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The Maximum Likelihood Estimates with Wrong
Logistic Regression Model and Covariate
Assumptions are Violated

Nuri H. Salem Badi’, Mohamed M. Shakandli

Faculty of Science, Statistical Department, University of Benghazi, Benghazi, Libya

Abstract The general method of estimation the logistic regression parameter is maximum likelihood (ML). In a very
general sense the ML method yields values for the unknown parameters that maximize the probability of the observed set of
data. Much work discusses the behaviour of the distribution of Maximum likelihood estimates (MLE) for the logistic
regression model under the correct model. However, many issues still need more examination as the relationship between the
links of the logistic function and the skew-normal distribution which consider in this work. In this paper, our work considers
this behaviour and investigates the MLE method under the logistic regression model when the wrong model has been fitted
and the assumption on covariates are violated. We will consider this behaivuor and the covariates drawing from a non-normal

distribution and evaluate it by simulation.

Keywords Logistic regression model, Maximum likelihood method, Skew-normal distribution, Probit function and expit

function

1. Introduction

The subject of the behaviour of maximum likelihood
estimation (MLE) method in logistic regression model has
attracted the attention of many scientists and researchers. [6]
developed the analysis of the binary data and application of
the maximum likelihood: see also [7]. [11] introduced the
generalized linear model and used special techniques to
obtain the maximum likelihood estimates of the parameters,
with observations distributed according to some exponential
family. [10] discussed the generalized linear model and
behaviour of the maximum liklihood (ML) method for
binary outcome. [5] discused method used a modified score
function to reduce the bias of the maximum likelihood
estimates. The ML method under the wrong logistic model
has been discussed extensively by [9, p.23]. The idea is to try
to find in terms of the true parameters of the model the least
false values which are obtained by maximising the incorrect
likelihood function. We will use the relationship between

expit(u) =e" /(1+e") function and probit function ®(-),
and use the properties of the multivariate skew-Normal
distribution to compute a good approximation to the least

false values under wrong logistic model. The behaviour
of MLE for binary outcome has been discussed more
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extensively by [10]. The logistic model when
Y; ~ binomial(m;, z;) with m; =1 can be fitted using the
method of maximum likelihood to estimate the parameters.
The first step is to construct the likelihood function which is
a function of the unknown parameters and data, then choose
those values of the parameters that maximize this function.
The log-likelihood function is:

I(7;Y) = [ vilog(z;) + (- y;) log(1— ;)]
i-1

Where, in this case we have
n T n T
108) =Y. i+ )= Y. log1+exp(a+X ) |
i=1 i=1

where B is a p-dimensional vector, x; are a vector of

covariates for i

the parameters o

individual and i=1---,n. To estimate
and fB; we differentiate the
log-likelihood function with respect to « and ﬂj. If the
fitted model is the true model then, the asymptotic
distribution of g; is ﬁ~N(ﬁ,I(ﬁ)_1) where 1(B) is

the (pxp) Fisher's information matrix, its (r,s)th
element is defined as

o efr]
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If is evaluated at MLE ﬁ :

2. MLE Under the Wrong Model

[9] discussed how the maximum likelihood method used
to estimate the parameters of a given regression model is
affected when the assumed model is incorrect. If the data are
independent and identically distributed, the log likelihood
function in case of the density f(y;,&) for an individual

observation, we can write as:

n
0(6) = logf (y;,6).
i=1
The important question here is, if we fit a model for Y as
f(yl ) when true model is g(y), what value do we

estimate for €? We have for each value of &, by the weak
large numbers, in probability, as n — o«

n",(0) — E(log f (Y] 6)),
The Kullback-Leibler (KL) divergence is

KLU 100 = o log 9% c. @

For model f(yl x,8) , we need to solve likelihood

function and find the least false parameter 6" which
minimises KL(g, fy), then

£, [Eg (8Iog f;\;l x,a)n

Application to Logistic Regression

Now, we will apply the MLE method under wrong model
on logistic regression model. The idea is to use this method

to obtain equations which determine the least false value 0

for a logistic regression. To explain the behaviour of the
MLE in this case we will partition of the vector covariates

X, as previous (X¢,Xg) . The fitted model is

=0 @)

7 =expit(a+ Fs X¢)
However, this model is wrong because the true model is.
= expit(a+ﬂf X f +ﬁaXa)

So, expectation of the ML equations are zero when

0=6" =(a*,ﬁ*) . From the above equations where Y is
binary, the expectation in this case becomes

Ex (Ey| x (Y)) = Ex (expit(er” + 1 X1)),
and

Ex (X1 E(Y] X)) = Ex (X rexpit(er” + 57 X1 ))-

The E(Y| X) is Pr(Y =1 X) and this is given by the
true model

Pr(Y =1] X) = expit(ar+ 8] X + B X,).
But we fit the model without X, . The least false values,

@ and ﬂ? , can be found in terms of «,f; and g, and
the parameters of the distribution of the covariates as from

E [expit(a* +BTX )} -E [expit(a + 47 X)J ®)
E [x qexpit(a” + BT X ¢ )] —E [x Gexpit(a + A7 X)] )

where, Xy is the jth element of X; (j=1...,p).

These equations can be solved approximately if X follows
a multivariate normal distribution, by approximating
expit(-) and using the skew-normal distribution. In fact, the
previous work considers by [14], discussed the inconsistent
treatment estimates from mis-specified logistic regression
analyses of randomized trials. In this paper, we are interested
in more investigate the behaviour of MLE under the wrong
mode when covariate assumptions are violatedl and
assessment by simoulation.

Skew-Normal Distribution

The skew-Normal distribution has been discussed by
[3] and [4]. More discussion and numerical evidence of the
presence of skewness in real data by [17] and [2]. Other
discussion for quadratic forms and flexible class of
skew-symmetric distribution discussed by [12] and [8]
also, by [16]. A random variable U is called skew normal
with parameter 1,s0 U ~ SN(A), if its density function is :

f(u; 2) = 2¢(u)®(Au) Q)

where ueR , ¢() and @() are the density and

distribution function of standard normal distribution
respectively, that defined by [3]. In general case, [1],
discussed extends the skew normal distribution and
properties of this family. We can defined the extend
multivariate skew-normal distribution as; a p-dimensional

random variable U has extended skew-normal distribution,
ESN (4,9, 4,v), if it has density:

Bp(U; 8, QDA (U-9)+v)

(v I1+ 2T QA)

where v is a scalar, Q is dispersion matrix has pxp
dimensional and parameters 9 and A are p-dimensional.

The ¢p (;$,Q) is the density of a p-dimensional normal

variable with mean @ and dispersion matrix Q where
@(.) is the cumulative distribution function of a univariate
standarad normal variable.

Probit Function and expit Function
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We are consider the approximation of expit(-) by ®(),

the distribution function of a standard normal variable. [15]
reported that, the logistic distribution closely resembles the
normal distribution which discussed the shape of distribution
both are symmetrical and noted some properties. [13, p.5],
point out the comparison of logistic and normal cumulative
distribution function. The approximation form defined as:

expit(u) ~ d(ku), where k = (16+/3)/ (157).

3. Least False VValues Under Wrong
Logistic Model
The main point is, suppose that we model a binary
outcome, Y , using a logistic regression, i.e.
Pr(Y =1| X 1) = expit(a + S} X ),
but that the true model includes more covariates, i.e.
Pr(Y =1| X) = expit(a + A1 Xt + 1 X,).

Now, to find the least false values in terms of parameters
of the true logistic model, use the approximation form
expit(-) = ®(-), properties of the skew-normal distribution

and we use the two equations which determine the MLEs,
as we have discussed in section 2 about MLE under the
wrong model to find the least false values. Let us assume that
Xhas (p+q) -dimensional multivariate Normal distribution,

where p and g denote the dimensions of X and X,

respectively. The presence of an intercept in the above
models means that we may assume, wlog, that E(X)=0. If

var(X)=Q, then also suppose that the partition of this
matrix correspondingto X and X, is:

o Qi Qg |
Qqf Qaa
then we can apply the approximation to (3) and (4) using
expit(u) =~ ®(ku), which this leads to

Ey (db(k[a* AT X ])) —Ey ((I)(k[a+ﬁT X])) ©6)

Now we use the properties of skew-normal distribution, in
this case the density function of skew-normal distribution
where E(X)=0 is

Ok(a+ AT XNHX)

@ ka
J1+k28T0p

Then we can write the (6) as

f(X,a,p) =

ka

® ) ol ke
«/1+k2ﬂ?TQﬁﬁ? Ny,

which is

04 [24
ST BT \1+k2pT OB

Turning our attention to (4) and using the results for the
expectation of a SN distribution, we obtain

U]

Qy B a
JHBT Qg By | L K2AT QB ©
_ (@) [ a ]
J1k2gTap (\ekisTos )
where ¢(-) is the standard Normal density, and

(), denotes the first p elements of Qg , which is
Qg Ps + Q43P - Using the result in (7), we can simplify (8)
and finally, we can follows that

fi=— (B +QFQB) O
JL+K2 AL 0p,
and
af = « (10)

1+ K28 O,
where Q=Q,, —Qu QFQ, . From this we get Note that

(9) includes a denominator, such that ; = S even when

Qi+, =0, although, of course, ﬁ? =p; if B;=0.

4. Simulation Study when the Covariates
Follow Normal Distribution

The goal of this simulation, is to assess the approximation
computed for the least false values for logistic regression
model. We are interested to application on case of the
covariates generated by multivariate Normal distribution.
Applied on different cases with different variance and
different correlation to check on the behaviour of the
formulae of the least false values under wrong model. We
looking in this simulation for check the approximation of the
last false values for a true logistic regression model has five
covariates p=5 is

7 = expit(a +ﬁT X)

where, BT =B Lo P5) . X =(%1.---.%s5) and in the
fitted model there are two covariates. We designed the
simulation as follows:
e We choose X as adraw from the multivariate normal
distribution X ~ N5(0,9) .
e We consider the 5x 5 covariance matrix Q is



Q
ngz{ 11
where,

1
Q=

P21

1 pu pss
Qp=|ps3 1

P53 pss 1
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P12
1 } Qo1 =| Pn

Q) }
Qy Qp

P31

Ps1

.
Pas |21 = (5.

e Use two different variance o2 =0.115.
o We consider 3 different cases of correlation which is
designed as:
(0.2,0.2,0.4), (0.8,0.7,0.9), (0.2,-0.2,-0.2). Values are
chosen to assume Q is positive definite.
e We choose the parameters f,...,fs and « to give
us two cases Pr(Y =1)=10% and Pr(Y =1) =60%.
As calculate the unconditional Pr(Y =1) by properties
skew-normal distribution we get,

each case of € has same pj

Pr(Y =1) ~ @

Choose
B =0.25 4, =035, 5, =0.40, 5, =0.3, 55 =0.2 and
adjust « , so that over the covariates Pr(Y =1) =10%
(a=-2.2) and Pr(Y =1)=60% (a=0.4).

ka

e The sample size has been used n=500, n=10000
and N =1000 number of simulation.

4.1. Results and Discussion

We report the accuracy of the estimation parameters of the
wrong logistic regression model has two covariates when the
true model has five covariates. Tables shows comparison
between the least false values which is computed by
approximation of expit(u) ~ ®(ku) and skew-Normal
distribution properties and values of estimated parameters by
fitted logistic regression model. Ry, Ry, Rz denote the ratios
of the mean of the simulated fits to the comuted last false
value.

Table 1 and Table 2, shows the results of simulation of
data generated by multivariate Normal distribution in cases
of Pr(Yy =1)=60% and Pr(Y=1)=10% respectively
with sample size n=500. Table 3 and Table 4, shows the
results of simulation with sample size n=10000. We can
see clearly the results show ratios close to one. The same
behaviour results found in both cases of Pr(Y =60%) and

Pr(Y =10%) , where is the ratio found close to one. That is

meaning the approximation form of the least false values
works well, although the probability of outcome Y is very
low about 10%, but a good results and reasonable behaviour
have been found. Some issues of low ratio a raised in case of
sample size n =500, that there are some estimated values
were very small close to zero which affect on ratio.
Moreover, the parameter selection and correlation selection
may be having slightly affected in a few cases.

Table 1. Simulation results of last false values by multivariate Normal distribution in case Pr(Y =1) =60%, n=500 and R; denote to the Ratio

Table 2.

72 =10.1 Parameters estimated, Least false values and Ratio
241 10 ag [a o Ry 51 .'.'H‘ fa 32 ﬁj Ha
0.2 0.2 0.4 04045 03960  1.01 04212 03960 106 04909 04962 1.01
0.5 0.7 0.9 04025 03978 1.01 06008 05067  1.15 063581 06961 092
0.2 0.2 -0.2 || 04068 03055 1.01 00756 0.0998 075 02481 01995 0 1.24
g =15
0.2 0.2 0.4 0.3003 03606 1.10 036093 03606 1.02 04208 04507 0.095
0.5 0.7 0.9 0.3680 03706 009 05570 05560 100 06239 06486 0.96
0.2 -0.2 0.2 || 0.3495 0.3869 090 00996 00967 1.03 01995 01934 1.03
Simulation results of last false values by multivariate Normal distribution in case Pr(Y =1) =10%, n=500 and R; denote to the Ratio
72 =10.1 *arameters estimated, Least false values and Ratio
41 2 120 [a " ity A1 .'.'H‘ Ha Ha ﬁj s
0.2 0.2 0.4 2208 2153 1010 04305 0 03969 1.08 04841 04962 D08
0.8 0.7 0.9 2226 2188 101 06183 05067 1.03  0.6868 06961 008
0.2 0.2 0.2 ) -2193 2194 099 01043 00997 1.04 01980 01995 1.07
!:"2 =15
0.2 0.2 0.4 2014 -10983 0 101 04165 03610 1.15 04410 04507 008
0.5 0.7 0.9 2043 2035 0 100 05435 05560 098 06473 06486 0.99
0.2 0.2 0.2 ) -2.123 0 2128 099 00664 00967 068 0.1953 01934 1.01
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Table 3. Simulation results of last false values by multivariate Normal distribution in case Pr(Y =1) = 60%, n=10000 and R; denote to the

Ratio
72 = 0.1 Parameters estimated, Least false values and Ratio
2419 £2qa a0 o o Ry 31 Eh Fa B2 83 Ha
0.2 0.2 0.4 0.3066 03969  0.599 04062 03069 1.02 04963 04962 1.00
0.5 0.7 0.9 03985 03981 1.00 05951 05867 099 06050 06961 0.99
0.2 -0.2 0.2 ]| 0839581 03090 099 04025 00007 102 02014 01995 1.0
gf =15
0.2 0.2 .4 0.3341 03606 053 03517 03606 098 04481 04507 0.99
0.8 0.7 0.9 0.3631 03706 088 05592 05860 101 06517 06486 1.0
0.2 -0.2 -0.2 || 0.3669 03869 095 00903 00967 093 01963 01934 1.0
Table 4. Simulation results of last false values by multivariate Normal distribution in case Pr(Y =1) =10%, n=10000 and R; denote to the
Ratio
72 =10.1 *arameters estimated, Least false values and Ratio
1 £ flan [a ' Ry A1 .'.'H‘ Ha Ha jj I
0.2 0.2 0.4 2183 2183 100 03981 0.3971 1.00 06058 04962 1.02
0.8 T 0.9 2191 2190 100 06094 05967 1.02  0.6RER 06961 0.09
0.2 0.2 0.2 ) -2.193 2194 099 01043 00997 1.04 0 0.1989  0.1995 0.99
g =15
0.2 0.2 0.4 1967 -1.8983  0.099 03610 03610  1.00 04600 04507 1.02
0.8 0.7 0.9 2081 -2.038 0899 05518 05560 099 06607 06486 1.02
0.2 0.2 0.2 ) -2.120 21428 1.00 00982 00967 0 1.02 02011 01934 1.04

5. Covariate Assumptions are Violated

The previous analysis discussed the least false values
with multivariate covariates, the simulation providing us
reasonable results. That was applied to covariates draw
from multivariate normal distribution. In this part we are
interested to consider the model with symmetric distribution
different from multivariate normal distribution. As we know,
the behaviour of the MLE maybe affected by the assumption
of normality on the covariates. So we will consider two of
symmetric multivariate distribution, say, t -distribution and
multivariate uniform distribution.

5.1. Simulation of Multivariate t and Multivariate
Uniform Distribution

The goal of this simulation is to use the same computed
formulae of the last false value which used in the previous
analysis, to assess the approximation computed for the
least false values for logistic regression model and with
multivariate t and uniform distribution. We use the same
assumption which used in previous simulation, let consider
we have a true logistic regression model which has five
covariates p=>5 is

7 = expit(a +,BT X)

e We choose X as a draw from one of two multivariate
distribution; either
- Multivariate Uniform distribution, or Multivariate t
-distribution.
o We are generating multivariate Uniform covariates by
related with standard Normal distribution as:

- Z~MVN(O,R) where R is the correlation matrix.
- U=®d(Z) —[0,1], (element wise) and
1 1 1
Xy ~50U-=)—>[-2-0,2=-0].
U ( 2) [ 5925 ]
e We consider the 5x 5 covariance matrix Q is
Q. Q
Q:{ 11 12}
Q1 Qp
As we know, the mean of the uniform distribution is
U =1/2 and the variance is var(U)=1/12. So, in this

case we have var(Xy)=25/12 and cov(Xy;, Xyj) =25

cov(U;,U;) , where the covariance is

. O
arcsin(—
( > )
2r
Then, the components of covariance matrix Q are

cov(Ui,Uj) =

1 cov(Uq,U,)
Q=25 12 L
cov(U,,U —
Uz,Uy) 1
_ 1 .
o cov(Uz,Uy) cov(Us3,Us)
Q=25 coVUsUs) = covUsUg) |
cov(Ug,Uz) cov(Us,Uy,) %
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cov(Uz,Uy) cov(Ujz,U5)
Q,1 = 25| cov(Uy,U;) cov(Uy,Us) [, Q) = s
cov(Us,Uy) cov(Us,U5)
e We generating multivariate t-distribution with various
value of degrees of freedom df , which changes the shape of
the distribution, we choose two cases df =(5,200) and use

two different variance o = 0.1,1.5 in each case.

o Use the same assumption on which used in the priviouse
simulation:  correlation and variance, also use
Pr(y =1)=10% and Pr(Y =1)=60% with sample size
n=500, n=10000 and N =1000 number of simulation.

5.2. Results and Discussion

The results concerning two simulation data generated by
multivariate Uniform distribution and multivariate t
-distribution. The results of this simulation with Uniform
distribution, showed in Table 5 and Table 6, in cases of
Pr(Yy =1) =60% and Pr(Y =1)=10% respectively with
two sample size n=500, n=10000. The same results
appeared, the ratio found nearly close to one in almost cases.
A few cases appeared low ratio in case of sample size
n =500, which there are some estimated value were very
small (i.e, when 0, =020, =-020,,=-0.2 the

parameter estimated was £ =0.0756, ,Bf =0.0998 and the
ratio was R, =0.75). In general we found the least false

values in this case have the same behaviour of the
multivariate normal covariates. The results of the second part
of this simulation, concerning for results of data generated by
multivariate t -distribution which showed in Table 7 and
Table 8 in cases of Pr(Y =1)=60% and Pr(Y =1) =10%

respectively with sample size n=500. Table 9 and Table
10 shows the results in case of sample size n=10000. The
results of four cases with different degree of freedom
df =200,5 and one case of variance has been used

c%=05. Comparing these results with case of Normal
distribution, more clearly when the degree of freedom larger
enough we can reported that the results have the same
behaviour. Moreover, we can say that the ratio appeared
nearly close to one in all cases of correlation and degree of
freedom, some slightly differences with low ratio appeared
in few cases when degree of freedom is df =5 and

n =500, which have the same behaviour found in case of the
normal multivariate covariates when the estimated value was
very small.

Overall, if we assume normality on covariates, but the
covariates are drawn from a multivariate t -distribution with
variety of degree of freedom and multivariate Uniform
distribution, which use large sample size n=10000. We
found that, for different combination of correlations and
variances, are appeared the results from (9) and (10) still
appear to hold.

Table 5. Simulation results of last false values using different values of pij by generated variables from multivariate Uniform distribution in case

Pr(Y =1) =60%, n=500, n=10000 and R; denote to the Ratio

n = 500 Parameters estimated, Least false values and Ratio
0y 42 (taa & o” I e Eh Ra o 85 R3
0.2 0.2 0.4 0.3275 03485 094 03433 03437 1.00 0.4454 04308 1.08
0.8 0.7 0.9 03204 03504 002 05420 05330 101 05640 06238 0.00
0.2 -0.2 -0.2 03071 048811 093 01142 01005  1.13  0.1825 03811 0093
n = 10000

0.2 0.2 0.4 0.3300 03435 095 03209 03437 0.9 0.4120 04308 0.96
0.8 0.7 0.4 0.3350 03594 093 05262 053309 099 06194 06238 0.09
0.2 -0.2 -0.2 0.3830 0.3811 L.0o0 00971 01005 097 01935 01957 0.99

Table 6. Simulation results of last false values using different values of pij by generated variables from multivariate Uniform distribution in case

Pr(Y =1) =10%, n=500,n=10000 and R; denote to the Ratio

n = &0 Parameters estimated, Least falze values and Ratio
1 2 Clag fal o® iy 51 .ﬁ? Ha Ho RH Hy
0.2 0.2 0.4 1001 1916 0099 06911 03437 0 104 07496 04308 1.08
0.8 0.7 0.9 9000 1977 101 05728 05330 1.07 05876 06238 0.94
0.2 0.2 -0.2 21827 1919 1.00 00392 00209 1.0 0.1871 01682 1.11
i = 10000
0.2 0.2 0.4 1800 -1.916 099 03551 03437 0 1.03 04483 04308 1.04
0.5 0.7 0.9 -1.8963 1977 099 05217 0.5339 088 046557 06238 1.05
0.2 0.2 -0.2 0080 2006 099 01022 01005 101 0.1938 0 001957 0.99
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Table 7. Simulation results of last false values by multivariate t-distribution in case Pr(Y =1) =60%, n=500 and R; denote to the Ratio

df = 200 Parameters estimated, Least false values and Ratio
249 2 Clan o o* fy 1 a3 Fia Ha a3 Ha
0.2 0.2 0.4 0,380 0385 101 0409 0335 106 0422 0481 088
0.8 0.7 0.9 0303 0380 101 0549 0584 094 0682 0681 1.00
0.2 -0.2 02 ) 08305 0395 1.00 0098 0099 099 0174 0197 088
df =5
0.2 0.2 0.4 0402 0385 104 0332 0385 086 0466 0481 097
0.8 0.7 0.4 0375 0380 0096 0564 0584 0897 0722 0681 1.06
0.2 -0.2 0.2 || 0379 0395 0896 0086 0098 088 0186 0198 0.4

Table 8.

Simulation results of last false values by multivariate t-distribution in case Pr(Y =1) =10%, n=500 and R; denote to the Ratio

df = 200 Parameters estimated, Least false values and Ratio
£ 10 lag o o* Hy B % Hq B2 b3 Ry
0.2 0.2 0.4 21000 2120 089 0389 0385 086 0520 0482 1.09
g 0.7 0.0 2165 2142 101 04575 0584 009 0738 0681 1.08
0.2 0.2 0.2 -2.212 2075 101 0110 0098 111 0200 0197 1.
df =&
).2 0.2 0.4 2118 21200 099 0430 0385 111 0498 0482 1.03
1.8 0.7 0.0 2114 22142 089 0709 0584 121 0550 0682 0.81
2 0.2 0.2 | -2.180 -2175 100 0096 0098 097 0234 0197 1.18

Table 9. Simulation results of last false values by multivariate t-distribution in case Pr(Y =1) =60%, n=10000 and R;

denote to the Ratio

df = 200 Parameters estimated, Least false values and Ratio
241 2 (lag ] o® Ry 1 .:.'H‘ Ra Ha ,'.ij Ha
0.2 0.2 0.4 0351 0385 0099 0394 0385  1.02 0478 0481 099
0.8 0.7 0.9 0.300 0320 100 0570 0584 098 0688 0681 1.0
0.2 -0.2 -0.2 || 0.394 0395 099 0103 0098 1.05 0187 0,197 095
df =5
0.2 0.2 0.4 0380 0385 009 0357 03385 093 0458 0481 0495
0.8 0.7 0.9 0.380 03520 092 0557 0584 096 0670 0681 098
0.2 -0.2 0.2 [ 0301 0395 000 0093 0095 094 0185 0198 0.4

Table 10.  Simulation results of last false values by multivariate t-distribution in case Pr(Y =1) =10%, n=10000 and R;

denote to the Ratio

df = 200 Parameters estimated, Least false values and Ratio
£ 1o flan ¥ [ Ry g1 H Ha Fa _d; Faq
0. 0.2 0.4 21190 2121 009 0305 (0.385 .03 0504 0482 1.05
0.8 0.7 0.9 2141 -2.142 009 0589 (0.584 .01 0676 0681 099
0.2 -0.2 0.2 ] 2181 2180 1.00 0008 00988 0 101 0205 0197 1.08
df =5h
0.2 0.2 0.4 2079 2120 098 0379 0385 008 0466 0482 097
0.8 0.7 0.9 -2.119 2142 099 0552 0584 085 0688 0682 1.1
0.2 -0.2 0.2 ] 2150 2475 089 0109 0.098 110 0186 0198 0.04

6. Conclusions

The goal of this paper considers to investigate the
behaviour of the MLE and find a formula to compute
the least false values when the wrong logistic model has
been fitted. Moreover, we examined the behaviour of the
model when the assumption on covariates are violated.
Corresponding to the simulation analysis, we found a good
results in all cases when the covariates are drawn from the

multivariate normal. The results appeared the MLE has
reasonable behaviour with the least false values in case of
wrong model, which computed in terms of the true
parameters. On the other hands, we have applied the results
defined in (9) and (10), which assumed covariates were
multivariate normal, when the covariates do not follow this
distribution. Again the results derived in (9) and (10) gave
accurate answers. We consider five dimensional multivariate
uniform and t-variables when only two covariates were fitted.
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In fact, we can see clearly that, both the low probability
of outcome Y and the sample size have affected on the
estimated value of parameters. In the case of the large sample
size, the standard error will be close to zero and the ratio
close to one. In contrast, the standard error will be increases
and the ratio will be appear faraway from one in some cases
of small sample size. The results showed that for these
symmetric non-normal variables, the violation of the
assumption of normality made little difference. Some
discrepant were noticed when the value of coefficients were
very small close to zero.
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