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Abstract  The general method of estimation the logistic regression parameter is maximum likelihood (ML). In a very 

general sense the ML method yields values for the unknown parameters that maximize the probability of the observed set of 

data. Much work discusses the behaviour of the distribution of Maximum likelihood estimates (MLE) for the logistic 

regression model under the correct model. However, many issues still need more examination as the relationship between the 

links of the logistic function and the skew-normal distribution which consider in this work. In this paper, our work considers 

this behaviour and investigates the MLE method under the logistic regression model when the wrong model has been fitted 

and the assumption on covariates are violated. We will consider this behaivuor and the covariates drawing from a non-normal 

distribution and evaluate it by simulation. 
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1. Introduction 

The subject of the behaviour of maximum likelihood 

estimation (MLE) method in logistic regression model has 

attracted the attention of many scientists and researchers. [6] 

developed the analysis of the binary data and application of 

the maximum likelihood: see also [7]. [11] introduced the 

generalized linear model and used special techniques to 

obtain the maximum likelihood estimates of the parameters, 

with observations distributed according to some exponential 

family. [10] discussed the generalized linear model and 

behaviour of the maximum liklihood (ML) method for 

binary outcome. [5] discused method used a modified score 

function to reduce the bias of the maximum likelihood 

estimates. The ML method under the wrong logistic model 

has been discussed extensively by [9, p.23]. The idea is to try 

to find in terms of the true parameters of the model the least 

false values which are obtained by maximising the incorrect 

likelihood function. We will use the relationship between 

( ) / (1 )expit u uu e e   function and probit function ( )  , 

and use the properties of the multivariate skew-Normal 

distribution to compute a good approximation to the least 

false values under wrong logistic model. The behaviour    

of MLE for  binary outcome  has been  discussed  more  
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extensively by [10]. The logistic model when 

~ binomial( , )i i iY m   with 1im   can be fitted using the 

method of maximum likelihood to estimate the parameters. 

The first step is to construct the likelihood function which is 

a function of the unknown parameters and data, then choose 

those values of the parameters that maximize this function. 

The log-likelihood function is: 

 
1

( ; ) log( ) (1 ) log(1 )
n

i i i i
i

l Y y y  


     

Where, in this case we have  

1 1

( ) ( ) log 1 exp( )
n n

T T
i i i

i i

l y x x    
 

     
    

where   is a p -dimensional vector, ix  are a vector of 

covariates for 
thi  individual and 1, ,i n . To estimate 

the parameters   and j  we differentiate the 

log-likelihood function with respect to   and j . If the 

fitted model is the true model then, the asymptotic 

distribution of j  is 
1ˆ ~ ( , ( ) )N I   

 where ( )I   is 

the ( )p p  Fisher's information matrix, its ( , )thr s  

element is defined as 

2
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If is evaluated at MLE ̂ .  

2. MLE Under the Wrong Model 

[9] discussed how the maximum likelihood method used 

to estimate the parameters of a given regression model is 

affected when the assumed model is incorrect. If the data are 

independent and identically distributed, the log likelihood 

function in case of the density ( , )if y   for an individual 

observation, we can write as: 

1

( ) log ( , ).
n

n i
i

f y 


  

The important question here is, if we fit a model for Y  as 

( )f y ∣  when true model is ( )g y , what value do we 

estimate for  ? We have for each value of  , by the weak 

large numbers, in probability, as n  

 1 ( ) log ( ) ,nn E f Y   ∣  

The Kullback-Leibler ( )KL  divergence is  

( )
( ( ), ( , )) ( ) log .

( , )

g y
KL g y f y g y dy

f y



       (1) 

For model ( , )f y x ∣ , we need to solve likelihood 

function and find the least false parameter 
*  which 

minimises ( , )KL g f , then 

*
log ( , )

0.X g
f Y X

E E






  
  

  

∣
     (2) 

Application to Logistic Regression 

Now, we will apply the MLE method under wrong model 

on logistic regression model. The idea is to use this method 

to obtain equations which determine the least false value 
*  

for a logistic regression. To explain the behaviour of the 

MLE in this case we will partition of the vector covariates 

X , as previous ( , )f aX X . The fitted model is  

(expit )f fX     

However, this model is wrong because the true model is.  

( )expit f f a aX X       

So, expectation of the ML equations are zero when 
* * *( , )     . From the above equations where Y  is 

binary, the expectation in this case becomes  

* *expit( ( )) ( ( )),X X f fY XE E Y E X  ∣  

and 

* *( ( )) ( (expit )).X f X f f fE X E Y X E X X  ∣  

The ( )E Y X∣  is Pr( 1 )Y X∣  and this is given by the 

true model  

Pr( 1 ) (expit ).T T
f f a aY X X X     ∣  

But we fit the model without aX . The least false values, 

*  and *
f , can be found in terms of , f   and a  and 

the parameters of the distribution of the covariates as from  

* *expit expit( ) ( )T T
f fE X E X        

   
      (3) 

* *( ) ( ) .expit expitT T
fj f f fjE X X E X X        

   
 (4) 

where, fjX  is the 
thj  element of fX  ( 1, , )j p  . 

These equations can be solved approximately if X  follows 

a multivariate normal distribution, by approximating 

expit( )  and using the skew-normal distribution. In fact, the 

previous work considers by [14], discussed the inconsistent 

treatment estimates from mis-specified logistic regression 

analyses of randomized trials. In this paper, we are interested 

in more investigate the behaviour of MLE under the wrong 

mode when covariate assumptions are violatedl and 

assessment by simoulation. 

Skew-Normal Distribution 

The skew-Normal distribution has been discussed by    

[3] and [4]. More discussion and numerical evidence of the 

presence of skewness in real data by [17] and [2]. Other 

discussion for quadratic forms and flexible class of 

skew-symmetric distribution discussed by [12] and [8]   

also, by [16]. A random variable U  is called skew normal 

with parameter  , so ~ ( )U SN  , if its density function is : 

( ; ) 2 ( ) ( )f u u u              (5) 

where u R , ( )   and ( )   are the density and 

distribution function of standard normal distribution 

respectively, that defined by [3]. In general case, [1], 

discussed extends the skew normal distribution and 

properties of this family. We can defined the extend 

multivariate skew-normal distribution as; a p -dimensional 

random variable U  has extended skew-normal distribution, 

( , , , )ESN    , if it has density: 

( ; , ) ( ( ) )

( / 1 )

T
p

T

u u    

  

   

  

 

where   is a scalar,   is dispersion matrix has p p  

dimensional and parameters   and   are p -dimensional. 

The (.; , )p    is the density of a p -dimensional normal 

variable with mean   and dispersion matrix   where 

(.)  is the cumulative distribution function of a univariate 

standarad normal variable. 

Probit Function and expit Function 
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We are consider the approximation of expit( )  by ( )  , 

the distribution function of a standard normal variable. [15] 

reported that, the logistic distribution closely resembles the 

normal distribution which discussed the shape of distribution 

both are symmetrical and noted some properties. [13, p.5], 

point out the comparison of logistic and normal cumulative 

distribution function. The approximation form defined as: 

( )e (x t )pi u ku  , where (16 3) / (15 )k  . 

3. Least False Values Under Wrong 
Logistic Model 

The main point is, suppose that we model a binary 

outcome, Y , using a logistic regression, i.e. 

expitPr( 1| ) ( ),T
f f fY X X     

but that the true model includes more covariates, i.e. 

Pr( 1| ) (ex ).pit T T
f f a aY X X X       

Now, to find the least false values in terms of parameters 

of the true logistic model, use the approximation form 

expit( ) ( )    , properties of the skew-normal distribution 

and we use the two equations which determine the MLEs,  

as we have discussed in section 2 about MLE under the 

wrong model to find the least false values. Let us assume that 

X has ( )p q -dimensional multivariate Normal distribution, 

where p  and q  denote the dimensions of fX  and aX  

respectively. The presence of an intercept in the above 

models means that we may assume, wlog, that ( ) 0E X  . If 

var( )X   , then also suppose that the partition of this 

matrix corresponding to fX  and aX  is: 

,
ff fa

af aa

  
   

   

 

then we can apply the approximation to (3) and (4) using 

( )e (x t )pi u ku  , which this leads to  

     * *[ ] [ ]T T
X f f XE k X E k X          (6) 

Now we use the properties of skew-normal distribution, in 

this case the density function of skew-normal distribution 

where ( ) 0E X   is  

2

( ( )) ( )
( , , ) .

1

T

T

k X X
f X

k

k

  
 



 

 


 
 
   

 

Then we can write the (6) as  

*

2 * * 2
,

1 1T T
f ff f

k k

k k

 

   

   
     
         

 

which is 

*

2 * * 2
.

1 1T T
f ff fk k

 

   


   

      (7) 

Turning our attention to (4) and using the results for the 

expectation of a SN distribution, we obtain 

* *

2 * * 2 * *

1

2 2

1 1

( )
,

1 1

ff f

T T
f ff f f ff f

T T

k k

k k

 


   

 


   

 
  

 
    
 

 
  

     

   (8) 

where ( )   is the standard Normal density, and     

1( )  denotes the first p  elements of  , which is 

ff f fa a   . Using the result in (7), we can simplify (8) 

and finally, we can follows that 

* 1

2

1
( )

1
f f ff fa a

T
a ak

  
 

  

 

     (9) 

and 

*

2
.

1
f

T
a ak




 


 

         (10) 

where 1
aa af ff fa

     . From this we get Note that 

(9) includes a denominator, such that *
f f   even when 

0fa  , although, of course, *
f f   if 0a  .  

4. Simulation Study when the Covariates 
Follow Normal Distribution 

The goal of this simulation, is to assess the approximation 

computed for the least false values for logistic regression 

model. We are interested to application on case of the 

covariates generated by multivariate Normal distribution. 

Applied on different cases with different variance and 

different correlation to check on the behaviour of the 

formulae of the least false values under wrong model. We 

looking in this simulation for check the approximation of the 

last false values for a true logistic regression model has five 

covariates 5p   is 

expit( )T
i X     

where, 1 2 5( , , , )T     , 1 5( , , )i iX x x   and in the 

fitted model there are two covariates. We designed the 

simulation as follows: 

  We choose X  as a draw from the multivariate normal 

distribution 5~ (0, )X N  . 

  We consider the 5 5 covariance matrix   is 
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11 122

21 22

,
  

   
  

 

where, 

31 32
12

11 21 41 42
21

51 52

34 35

22 43 45 21 12

53 54

1
, ,

1

1

1 , .

1

T

 


 


 

 

 

 

 
   

      
    

 
 

    
 
  

 

  Use two different variance 
2 0.1,1.5  . 

  We consider 3 different cases of correlation which is 

each case of ij  has same ij  designed as: 

(0.2,0.2,0.4), (0.8,0.7,0.9), (0.2,-0.2,-0.2). Values are 

chosen to assume   is positive definite. 

  We choose the parameters 1 5, ,   and   to give 

us two cases Pr( 1) 10%Y   and Pr( 1) 60%Y  . 

As calculate the unconditional Pr( 1)Y   by properties 

skew-normal distribution we get, 

2
Pr( 1) .

1 T

k
Y

k



 

 
   
   

 

Choose 

1 2 3 4 50.25, 0.35, 0.40, 0.3, 0.2          and 

adjust  , so that over the covariates Pr( 1) 10%Y   

( 2.2)    and Pr( 1) 60%Y   ( 0.4)  . 

  The sample size has been used 500n  , 10000n   

and 1000N   number of simulation.  

4.1. Results and Discussion 

We report the accuracy of the estimation parameters of the 

wrong logistic regression model has two covariates when the 

true model has five covariates. Tables shows comparison 

between the least false values which is computed by 

approximation of ( )e (x t )pi u ku   and skew-Normal 

distribution properties and values of estimated parameters by 

fitted logistic regression model. 1 2 3, ,R R R  denote the ratios 

of the mean of the simulated fits to the comuted last false 

value.  

Table 1 and Table 2, shows the results of simulation of 

data generated by multivariate Normal distribution in cases 

of Pr( 1) 60%Y   and Pr( 1) 10%Y   respectively 

with sample size 500n  . Table 3 and Table 4, shows the 

results of simulation with sample size 10000n  . We can 

see clearly the results show ratios close to one. The same 

behaviour results found in both cases of Pr( 60%)Y   and 

Pr( 10%)Y  , where is the ratio found close to one. That is 

meaning the approximation form of the least false values 

works well, although the probability of outcome Y  is very 

low about 10% , but a good results and reasonable behaviour 

have been found. Some issues of low ratio a raised in case of 

sample size 500n  , that there are some estimated values 

were very small close to zero which affect on ratio. 

Moreover, the parameter selection and correlation selection 

may be having slightly affected in a few cases. 

Table 1.  Simulation results of last false values by multivariate Normal distribution in case Pr( 1) 60%Y  , 500n   and iR  denote to the Ratio 

 

Table 2.  Simulation results of last false values by multivariate Normal distribution in case Pr( 1) 10%Y  , 500n   and iR  denote to the Ratio 
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Table 3.  Simulation results of last false values by multivariate Normal distribution in case Pr( 1) 60%Y  , 10000n   and iR  denote to the 

Ratio 

 

Table 4.  Simulation results of last false values by multivariate Normal distribution in case Pr( 1) 10%Y  , 10000n   and iR  denote to the 

Ratio 

 

 

5. Covariate Assumptions are Violated 

The previous analysis discussed the least false values  

with multivariate covariates, the simulation providing us 

reasonable results. That was applied to covariates draw  

from multivariate normal distribution. In this part we are 

interested to consider the model with symmetric distribution 

different from multivariate normal distribution. As we know, 

the behaviour of the MLE maybe affected by the assumption 

of normality on the covariates. So we will consider two of 

symmetric multivariate distribution, say, t -distribution and 

multivariate uniform distribution.  

5.1. Simulation of Multivariate t  and Multivariate 

Uniform Distribution 

The goal of this simulation is to use the same computed 

formulae of the last false value which used in the previous 

analysis, to assess the approximation computed for the  

least false values for logistic regression model and with 

multivariate t  and uniform distribution. We use the same 

assumption which used in previous simulation, let consider 

we have a true logistic regression model which has five 

covariates 5p   is 

expit( )T
i X     

 We choose X  as a draw from one of two multivariate 

distribution; either 

-  Multivariate Uniform distribution, or Multivariate t

-distribution. 

 We are generating multivariate Uniform covariates by 

related with standard Normal distribution as: 

-  ~ (0, )Z MVN R  where R  is the correlation matrix. 

-  ( )U Z   [0,1], (element wise) and  

1
~ 5 ( )

2
UX U  

1 1
[ 2 ,2 ]

2 2
  . 

 We consider the 5 5 covariance matrix   is 

11 12

21 22

.
  

   
  

 

As we know, the mean of the uniform distribution is 

1/ 2U   and the variance is ( ) 2a 1v r 1/U  . So, in this 

case we have ( )var 25 /12UX   and ,ov( )c Ui UjX X  25 

,ov( )c i jU U , where the covariance is 

arcsi

c

n( )
2(ov , ) .

2

ij

i jU U




  

Then, the components of covariance matrix   are  

1 2

11

2 1

1
( , )

12
25 ,

1
( , )

12

cov

cov

U U

U U

 
 

   
 
  

 

3 4 3 5

22 4 3 5 4

5 3 5 4

1
( , ) ( , )

12

1
25 ( , ) ( , )

cov cov

cov cov

cov c

,
12

1
( , ) ( , )

 

 
2

v
1

o

U U U U

U U U U

U U U U

 
 
 
  
 
 
 
    



 American Journal of Mathematics and Statistics 2021, 11(1): 18-25 23 

 

 

3 1 3 2

21 4 1 4 2 21 12

5 1 5 2

( , ) ( , )

25 ( , 

 

cov cov

cov cov

c

) ( , ) , .

( ,ov cov) ( , )

T

U U U U

U U U U

U U U U

 
 

    
 
    

 We generating multivariate t-distribution with various 

value of degrees of freedom df , which changes the shape of 

the distribution, we choose two cases (5,200)df   and use 

two different variance 
2 0.1,1.5   in each case. 

 Use the same assumption on which used in the priviouse 

simulation: correlation and variance, also use 

Pr( 1) 10%Y   and Pr( 1) 60%Y   with sample size 

500n  , 10000n   and 1000N   number of simulation.  

5.2. Results and Discussion 

The results concerning two simulation data generated by 

multivariate Uniform distribution and multivariate t

-distribution. The results of this simulation with Uniform 

distribution, showed in Table 5 and Table 6, in cases of 

Pr( 1) 60%Y   and Pr( 1) 10%Y   respectively with 

two sample size 500n  , 10000n  . The same results 

appeared, the ratio found nearly close to one in almost cases. 

A few cases appeared low ratio in case of sample size 

500n  , which there are some estimated value were very 

small (i.e, when 11 12 220.2, 0.2, 0.2         the 

parameter estimated was 
*

1 10.0756, 0.0998    and the 

ratio was 2 0.75R  ). In general we found the least false 

values in this case have the same behaviour of the 

multivariate normal covariates. The results of the second part 

of this simulation, concerning for results of data generated by 

multivariate t -distribution which showed in Table 7 and 

Table 8 in cases of Pr( 1) 60%Y   and Pr( 1) 10%Y   

respectively with sample size 500n  . Table 9 and Table  

10 shows the results in case of sample size 10000n  . The 

results of four cases with different degree of freedom 

200,5df   and one case of variance has been used 

2 0.5  . Comparing these results with case of Normal 

distribution, more clearly when the degree of freedom larger 

enough we can reported that the results have the same 

behaviour. Moreover, we can say that the ratio appeared 

nearly close to one in all cases of correlation and degree of 

freedom, some slightly differences with low ratio appeared 

in few cases when degree of freedom is 5df   and 

500n  , which have the same behaviour found in case of the 

normal multivariate covariates when the estimated value was 

very small.  

Overall, if we assume normality on covariates, but the 

covariates are drawn from a multivariate t -distribution with 

variety of degree of freedom and multivariate Uniform 

distribution, which use large sample size 10000n  . We 

found that, for different combination of correlations and 

variances, are appeared the results from (9) and (10) still 

appear to hold. 

Table 5.  Simulation results of last false values using different values of ij  by generated variables from multivariate Uniform distribution in case 

Pr( 1) 60%Y  , 500n  , 10000n   and iR  denote to the Ratio 

 

Table 6.  Simulation results of last false values using different values of ij  by generated variables from multivariate Uniform distribution in case 

Pr( 1) 10%Y  , 500n  , 10000n   and iR  denote to the Ratio 
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Table 7.  Simulation results of last false values by multivariate t-distribution in case Pr( 1) 60%Y  , 500n   and iR  denote to the Ratio 

 

Table 8.  Simulation results of last false values by multivariate t-distribution in case Pr( 1) 10%Y  , 500n   and iR  denote to the Ratio 

 

Table 9.  Simulation results of last false values by multivariate t-distribution in case Pr( 1) 60%Y  , 10000n   and iR  denote to the Ratio 

 

Table 10.  Simulation results of last false values by multivariate t-distribution in case Pr( 1) 10%Y  , 10000n   and iR  denote to the Ratio 

 

 

6. Conclusions 

The goal of this paper considers to investigate the 

behaviour of the MLE and find a formula to compute     

the least false values when the wrong logistic model has  

been fitted. Moreover, we examined the behaviour of the 

model when the assumption on covariates are violated. 

Corresponding to the simulation analysis, we found a good 

results in all cases when the covariates are drawn from the 

multivariate normal. The results appeared the MLE has 

reasonable behaviour with the least false values in case of 

wrong model, which computed in terms of the true 

parameters. On the other hands, we have applied the results 

defined in (9) and (10), which assumed covariates were 

multivariate normal, when the covariates do not follow this 

distribution. Again the results derived in (9) and (10) gave 

accurate answers. We consider five dimensional multivariate 

uniform and t-variables when only two covariates were fitted. 
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In fact, we can see clearly that, both the low probability    

of outcome Y and the sample size have affected on the 

estimated value of parameters. In the case of the large sample 

size, the standard error will be close to zero and the ratio 

close to one. In contrast, the standard error will be increases 

and the ratio will be appear faraway from one in some cases 

of small sample size. The results showed that for these 

symmetric non-normal variables, the violation of the 

assumption of normality made little difference. Some 

discrepant were noticed when the value of coefficients were 

very small close to zero.  
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