  4.6896  6706.7988  1.4069 

c   12   2.3296  3.3280  6662.1054  0.9984  
     14   1.8543  2.6490  6600.9335  0.7947   
     16   1.5458  2.2083  6543.3886  0.6625      

..................................................................................................................................................................................................................... 
     5   1.4480  14.2350  10722.5432  12.7870 
     6   2.3365  14.3956  10621.2031  12.0591  

C1   7   2.7798  13.6065  10543.1232  10.8267 
     8   2.8134  12.8939  10327.1212  10.0805 

..................................................................................................................................................................................................................... 
     40   2.7257  12.8938  6576.6791  10.1681 
     50   2.2827  13.6896  6788.7988  11.4069 

C3   60   1.9006  13.8152  8200.9125  11.9146 
     70   1.7526  14.218  8558.0664  13.4654 
     80   1.0350  15.0500  1078.3515  14.0150 

.................................................................................................................................................................................................................... 
 

5. Conclusions 
In this article, a determin istic inventory model has been 

proposed for deteriorating item with quadratic demand rate, 
where shortages are not allowed. The goal o f the paper is to 
incorporate the deterioration phenomenon together into an 
inventory model over a fin ite planning horizon. This paper 
investigates inventory-production systems where items 
follow constant deterioration. The objective is to develop an 
optimal policy that minimizes total average cost. The 

quadratic demand technique is applied to  control the problem 
in order to determine the optimal production policy, holding 
cost and cost of deterioration. 
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