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Abstract  We study optimizations under a weak condition of convexity, called quasi-convexity in infinite dimensional 

spaces. Although many theorems involving the characterizations of quasi-convex functions and optimizations in finite 

dimensional spaces appear in the literature, very few results exist on the characterizations of quasi-convex functions in 

infinite dimensional spaces which involve a generalized derivatives of quasi-convex functions. Although the condition 

0 ∈ 𝜕𝑓 𝑥  for 𝑥 ∈ 𝑋 , is known to be necessary optimality condition for existence of a minimizer in quasi-convex 

programming for some sub-differentials, it is not a sufficient condition. We extend the study of subdifferential 

characterization of quasi-convex functions in infinite dimensional spaces by using some variational inequalities approach to 

obtain a necessary and sufficient condition for 𝑥 ∈ 𝑋 to be either a local minimum or a global minimum.  
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1. Introduction 

The study of Quasi-convex functions and optimizations, 

which play important roles in numerous fields including, 

economics, engineering, management science, operations 

research, industrial organization, computer vision, curve 

fitting, and various applied sciences, is several decades old. 

[1,11,19,22]. The notion of Quasi-convex functions and the 

characteristics convexity of its level set was first recognized 

by De Finetti in his work, “Sulle Straficazoni Convesse” in 

1949, [9]. Since then, efforts have been focused on this  

class of functions because of its similar features with  

convex functions and its wider applications [11,14,13,21].  

A quasi-convex optimization problem is a mathematical 

optimization problem in which the objective is to minimize a 

quasi-convex function over a convex set. Because every 

convex function is also quasi-convex, Quasi-convex 

programs therefore generalize convex programs [1]. 

The prefix ‘quasi” means “as if”. Thus, we expect 

quasi-convex functions to possess some special qualities that 

are similar to those of convex functions. However, while 

some properties of convex functions and optimizations have  
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analogues equivalence of quasi-convexity some properties 

do not have. For instance, although the sub-level sets of  

both convex and quasi-convex functions are convex, 

quasi-convex functions differ from convex functions in the 

following ways among others; quasi-convex functions can 

be discontinuous in the interior of their domain, not every 

local minimum is a global minimum, local minimum that  

are not global cannot be strict minima. First order conditions 

are not sufficient to identify even local optima under 

quasi-convexity. [11,14].  

Many theorems involving the characterizations of 

quasi-convex functions and optimizations in finite 

dimensional spaces appear in the literature. One of the most 

important properties of convex functions is that their level 

sets are convex. This property is also a fundamental 

geometric characterization of quasi-convex functions which 

sometimes is treated as their definition [10,11,14,19,21]. 

However, the most attractive characterizations of 

quasi-convex functions are those which involve gradients (a 

detailed account of the current state of research on the topic 

can be found in [5]). As to generalized derivatives of 

quasi-convex functions, very few results exist (see [5,12]). In 

[12], a study of quasi-convex functions is presented via 

Clarke's sub-differential, but the authors restricted 

themselves to the case of Lipschitz functions on a finite 

dimensional space only.  

Interestingly, [21] and independently, [2-4] characterized 
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the lower semi-continuous quasi-convex functions in terms 

of generalized (Clarke-Rockafellar) sub-differentials and 

directional derivatives in infinite dimensional spaces with 

the concept of quasi-monotone maps and prove that a lower 

semi-continuous function on an infinite dimensional space is 

quasi-convex if and only if its generalized sub-differential or 

its directional derivative is quasi-monotone. Although [2-4] 

and [21] studied the subdifferential characterizations of 

quasi-convex functions in infinite dimensional spaces,  

none of the studies covered their optimality conditions     

in infinite dimensional spaces. [20] did a study on a 

necessary optimality condition for lower semi-continuous 

quasi-convex functions on closed convex sets but did not 

cover the sufficient optimality condition of the problems. He 

didn’t adopt the variational inequality approach in his study 

of optimality conditions but rather adopted the normal cone 

approach in his minimization of the quasi-convex function. 

Variational inequalities have found many applications in 

optimization and in order fields of applied, especially in 

mechanics [15].  

Although the condition 0 ∈ 𝜕𝑓 𝑥  for 𝑥 ∈ 𝑋, is known 

to be necessary optimality condition for existence of a 

minimizer in quasi-convex programming for some 

sub-differentials, it is not a sufficient condition. We extend 

the study of [2-4] and [21] by using some variational 

inequalities approach to obtain a necessary and sufficient 

condition for 𝑥 ∈ 𝑋 to be either a local minimum or a global 

minimum. 

2. Preliminaries 

Let 𝑋  be a Banach space with norm  .  , 𝑋∗  its 

topological dual  . , .   for the duality pairing and  𝑥∗, 𝑥  the 

value of 𝑥∗ ∈ 𝑋∗ at 𝑥 ∈ 𝑋 For each 𝑥, 𝑦 ∈ 𝑋, we define the 

closed line segment  𝑥, 𝑦 = 𝜆𝑥 +  1 − 𝜆 𝑦  for some for 

𝜆 ∈ [0,1] and define (𝑥, 𝑦], [𝑥, 𝑦) and (𝑥, 𝑦) analogously 

and we denote an open ball centered at 𝑥 with radius 𝜀 by 

𝐵𝜀 𝑥 = {𝑥 ′ ∈ 𝑋:  𝑥 ′ − 𝑥 < 𝜀}.  

Given a lower semi-continuous (l.s.c.) function 𝑓: 𝑋 →
ℝ ∪  +∞ , the effective domain is defined by  

𝑑𝑜𝑚 𝑓 = {𝑥 ∈ 𝑋: 𝑓 𝑥 < +∞}. 

For a multivalued operator 𝑇: 𝑋 → 𝑋∗, the domain of T is 

𝑑𝑜𝑚 𝑇 = {𝑥 ∈ 𝑋: 𝑇 𝑥 ≠ ∅. 

Definition 2.1. A function 𝑓: 𝑋 → ℝ ∪  +∞  is said to be 

quasi-convex if for each 𝑥, 𝑦 ∈ dom 𝑓, 

𝑧 ∈ [𝑥, 𝑦]  𝑓 𝑧 ≤ max{𝑓 𝑥 , 𝑓 𝑦 }.     (1) 

This is equivalent to the convexity of the level sets 

𝑆𝜆𝑓 = { 𝑥 ∈ 𝑋: 𝑓(𝑥) ≤ 𝜆}, ∀𝜆 ∈ ℝ.        (2) 

𝑓 is said to be strictly quasi-convex if the inequality (1) is 

strict when 𝑥 ≠ 𝑦. 

Definition 2.2. [4] A differentiable function 𝑓 is called 

quasi-convex if for every 𝑥, 𝑦 ∈ 𝑑𝑜𝑚 𝑓  

 ∇𝑓(𝑥), 𝑦 − 𝑥 > 0  𝑓(𝑥) ≤ 𝑓(𝑦)      (3) 

Definition 2.3 An operator 𝜕 that associates to any l.s.c. 

function 𝑓: 𝑋 → ℝ ∪  +∞  and a point 𝑥 ∈ 𝑋  a subset 

𝜕𝑓(𝑥) of 𝑋∗ is a sub-differential if it satisfies the following 

properties: 

(i)  𝜕𝑓 𝑥 = {𝑥∗ ∈ 𝑋∗:  𝑥∗, 𝑦 − 𝑥 + 𝑓 𝑥 ≤
𝑓 𝑦 , ∀𝑦 ∈ 𝑋}, whenever 𝑓 is convex; 

(ii)  0 ∈ 𝜕𝑓 𝑥 , whenever 𝑥 ∈ 𝑑𝑜𝑚 𝑓  is a local 

minimum of 𝑓; 

(iii)  𝜕 𝑓 + 𝑔  𝑥 ⊂ 𝜕𝑓 𝑥 + 𝜕𝑔 𝑥 , whenever 𝑔  is a 

real a real-valued convex continuous function which 

is 𝜕-differentiable at 𝑥, where 𝑔-differentiable at 𝑥 

means that both 𝜕𝑔(𝑥)  and 𝜕(−𝑔)(𝑥)  are 

non-empty. We say that 𝑓 is 𝜕-differentiable at 𝑥 

when 𝜕𝑓(𝑥) is non-empty while 𝜕𝑓(𝑥) are called 

the sub-gradients of 𝑓 at 𝑥.  

The Clarke-Rockafellar general derivative of 𝑓  at 

𝑥0 ∈ dom 𝑓  in the direction 𝑑 ∈ 𝑋 is given by 

𝑓↑ 𝑥0, 𝑑 = sup𝜀>0 limsup𝑥→𝑓𝑥0
𝜆↘0

inf𝑑 ′∈𝐵𝜀 𝑑 
𝑓 𝑥+𝜆𝑑 ′ −𝑓(𝑥)

𝜆
, 

where 𝐵𝜀 𝑑 = {𝑑′ ∈ 𝑋:  𝑑′ − 𝑑 < 𝜀} , 𝜆 ↘ 0  indicates 

the fact that 𝜆 > 0 and 𝜆 → 0,  

and 𝑥 → 𝑓𝑥0  means that both 𝑥 → 𝑥0  and 𝑓(𝑥) →
𝑓(𝑥0). 

The Clarke-Rockafellar subdifferential of 𝑓  at 𝑥0  is 

defined by  

𝜕𝑓(𝑥0) = {𝑥∗ ∈ 𝑋∗: (𝑥∗, 𝑑) ≤ 𝑓↑ 𝑥0, 𝑑 , ∀𝑑 ∈ 𝑋} if 

𝑥0 ∈ 𝑋\dom 𝑓 , then 

𝜕𝑓(𝑥0) =  ∅. 

We extend the notion of quasi-convexity to less smooth 

function using the concept of generalized directional 

derivatives and sub-differential. 

Definition 2.4. [4] A l.s.c function 𝑓: 𝑋 → ℝ ∪  +∞  is 

called quasi-convex (with respect to Clarke-Rockerfeller 

Subdifferentials) if for any 𝑥, 𝑦 ∈ 𝑋: 

∃𝑥∗ ∈ 𝜕𝑓 𝑥 :  𝑥∗, 𝑦 − 𝑥 > 0 ⟹ 

∀𝑧 ∈ [𝑥, 𝑦], 𝑓(𝑧) ≤ 𝑓(𝑦).          (4) 

Definition 2.5. A multivalued operator 𝑇: 𝑋 → 𝑋∗ is said 

to be quasi-monotone if  

∃𝑥∗ ∈ 𝑇 𝑥 :  𝑥∗, 𝑦 − 𝑥 > 0 ⟹ ∀𝑦∗ ∈ 𝑇(𝑥), 

 𝑦∗, 𝑦 − 𝑥 ≥ 0. 

3. Sub-Differential Characterizations of 
Quasi-Convex Functions 

Our aim is to show that 𝑓 if quasi-convex if and only 

𝜕𝑓(𝑥) is quasi-monotone. We need the following lemma. 

Lemma 3.1. Let 𝑎, 𝑏 ∈ 𝑋 with 𝑓 𝑎 < 𝑓(𝑏). Then, exist 

𝑐 ∈ [𝑎, 𝑏), and sequence 𝑥𝑛 → 𝑓𝑐  and 𝑥𝑛
∗ ∈ 𝜕𝑓(𝑥𝑛) with  

 𝑥𝑛
∗ , 𝑥 − 𝑥𝑛 > 0  for every 𝑥 = 𝑐 + 𝜆(𝑏 − 𝑎)  with 

𝜆 > 0. 
Proof. By Approximate mean value inequality theorem [3], 

we can find an 𝑥0 ∈ [𝑎, 𝑏) and a sequence 𝑥𝑛 → 𝑓𝐶  and 

𝑥𝑛
∗ ∈ 𝜕𝑓(𝑥𝑛) verifying 



 American Journal of Mathematics and Statistics 2020, 10(4): 97-101 99 

 

 

lim1inf
𝑛→+∞

  𝑥𝑛
∗ , 𝑐 − 𝑥𝑛 ≥ 0 and lim1inf

𝑛→+∞
  𝑥𝑛

∗ , 𝑏 − 𝑎 > 0.(5) 

Letting 𝑥 = 𝑐 + 𝜆(𝑏 − 𝑎) with 𝜆 > 0 it holds 

 𝑥𝑛
∗ , 𝑐 − 𝑥𝑛 =  𝑥𝑛

∗ , 𝑐 − 𝑥𝑛 + 𝜆 𝑥𝑛
∗ , 𝑏 − 𝑎 > 0,  (6) 

for 𝑛 sufficiently large. 

Theorem 3.2. (Quasi-convexity). 𝑓  is quasi-convex if 

and only if 𝜕𝑓 is quasi-monotone. 

Proof. We show that if 𝑓 is not quasi-convex then, 𝜕𝑓 is 

not quasi-monotone.  

Suppose that there exist some 𝑥, 𝑦, 𝑧  in 𝑋  with 𝑧 ∈
[𝑥, 𝑦] and 𝑓 𝑧 > max{𝑓 𝑥 , 𝑓 𝑦 }. According Lemma 3.1 

applied with 𝑎 = 𝑥  and 𝑏 = 𝑧 , there exists a sequence 

𝑦𝑛 ∈ dom𝜕𝑓 and 𝑦𝑛
∗ ∈ 𝜕𝑓(𝑦𝑛) such that 

𝑦𝑛 → 𝑦 ∈ [𝑥, 𝑧], 𝑦 ≠ 𝑧 and  𝑦𝑛
∗, 𝑦 − 𝑦𝑛  > 0.   (7) 

Let 0 < 𝜆 ≤ 1  be such that 𝑧 = 𝑦 + 𝜆(𝑦 − 𝑦 )  and set 

𝑧𝑛 = 𝑦𝑛 + 𝜆(𝑦 − 𝑦𝑛) , so that 𝑧𝑛 → 𝑧 . Since 𝑓  is lower 

semi-continuous, we may pick 𝑛 ∈ ℕ  very large with 

𝑓 𝑧𝑛 > 𝑓(𝑦) . Apply Lemma 3.1 again with 𝑎 = 𝑦  and 

𝑏 = 𝑧𝑛  to find sequences 𝑥𝑘 ∈ dom𝜕𝑓, 𝑥𝑘
∗ ∈ 𝜕𝑓(𝑥𝑘) such 

that  

𝑥𝑘 → 𝑥 ∈ [𝑦, 𝑧𝑛 ], 𝑥 ≠ 𝑧𝑛  and  𝑥𝑘
∗ , 𝑦𝑛 − 𝑥𝑘 > 0.   (8) 

In particular, 𝑥 ≠ 𝑦𝑛  and  

 𝑦𝑛
∗, 𝑥 − 𝑦𝑛 =

 𝑥 −𝑦𝑛  

 𝑦−𝑦𝑛  
 𝑦𝑛

∗, 𝑦 − 𝑦𝑛 > 0;     (9) 

hence,  𝑦𝑛
∗, 𝑥𝑘 − 𝑦𝑛 > 0  for 𝑘  sufficiently large. But 

 𝑦𝑛
∗, 𝑦𝑛 − 𝑥𝑘 > 0, showing that 𝜕𝑓 is not quasi-monotone.  

Conversely, we suppose that 𝑓 is quasi-convex and show 

that 𝜕𝑓  is quasi-monotone. Let 𝑥∗ ∈ 𝜕𝑓(𝑥)  and 𝑦∗ ∈
𝜕𝑓(𝑦)  with  𝑥∗, 𝑦 − 𝑥 > 0 . We need to verify that 

𝑓↑ 𝑦, 𝑥 − 𝑦 ≤ 0. We fix 𝜀 > 0 and 𝜔 ∈ (0, 𝜀) such that 
 𝑥∗, 𝑣 − 𝑥 > 0 for all 𝑣 ∈ 𝐵𝜔 𝑦 . 

We fix 𝑣 ∈ 𝐵𝜔 𝑦 . Since 𝑓↑ 𝑦, 𝑥 − 𝑦 > 0 we can find 

𝜀 ′ ∈ (0, 𝜀 − 𝜔) , 𝑢 ∈ 𝐵𝜀 ′ 𝑥  and 𝑡 ∈ (0,1)  such that 

𝑓(𝑢 + 𝑡 𝑣 − 𝑢 > 𝑓(𝑢). From the quasi-convexity of 𝑓 we 

deduce that 𝑓 𝑢 < 𝑓(𝑣), whence, 

𝑓 𝑣 + 𝜆(𝑢 − 𝑣 ) ≤ 𝑓(𝑣) for all 𝜆 ∈ (0,1), 

so that  

inf𝜇∈𝐵𝜀 𝑥−𝑦 
𝑓 𝑣+𝜆𝜇  −𝑓(𝑣)

𝜆
≤

𝑓 𝑣+𝜆(𝑢−𝑣) −𝑓(𝑣)

𝜆
≤ 0  for all 

𝜆 ∈ (0,1). 

Combining the inequalities and for any 𝜀 > 0 there exists 

𝜔 > 0 such that  

sup
𝑣∈𝐵𝜔  𝑦 
𝜆∈(0,1)

 inf𝜇∈𝐵𝜀 𝑥−𝑦 
𝑓 𝑣+𝜆𝜇  −𝑓 𝑣 

𝜆
 ≤ 0, 

which shows that 𝑓↑ 𝑦, 𝑥 − 𝑦 ≤ 0. 

4. Optimality Conditions and 
Variational Inequalities  

Let Γ: 𝑋 → 𝑋∗  be a multivalued operator, 𝑆 ⊂ 𝑋  and 

𝑥 ∈ 𝑆. Recall from [17,18] that, Γ satisfies the variational 

inequality (10) if and only if  

∀𝑥 ∈ 𝑆,  𝛾(𝑥), 𝑥 − 𝑥  ≥ 0, ∀𝛾(𝑥) ∈ Γ(𝑥).   (10) 

Let 𝑓: 𝑋 → ℝ ∪  +∞  be a lower semi-continuous (l.s.c.) 

function and consider the minimization problem 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓(𝑥), subject to 𝑥 ∈ 𝑆.    (11) 

Then, if 𝑁 is a convex open neighborhood of 𝑥 , we have 

the following 

Lemma 4.1. If 𝜕𝑓 satisfies (10), the following assertions 

hold. 

(i) If 𝑆 = 𝑋, then 𝑥  is a global minimum of 𝑓. 

(ii) If 𝑆 = 𝑁, then 𝑥  is a local minimum of 𝑓.  

Proof. It suffices to prove (ii) Suppose by contradiction 

that 𝑥  is not a solution of (11), then there exist 𝑥 ∈ 𝑆 such 

that 𝑓 𝑥 < 𝑓(𝑥 ) . By Lemma 3.1, there exist 𝑐 ∈ [𝑥, 𝑥 ) 

and two sequences 𝑐𝑛 → 𝑓𝑐 , 𝑐𝑛
∗ ∈ 𝜕𝑓(𝑐𝑛) with 

 𝑐𝑛
∗ , 𝑑 − 𝑐𝑛 > 0, 

for any 𝑑 = 𝑐 + 𝜆(𝑥 − 𝑥) where 𝜆 > 0. 

Since 𝑆  is a convex open neighborhood of 𝑥 , then 

[𝑥, 𝑥 ] ⊂ 𝑆. Furthermore, for 𝑛 large enough 𝑐𝑛 ∈ 𝑆. 

For 𝑑 = 𝑥 , we have  

 𝑐𝑛
∗ , 𝑥 − 𝑐𝑛 > 0, 

which contradicts (10). Thus, 𝑥  is a local minimum of 𝑓. 

Consider now the quasi-convex minimization problem (11) 

again,  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓(𝑥), subject to 𝑥 ∈ 𝑆.      (12) 

where 𝑓: 𝑋 → ℝ ∪  +∞  is l.s.c. and quasi-convex, then we 

have: 

Theorem 4.2. If 𝑆 = 𝑋  or 𝑆 = 𝑁 , then the following 

assertions are equivalent: 

(i) 𝑥  is an optimal solution of (12). 

(ii) 𝜕𝑓 satisfies (10). 

Proof. (i) ⟹(ii). Suppose 𝑥  is a strict minimum of (12). 

Then for all 𝑥 ∈ 𝑆 such that 𝑥 ≠ 𝑥 , we have 𝑓 𝑥 > 𝑓(𝑥 ). 

By Lemma 3.1, there exist 𝑐 ∈ [𝑥, 𝑥 ), and two sequences 

𝑐𝑛 → 𝑓𝑐 , 𝑐𝑛
∗ ∈ 𝜕𝑓(𝑐𝑛) with 

 𝑐𝑛
∗ , 𝑑 − 𝑐𝑛 > 0, 

for any 𝑑 = 𝑐 + 𝜆(𝑥 − 𝑥) where 𝜆 > 0. 

For 𝑑 = 𝑥, we have  

 𝑐𝑛
∗ , 𝑥 − 𝑐𝑛 > 0. 

Since 𝑓  is quasi-convex, by Theorem 3.2., 𝜕𝑓  is 

quasi-monotone. This implies that  

 𝑥∗, 𝑥 − 𝑥  ≥ 0,  ∀𝑥∗ ∈ 𝜕𝑓(𝑥). 

Thus, 𝜕𝑓 satisfies the variational inequality (10) 

Suppose that 𝑥  is not is a strict minimum of (12) and 

consider the function 𝑔 defined by  

𝑔 𝑥 = {𝑣,                                     𝑓𝑜𝑟  𝑥=𝑥 ,
max { 𝑓 𝑥 ,𝑓 𝑥   ,      𝑓𝑜𝑟  𝑥≠𝑥 ,

      (13) 

where 𝑣 < 𝑓(𝑥 ). it is obvious that 𝑔 is l.s.c., quasi-convex 

and 𝑥  is a strict local minimum of 𝑔. 
Then, we have 

∀𝑥 ≠ 𝑥 ,  𝑥∗, 𝑥 − 𝑥  ≥ 0, ∀𝑥∗ ∈ 𝜕𝑔(𝑥). 

Since 𝜕𝑓(𝑥)  depends only on the values of 𝑓  in the 

neighborhood of 𝑥, 𝜕𝑓 𝑥 = 𝜕𝑔(𝑥). 
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When 0 ∈ 𝑖𝑛𝑡(𝜕𝑓 𝑥  ) , i.e. the interior of 𝜕𝑓 𝑥  , we 

obtain a more precise result 

Lemma 4.3. If 0 ∈ 𝑖𝑛𝑡(𝜕𝑓 𝑥  ) , then 𝜕𝑓  satisfies the 

variational inequality (10) on the whole space 𝑋 and 𝑥  is an 

optimal solution of (12) with 𝑆 = 𝑋 . Moreover, 𝑥  is a 

global minimum of 𝑓. 

Proof. Suppose that 0 ∈ 𝑖𝑛𝑡(𝜕𝑓 𝑥 ), then 

∃ 𝜀 > 0 such that 𝐵𝑋∗ 0, 𝜀 ⊂  𝜕𝑓 𝑥 , 

where 

𝐵𝑋∗ 0, 𝜀 = {𝑥∗ ∈ 𝑋∗:  𝑥∗ < 𝜀} 

Let 𝑑 ∈ 𝑋\{0}  and consider the linear mapping 

ℓ𝑑 𝑥
∗ =  𝑥∗, 𝑑 , for 𝑥∗ ∈ 𝑋∗. 

By open mapping theorem [4, Pseudo 8], we  

𝐵𝑋∗ 0, 𝜀 =  𝜕𝑓 𝑥 , 𝑑 . 

Since 𝑓 is quasi-convex, then 𝜕𝑓 is quasi-monotone. By 

Definition 2.1 of [16], the multivalued operator 𝜕𝑓𝑥,𝑑  

defined by  

𝜕𝑓𝑥,𝑑 𝜆 =  𝜕𝑓 𝑥 + 𝜆𝑑 , 𝑑 , 

is quasi-monotone. And then, 

 𝜆𝑑, 𝜕𝑓 𝑥 + 𝜆𝑑  ⊂ ℝ+, 

for all 𝜆 ∈ ℝ and 𝑑 ∈ 𝑋\{0}. Thus, 𝜕𝑓 satisfies (10). 

5. Conclusions  

We have studied optimizations under a weak condition of 

convexity, called quasi-convexity in infinite dimensional 

spaces. Although many theorems involving the 

characterizations of quasi-convex functions and 

optimizations in finite dimensional spaces appear in the 

literature, very few results exist on the characterizations of 

quasi-convex functions in infinite dimensional spaces which 

involve a generalized derivatives of quasi-convex functions. 

Although the condition 0 ∈ 𝜕𝑓 𝑥  for 𝑥 ∈ 𝑋 , is known   

to be necessary optimality condition for existence of a 

minimizer in quasi-convex programming for some 

sub-differentials, it is not a sufficient condition. This study is 

an extension of the study of [2-4] and [21] by using some 

variational inequalities approach instead of the normal cone 

approach to obtain a necessary and sufficient condition for 

𝑥 ∈ 𝑋 to be either a local minimum or a global minimum.  
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