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Abstract  The paper provides an understanding about the theoretical and empirical illustration of working of various 

classes of ARCH family models used in the study. It equally exploits the potential benefits derivable from using this family 

type models. It dwells heavily into the best time series model among autoregressive moving average (ARMA), 

Autoregressive conditional heteroscedasticity (ARCH), Generalized Autoregressive conditional heteroscedasticity 

(GARCH), Integrated Generalized Autoregressive conditional heteroscedasticity (IGARCH), Threshold Generalized 

Autoregressive conditional heteroscedasticity (TGARCH) and Exponential Generalized Autoregressive conditional 

heteroscedasticity (EGARCH) models, and determined the models which actually give the best forecast performance. 

Mathematical background of all these models were set up and promptly illustrated using monthly data of number of patients 

admitted for malaria at Ladoke Akintola teaching hospital, Osogbo. It covers the period of five years (2012 January to 

December, 2016), obtained from the hospital record of LAUTECH, Osogbo. Stationarity tests (graph, unit root and 

correlgram) were conducted before proceeding to parameter estimations. The grid search using Akaike information criteria 

(AIC) and Performance measures indices were used to determine the best model. So also, performance measure indices were 

cross tabulated with the models. In all, out of seven performance measure indices used, EGARCH (1,1) Model is best in the 

six of the indices. From these results EGARCH (1,1) is recommended for would be investors, forecasters and other categories 

of users. 
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1. Introduction 

In conventional time series models, the major assumption 

behind the least square regression is homoscedasticity i.e 

constant variance. If this condition is violated, the estimates 

will still be unbiased but they will not be minimum variance 

estimates. The standard error and confidence intervals 

calculated in this case become too narrow, giving a false 

sense of precision. But many financial time series such as 

exchange rate, stock market indices, market returns, 

inflation rate and so on exhibit periods of unusual large 

volatility, followed by periods of relative tranquility (time 

series exhibits clustering of large and small disturbances). 

Such situations suggest a form of heteroscedasticity in 

which the variance of the disturbance depends on the size of  
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preceding disturbance and hence the conditional variance is 

non-constant over the sample period. The ARCH models 

have the ability to capture all the above characteristics in 

financial market variables. ARCH and related models can 

handle this by modeling volatility itself in the model and 

thereby correcting the deficiencies of least squares model. 

Forecasting has attracted the interest of many 

academicians, investors and policy makers. Hence various 

models ranging from simplest models such as random walk 

to the more complex conditional heteroskedastic models of 

the GARCH family have been used to forecast financial 

series. [1] is the first one who uses GARCH model to 

forecast, he shows that GARCH produces better forecast 

than most of the other forecasting methods such as Random 

Walk (RW), Historical Mean (HM), Moving Average (MA) 

and Exponential Smoothing (ES) when applied to monthly 

US stock market data. In addition, [4] and [13] found that 

Threshold GARCH outperforms ARCH, GARCH, and 

Exponential GARCH on monthly US stock market data.   

On the other hand, [6] evaluate the forecasting accuracy of 

simple models such as Random Walk, Moving Average, 

Exponential Smoothing and Regression Models on UK stock 
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market data and they conclude that Exponential Smoothing 

and Regression Models provide the best forecast. [2] 

investigate the forecasting performance of both ARCH-type 

models and non-ARCH models applied to 14 different 

countries. [11] use Moving Average, Historical Mean, 

Random Walk, GARCH, GJR-GARCH, EGARCH and 

APARCH to forecast volatility of two Chinese Stock Market 

indices; Shanghai and Shenzhen. Among GARCH models, 

GJR-GARCH and EGARCH outperforms other ARCH 

models for Shenzhen stock market. [9] employed Random 

Walk, GARCH(1,1), TGARCH(1,1) and EGARCH(1,1) to 

forecast Ghana Stock Exchange. GARCH(1,1) provides the 

best forecast according to three different criteria out of four.  

This paper therefore examines or evaluates the forecast 

performance of ARCH family models to number of patients 

admitted for malaria at Ladoke Akintola teaching hospital, 

Osogbo. The recent development global wise therefore 

requires the use of quantitative models that will have the 

ability to inform the players in all sectors the implication of 

the risks taking in one side and the returns on the other side. 

2. Mathematical Specifications 

2.1. Autoregressive Moving average (ARMA) 

 ,ARMA p q  Autoregressive moving average with 

orders  ,p q  model in a discrete time linear equation with 

noise of the form 

1 1

1 1
k k

k h
k t k t

i i

L X L  
 

   
     

   
   

       (1) 

Or more explicitly as  

1 1 1 1t t p t p t t p t qX X X                (2) 

We may incorporate a none zero average in the model.   

If we want that tX  has average of  , the natural procedure 

is to have zero average solution tZ  of 

1 1 1 1t t p t p t t p t qZ X X                 (3) 

and take t tX Z    have solution of 

1 1 1 1t t p t p t t p t qX X X                   (4) 

With  

1 p         

2.2. Autoregressive Conditional Heteroscedasticity 

(ARCH) Model 

Suppose 1 2, ... TX X X  are the time series observations 

(exchange rates, stock values and so on) and let tF  

 0,...tX X  be the set of tX  up to time t , including 

tX  for t  ≤ 0. As defined by [7], the process ( tX ) is an 

Autoregressive Conditional Heteroscedasticity process of 

order q   ARCH q , if:  

1/t tX F  ~ N  0, th , with  

2 2 2
0 1 1 ...t t q t qh X X        2

0
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i t i
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X  

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Where 0q  , 0 0   and 0i   for 1,...,i q . The 

conditions 0 0   and 0i   are needed to guarantee 

that the conditional variance 0th  . 

2.3. Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) Models 

The Generalized Autoregressive conditional 

heteroscedasticity models were propounded by [7] and [3]. 

They were the first researchers to propose a stationary 

non-linear model for ty , which he termed ARCH 

(Autoregressive conditional heteroscedaticity); this means 

that the conditional variance of ty  evolves according to an 

auto regressive type process. [3] and [12] independently 

generalized Engle’s model to make it more realistic; the 

generalization was called “GARCH”. GARCH is probably 

the most commonly used financial time series model and has 

inspired dozens of more sophisticated models. The 

commonly used financial time series model is GARCH and 

so many sophisticated models were built from it. 

Definition: The  ,GARCH p q  model is defined by: 

t t ty                     (6) 

2 2 2
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p q

t i t j t j
i j

y     
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           (7) 

where 0 i > 0, 0, 0j     and the innovation sequence 

 i i





 is independent and identically distributed with 

E( 0 ) = 0 and E( 2
0 ) = 1. 

2.4. The Exponential Generalized Autoregressive 

Conditional Heteroscedasticity (p, q) Model 

GARCH models, assume that only the magnitude and  

not the positivity or negativity of unanticipated excess 

returns determines features of 2
t . If the distribution of tz  

is symmetric, the change in variance is conditionally 

uncorrelated. The Exponential  ,GARCH p q  model put 

forward by [10] is as follows 
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 
1/2

1, 2 /i tE z    given that  0,1tz NID , 

where the parameters , ,i i    are not restricted to be 

non-negative. 

2.5. The Integrated Generalized Autoregressive 

Conditional Heteroscedasticity (p, q) Model 

The  ,GARCH p q  process characterized by the first 

two conditional moments: 

 1 1 0t tE     

2 2 2 2
1 1 1

1

q

t t t i t i t
i

E        


    
       (9) 

where 0, 0i    and 0i   for all i  and the 

polynomial  

   1- 0x x    

has d > 0  unit root(s) and    max ,  rootp q d s  outside 

the unit circle is said to be 

i. Integrated in variance of order   =0d if   

ii. Integrated in variance of order d  with  > 0  

The Integrated  ,GARCH p q  models, both with or 

without trend, are therefore part of a wider class of models 

with a property called "persistent variance" in which the 

current information remains important for the forecasts of 

the conditional variances for all horizons. 

So, we have  ,IGARCH p q  models when necessary 

condition 

    1I I  
 

2.6. Threshold Generalized Autoregressive Conditional 

Heteroscedasticity (TGARCH) OR GJR-GARCH 

[8] (1994) proposed TGARCH process for asymmetric 

volatility structure. 

2 2 2
0 1 1 1 1 1 1 1t t t t td h                  (10) 
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Where 1 0  , the negative shock will have larger effect 

on volatility. 

2.7. Performance Measure Indices 

i. Mean square error (MSE) 

The MSE serves to aggregate the magnitudes of the errors 

in predictions for various times into a single measure of 

predictive power. It is one of the commonly used error index 

statistics [5]. Although it is commonly accepted that the 

lower the MSE the better the model performance. MSE is 

given as:  

 1

1

ˆ
T

t t
t

MSE N Y Y



            (12) 

ii. Mean Absolute error (MAE) 

The absolute error is the absolute value of the difference 

between the forecasted value and the actual value. MAE tells 

us how big the size of an error we can expect from the 

forecast on average. This is mathematically given as:  

 1

1

ˆ
T

t t
t

MAE N Y Y



             (13) 

iii. Mean absolute precision error (MAPE) 

MAPE has indispensable statistical properties in that it 

makes use of all observations and has the smallest variability 

from sample to sample. It is also useful for purposes of 

reporting because it is expressed in generic percentage terms 

that will be understandable to a wide range of users and very 

simple to calculate and easy to understand, which attests to 

its popularity. It is given as: 
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T
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iv. Theil’s U inequality coefficient 

A more useful measure to evaluate the predictive accuracy 

of a model is Theil’s U inequality coefficient, which 

measures the root mean square error in relative terms, and is 

defined as 

2
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       (15) 

The denominator imposes an upper bound to the U 

coefficient, which is bounded above by 1 and bounded below 

by 0, that is, 0 ≤ U ≤ 1. This is particularly useful since it 

gives a threshold to evaluate the accuracy of a model and not 

only compare it to other models. The closer to 0 the 

coefficient is, the more accurate the model is, while a 

coefficient equal to 1 indicates that the forecast performance 

of the model is as bad as it could be. The U coefficient can be 

decomposed into three proportions that provide useful 

additional information on the performance of the model. 

Bias,  

2
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Variance,  
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Covariance, 
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The bias proportion measures the systematic error of the 

forecast; it gathers the share of the simulation error that 

comes from bias, that is, the difference between the averages 

of the forecasted series and the actual series. The variance 

proportion is intended to provide a measure of how well our 

forecast replicates the volatility of the actual series. The 

covariance proportion offers a measure of the unsystematic 

error in the forecast. 

3. Data Analysis and Discussion of 
Results 

3.1. Descriptive Statistics 

 

Figure 1.  Descriptive Statistics 

Figure 1 above revealed that the standard deviation is high 

which indicates high degree of fluctuations in number of 

patients data used; there is evidence of skewness with 

negative sign indicating that the data used is non-symmetric. 

From the histogram, the number of patients’ data is 

non-leptokurtic as its large kurtosis value is smaller compare 

to the mean. Jarque-Bera test with p-value less than zero 

shows that the data is non-normal so that the hypothesis of 

normality is rejected. From here the study proceeded to 

determination of stationarity of data used for the study before 

embarking on the analysis of the data. 

For any study to be valid in time series there is the need to 

verify the stationarity of the series involve before the 

analysis. Three important methods of checking stationarity 

of time series were used in this study; they are graphical, unit 

root and correlogram. 

3.2. Graphical Method 

 

Figure 2.  Original data 
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Figure 3.  Differenced data 

 

Figures 2 and 3 show the time plots for the data. The 

original data (figure 2) shows that the data is not stationary 

i.e fluctuating as it gives not too high coefficient of 

determination ( 2R ) of 0.588. More so, at the first difference, 

the data seems to be stationary as it gives a coefficient of 

determination of 0.864, the mean of the series is more stable 

at this level. 

3.3. Unit Root 

Table 1.  Unit Root (Level) 

  t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic -9.035008 0.0321 

Test critical values: 1% level -3.546099  

 5% level -2.911730  

 10% level -2.593551  

*MacKinnon (1996) one-sided p-values. 

Table 2.  Unit Root First Difference 

  t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic -6.389746 0.0000 

Test critical values: 1% level -3.557472  

 5% level -2.916566  

 10% level -2.596116  

*MacKinnon (1996) one-sided p-values. 

At level the probability value of the ADF is lesser than 5% 

i.e. prob. = 0.0000 < 0.05, but the test an only account for 

58.8% fitness and cannot be accepted for being stationary 

while at first difference, value of the ADF is lesser than 5% 

i.e. prob. = 0.0000 < 0.05 and gives an account of 86.4% 

which is assumed to be a good fit, hence suggesting that the 

data is stationary. 

3.4. Correlogram 

Table 3.  Correlogram (Level) 

Autocorrelation 
Partial  

Correlation 
 AC PAC Q-Stat Prob 

.*| . | .*| . | 1 -0.172 -0.172 1.8567 0.173 

. | . | . | . | 2 0.022 -0.008 1.8865 0.389 

**| . | **| . | 3 -0.262 -0.267 6.3511 0.096 

. |*. | . | . | 4 0.147 0.063 7.7876 0.100 

.*| . | .*| . | 5 -0.107 -0.089 8.5557 0.128 

. |*. | . | . | 6 0.090 0.001 9.1194 0.167 

.*| . | .*| . | 7 -0.122 -0.071 10.166 0.179 

. |*. | . | . | 8 0.082 0.002 10.648 0.222 

. | . | . |*. | 9 0.028 0.080 10.706 0.296 

. | . | .*| . | 10 -0.060 -0.113 10.972 0.360 

.*| . | . | . | 11 -0.075 -0.057 11.400 0.410 

. |*. | . |*. | 12 0.147 0.141 13.078 0.363 

.*| . | .*| . | 13 -0.116 -0.142 14.147 0.364 

.*| . | .*| . | 14 -0.094 -0.154 14.869 0.387 

.*| . | .*| . | 15 -0.082 -0.074 15.431 0.421 

. | . | . | . | 16 0.066 -0.050 15.794 0.467 

.*| . | .*| . | 17 -0.092 -0.165 16.520 0.487 

. | . | .*| . | 18 -0.016 -0.145 16.544 0.555 

. |*. | . |*. | 19 0.087 0.126 17.234 0.574 

. | . | . | . | 20 0.070 -0.001 17.696 0.607 

. |*. | . |*. | 21 0.196 0.196 21.349 0.438 

**| . | .*| . | 22 -0.296 -0.205 29.910 0.121 

. | . | . | . | 23 0.073 0.070 30.451 0.137 

. | . | . | . | 24 -0.035 0.008 30.576 0.166 

. |*. | . | . | 25 0.123 -0.062 32.193 0.152 

.*| . | . | . | 26 -0.117 0.035 33.701 0.143 

. |*. | . |*. | 27 0.201 0.127 38.250 0.074 

. | . | . | . | 28 -0.049 0.005 38.526 0.089 
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Table 4.  Correlogram (First Difference) 

Autocorrelation 
Partial  

Correlation 
 AC PAC Q-Stat Prob 

****| . | ****| . | 1 -0.565 -0.565 19.818 0.000 

. |*. | .*| . | 2 0.198 -0.178 22.294 0.000 

**| . | ***| . | 3 -0.297 -0.403 27.946 0.000 

. |** | .*| . | 4 0.291 -0.121 33.489 0.000 

.*| . | .*| . | 5 -0.190 -0.148 35.897 0.000 

. |*. | . | . | 6 0.164 -0.051 37.720 0.000 

.*| . | .*| . | 7 -0.160 -0.066 39.481 0.000 

. |*. | .*| . | 8 0.095 -0.092 40.117 0.000 

. | . | . |*. | 9 0.008 0.078 40.122 0.000 

. | . | . | . | 10 -0.023 -0.004 40.161 0.000 

.*| . | .*| . | 11 -0.113 -0.182 41.121 0.000 

. |** | . |*. | 12 0.214 0.112 44.616 0.000 

.*| . | . |*. | 13 -0.092 0.098 45.278 0.000 

. | . | . | . | 14 -0.019 -0.025 45.307 0.000 

. | . | . | . | 15 -0.038 0.009 45.426 0.000 

. |*. | . | . | 16 0.093 0.056 46.155 0.000 

.*| . | . | . | 17 -0.097 -0.051 46.961 0.000 

. | . | **| . | 18 -0.015 -0.232 46.980 0.000 

. |*. | . | . | 19 0.092 0.005 47.746 0.000 

.*| . | .*| . | 20 -0.107 -0.148 48.798 0.000 

. |** | . |** | 21 0.285 0.249 56.496 0.000 

***| . | .*| . | 22 -0.393 -0.117 71.502 0.000 

. |** | . | . | 23 0.227 -0.023 76.666 0.000 

.*| . | . | . | 24 -0.110 0.060 77.913 0.000 

Interpretation:  

The correlogram of the series are given in tables 3 and 4. 

Table 3 Show the correlogram of the original data with 

autocorrelation coefficient that starts with a low value of 

0.173 and declines very slowly towards zero which prove 

that the series is non-stationary. Furthermore, table 4 shows 

no trend in number of patients admitted data, hence 

suggesting that the infant mortality series is stationary. 

GRID SEARCH 

Table 5.  Grid Search Table (Table 5) 

AR(p) 

MA(q) 
1 2 3 4 5 

1 7.899796 8.783223 8.632285 8.580561 8.662874 

2 8.440114 8.625729 8.513543 8.513658 8.484294 

3 8.761070 8.982604 8.684018 7.857791 8.790923 

4 8.393312 8.381344 8.390314 7.791621 8.396179 

5 8.607656 8.774639 8.629319 8.705978 8.968993 

Interpretation: 

In table 5 above, both processes demonstrate correlation 

residuals. Among the different models applied to the data, 

GARCH(1,1) appears to be relatively better fit on the basis 

of Akaike Information Criterion. The results of GARCH (1,1) 

are shown in table 6 below:  

Table 6 

Variable Coefficient Std. Error t-Statistic Prob. 

AR(1) 1.001431 0.001975 507.0872 0.0000 

MA(1) -0.964449 0.030502 -31.61949 0.0000 

R-squared -0.034588 Mean dependent var 58.38983 

Adjusted R-squared -0.052739 S.D. dependent var 12.04448 

S.E. of regression 12.35801 Akaike info criterion 7.899796 

Sum squared resid 8705.057 Schwarz criterion 7.970221 

Log likelihood -231.0440 Hannan-Quinn criter. 7.927287 

Durbin-Watson stat 2.334627    
Inverted AR Roots 1.00    

 Estimated AR process is nonstationary 
Inverted MA Roots .96    

3.5. Parameter Estimates 

The models earlier listed were subjected to parameter 

estimation, from the analysis the following details relating to 

parameter estimates of all the models used. They are as listed 

below 

  2 7 2 2
1 11,1   1.651 0.065 0.765t t tGARCH e U 
      

       2 2
1 1

2 2
1 1 1

1,1   ln 0.321 0.067

0.069 / 0.299 ln

t t t

t t t

EGARCH U SQRT

U SQRT

 

 

 

  

   

   
 

  2 7 2 2
1 11,1  1.221 0.023 0.324t t tIGARCH e U 
     

  2 7
1

2 2
1 1

1,1   1.321 0.032

0,012 0.231

t t

t t

TGARCH e U

U








 

 

 

 

  2 7 2 2
1 1ARMA 1,1   2.101 1.141 0,122 0.142t t te U 
      

3.6. Comparison of Forecast Performance 

Various forecast measuring indices were cross tabulated 

with the models used in the study. The forecast measurement 

indices used are Root mean square error (RMSE), Mean 

absolute error (MAE), Mean absolute precision error 

(MAPE), Theil U-inequalities, Bias proportion, Variance 

proportion and Covariance proportion. The table of 

comparison as obtained from the analysis were extracted and 

shown in the table 7 as follow: 
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Table 7.  Table of Measuring Indices cross-tabulated with Models 

MODELS 

Forecast indices 
GARCH (1,1) EGARCH (1,1) IGARCH (1,1) TGARCH (1,1) ARMA (1,1) 

RMSE 404.5529  401.2111 406.2111 410.1231 403.2111 

MAE 343.3870 341.3870 341.3870 347.2011  309.2217 

MAPE 17.0504  15.0213 16.2211 17.1107 17.2981 

THEIL U 0.1015  0.0924 0.0946 0.1112 0.1020 

BIAS PROPORTION 0.0404  0.0362 0.0421 0.0412 0.0411 

VARIANCE PROPORTION 0.0034  0.0022 0.0036 0.0035 0.0047 

COVARIANCE PROPORTION 0.9982  0.9992 0.9994 0.9995 0.9991 

 
Interpretation  

The models used are comparable as shown by the results 

displayed in Table 7 above (as extracted from the analysed 

data). However, in the comity of ARCH, EGARCH (1,1) 

appeared to be the best as the majority of the indices 

appeared to be in its favour (the asterisk results are the one 

that produced the best results in the cross-tabulation). In all, 

out of seven indices used, EGARCH (1,1) Model is best in 

the six of the seven performance measures indices. 

4. Conclusions 

So far so good, this paper evaluate the forecast 

performance of Autoregressive Conditional 

Heteroscedasticity (ARCH) family models using monthly 

data of number of patients admitted for malaria at Ladoke 

Akintola teaching hospital, Osogbo for empirical illustration. 

It covers the period of five years (January, 2012 to December, 

2016). From the result the series was stationary at first 

difference for all the stationarity tests performed. 

Performance measures indicators show that EGARCH (1,1) 

gives the best model capable of providing best forecasting 

power. 
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