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Abstract  This study assessed the volatility and the Value at Risk (VaR) of daily returns of Bitcoins by conducting a 
comparative study in the forecast performance of symmetric and asymmetric GARCH models based on three different error 
distributions. The models employed are the SGARCH and TGARCH which were validated based on AIC, MAE and MSE 
measures. The results indicated that the SGARCHGED (1,1) with generalised error distribution term was identified as the best 
fitted GARCH model. Though, this best fitted model based on information loss (AIC) did not provide the best out-of-sample 
forecast, the differences was insignificant. Thus, the study clearly demonstrates that it is reliable to use the best fitted model 
for volatility forecasting. Also, to further validate the performance of the best fitted model, it was subjected to a historical 
back-test using Value at Risk (VaR). Though, it was evident from the study that no model was superior, it was indicated that 
an average loss of 1.2% is expected to be exceeded only 1% of the time. Moreover, volatility forecast from the back testing 
was relatively high during the first quarter of 2018 but begun decreasing steadily with time. 
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1. Introduction 
The recent development in the field of cryptocurrency is 

receiving significant attention as it has become a significant 
means of making day to day business transactions. It is based 
on a fundamentally new technology, designed to work as a 
medium of exchange that uses cryptography to control its 
creation and management, rather than relying on central 
authorities [1]. Hence, its potential of which is not fully 
understood [2]. 

The most traded currency of the cryptocurrencies, Bitcoin, 
over the years has undergone rapid growth to become a 
significant currency both on and offline to the extent that 
some businesses has begun accepting Bitcoin in addition to 
traditional currencies. In the field of investment, the recent 
rise in the value of Bitcoin has led most investors to consider 
it as an investment opportunity, although several regulatory 
agencies have issued investor alerts about it. 

Although, Bitcoin has been criticized for its use in illegal 
transactions, its high electricity consumption, price volatility, 
thefts from exchanges and the possibility that it is an 
economic bubble [3], its legal status varies substantially 
from country to country. Whereas many countries do not 
make the usage of bitcoin itself illegal, its status as money (or 
a commodity) varies with differing regulatory implications, 
thus, becoming a source of worry for investors and therefore  
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needs due attention. 
In the field of finance, one way to understand the 

dynamics of such volatile phenomenon is to investigate its 
returns and assess how investors and the markets value its 
prospects. In modelling such volatilities, a fundamental 
methodology is to measure potential losses of investment. 
Thus, the concept of Value at Risk (VaR), has become a 
widespread measure of market risk. However, the estimation 
of VaR requires the use of the Auto Regressive Conditional 
Heteroscedasticity (ARCH) model by [4], later generalized 
independently by [5] and [6] into the symmetric Generalized 
ARCH (GARCH). A thorough survey by [7] finds that 
GARCH generally dominates ARCH.  

Today, several extensions of the traditional symmetric 
GARCH (p,q) model have been introduced to increase the 
flexibility of the original GARCH model such as asymmetric 
GARCH model which consist of the exponential GARCH 
(EGARCH), GJR-GARCH of [8], and the threshold 
GARCH (TGARCH) of [9]. These asymmetric GARCH 
models capture the characteristic of volatility and are today 
the most popular way of parameterizing this dependence as 
they tend to outperform the original GARCH by 
incorporating leverage effects [10]. 

In literature, various studies in attempt to improve 
volatility forecasting using GARCH introduces various error 
distribution ([11]; [12]; [13]). Though, several arguments 
have been made regarding the superiority among the error 
distributions, this study employs the three of the frequently 
used, namely: the Normal distribution (NORM), Student-t 
(STD), Generalized Error Distribution (GED). The main 
reason for choosing these types of error distributions is to 
consider the skewness, excess kurtosis and heavy-tails of 
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return distributions.  
Hence, this study seeks to model the volatility and Value 

at Risk of the daily returns of Bitcoins using symmetric   
and asymmetric GARCH models, given three different 
assumptions of the error distribution. 

2. Material and Methods Used 
2.1. Scope 

Historical data on the daily prices of bitcoin online    
was taken from CoinMarketCap website 
(www.coinmarketcap.com/currencies/bitcoin/historical-data). 
The data spans from January 1, 2017 to September 12, 2018 
totaling 620 observations. The daily closing prices was used 
in this paper. 

2.2. Methods 

The daily closing prices were changed to log returns given 
by Equation (1); 
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where tr  is the logarithmic return at time t , tp  is the 
current closing price at time t  and 1−tp  is the previous 
closing price. 

2.2.1. Jarque-Bera Test 

Jarque-Bera test is a goodness-of-fit test which examines 
if the sample data have kurtosis and skewness similar to a 
normal distribution. The test is given by Equation (2); 
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where S  and K  are the skewness and kurtosis 
respectively. The JB  test is done under the null hypothesis, 
𝐻𝐻0: normality, against the alternate, 𝐻𝐻1: non-normality. If 
the sample data comes from a normal distribution JB  
should, asymptotically, have a chi-squared distribution with 
two degrees of freedom.  

2.2.2. Unit Root Test: ADF Test 
The Augmented Dickey-Fuller (ADF) test was used to 

determine whether the individual series studied have unit 
root or were covariance stationary. This method was 
proposed by [14] as an upgraded form of Dickey-Fuller Test. 
The unit root test is done under the null hypothesis 1=γ  
(non-stationary) against the alternate 1<γ  (covariance 
stationary). Where γ  is the characteristic root of an AR 
polynomial. The ADF test statistic is given by Equation (3); 
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where tD  is a vector of deterministic terms (constant, trend 
etc.). The p lagged difference terms, −∆ t jy , are used to 
approximate the mean equation structure of the errors, 

1= −π φ , and the value of p  is set so that the error, tε  is 
serially uncorrelated. 

Contrary to most unit root test, like ADF, the absence   
of a unit root is not a proof of stationarity, but by design,   
of trend-stationarity. This is being addressed by the 
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test developed 
by [15]. KPSS is defined by Equation (4) 





22

1
2

T
t

t
T S

KPSS
λ

−

=

 
  
 =

∑
            (4) 
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1
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t jjS u== ∑ ,  tu  is the residual of a regression 

of ty  on tD  and 
2

λ  is a consistent estimate of the 

long-run variance of tu  using  tu . 

2.2.3. The Mean Equation 

It is imperative to specify an appropriate mean equation in 
modelling volatility. Following [16], this paper used the 
mean equation given by Equation (5); 

1−= + +t t tr rµ λ ε                (5) 

where tr  is the returns at time, t , µ , λ  and tε  are 
constants and the innovation respectively. 

2.2.4. Univariate GARCH Models 

The returns of a financial asset largely depend on its 
volatility. In order to model such a phenomenon, the ARCH 
and then GARCH models by [4] and [5], respectively, needs 
to be considered. In GARCH models, the density function is 
usually written in terms of the location and scale parameters, 
with normalization vector given by Equation (6) 

( )  ,  ,  ,=t t tµα σ ω               (6) 

where the conditional mean is given by Equation (7) 

( ) ( )  ,    ,|= =t t t tµ µ x E y xθ           (7) 

and the conditional variance is expressed as Equation (8), 

( ) ( )( )2 2 ,  |2 ,t t t t tx E y xσ σ θ µ= = −        (8) 

The rest of this section discusses the various forms and 
extensions of GARCH implemented in the study, whiles 
Section 2.2.5 focusses on the distributions implemented, as 
well as their standardization for use in GARCH processes. 
The Standard GARCH Model (SGARCH) 

The standard GARCH model developed by [5] is given by 
Equation (9): 
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where 2
tσ  denotes the conditional variance, ω  the 

intercept and 2
tε  the residuals from the mean filtration 

process. The GARCH order is defined by (q, p) (ARCH, 
GARCH). One of the key features of the observed behavior 
of financial data which GARCH models capture is volatility 
clustering which may be quantified in the persistence 
parameter, P , defined as Equation (10) 
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Related to persistence parameter ( P ), is the half-life ( H ), 
defined as the number of days it takes for half of the expected 
reversion back towards ( )2E σ  to occur. H  is expressed 

as Equation (11) 
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The Threshold GARCH Model (TGARCH) 
This model was proposed by [9]. It is a re-specification of 

the GARCH model with an additional term to account for 
asymmetry (leverage effect). The general specification of the 
TGARCH (p, q) model is given by Equation (12); 
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From the model, depending on whether −t jε  is above or 

below the threshold value of zero, 2
−t jε  can have different 

effects on the conditional variance 2
tσ . The persistence of 

the model P  is given by Equation (13) 
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where κ  is the expected value of the standardized residuals 
below zero, and the half-life H  is estimated using Equation 
(11). 

2.2.5. Distributional Assumptions of Error Term 

In GARCH model specification, it is more appropriate to 
consider the choice on the distributional assumption of the 
error term. This study assumed three distributional 

assumptions; Normal distribution (NORM), Student-t 
distribution (STD) and the Generalized Error Distribution 
(GED) in order to account for fat tails that are common in 
most financial data.  
Normal Distribution (NORM) 

For the models to fully function, the error term must have 
zero mean. That is ~ (0,1)t Nε  where the error term in this 
case is normally distributed with zero mean and variance one. 
The density function for the Normal distribution is given by 
Equation (14) 
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where µ  constitute the mean and σ  is the standard 
deviation. 
Student-t Distribution (STD) 

The fatter tails, frequently observed in financial time 
series, are allowed for in the Student’s t distribution assumed 
by [17] which is given by the density function shown as 
Equation (15) 
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where v  denotes the number of degrees of freedom and Γ  
denotes the Gamma function. 
Generalized Error Distribution (GED) 

[11] proposed the use of the GED in order to account for 
fat-tails observed commonly in financial time series. It is 
given by Equation (16); 
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0>v  is the degrees of freedom or tail-thickness 
parameter. If 2=v , the GED yields the normal distribution. 
If 1<v , the density function has thicker tails than the 
normal density function, whereas for 2>v  it has thinner 
tails. 

2.2.6. Model Selection Criterion 

Two information criteria were used for model selection in 
this study. They are Akaike Information Criteria (AIC) and 
the Bayesian Information Criterion (BIC). AIC and BIC are 
defined as Equations (17) and (18) respectively: 
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where 
2

σ  is the variance of the residuals, s is the sample 
size, k  is the total number of parameters. For a GARCH 
(p,q) model, 1= + +k p q . The best model is the model that 
has least AIC and BIC values. 

2.2.7. Model Diagnostics  

It is very essential to perform a diagnostic check on the 
model after determining the best model and its 
corresponding distribution for the error term to establish 
whether the model and distribution are correctly specified. 
This study employs the Ljung-Box and Lagrange Multiplier 
(LM) tests to test for the presence of autocorrelation and 
ARCH effects respectively. The presence of autocorrelation 
and ARCH effects for the residuals of both the mean model 
and the volatility models will be tested using these two 
diagnostics. 
Univariate Ljung-Box Test 

The Ljung-Box Test is used to test whether there exist 
autocorrelations in the residuals of a model. The statistic is 
given by Equation (19); 

( )
2

1
( ) 2

=
= +

−∑
k

i

i
Q K s s

s i
ε

           (19) 

where iε  is the residual sample autocorrelation at lag i , s  
is the size of the series, k  is the number of time lags 
included in the test. ( )Q K  has an approximately chi-square 
distribution with k  degree of freedom. 
Testing for ARCH Effects 

In applying GARCH methodology it is imperative to 
examine the residuals for any evidence of ARCH effects. 
The Lagrange Multiplier (LM) and the Ljung-Box statistic 
tests are used to test the ARCH effect in the residuals of a 
model by letting the thi lag autocorrelation of the squared 
residuals to be  ip , the Ljung-Box statistic is given by 
Equation (20); 
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The statistic of the LM test is given by Equation (21); 
2 2. ~ ( )=LM s R qχ               (21) 

where q  is the number of restrictions placed on the model, 

s  is the size of the series and 2R  forms the regression. 

2.2.8. Evaluation of Volatility Forecast 

To evaluate the forecasting performance of the GARCH 
models, this study made use of two error measures; Mean 

Absolute Error (MAE) and the Mean Square Error (MSE). 
The MAE and MSE are defined as Equations (22) and (23) 
respectively 
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where iy  is the thi  observed value;  iy  is the thi fitted 
value; n  is the sample size. 

In situations where the best fitted models do not provide 
the best volatility forecasts in terms of the values of MSE 
and MAE, the Percent Error (PE) of MSE/MAE for each 
underlying case is evaluated. This will help investigate the 
difference of the values of MSE/MAE given by the best 
fitted model and the best performance model. PE is defined 
as Equation (24) 
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 
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where A  denotes MAE/MSE given by the best fitted model 
and B  denotes MAE/MSE given by best performance 
model. 

2.2.9. Value-at-Risk 

VaR can be viewed as a gauge that summarizes the worst 
loss over a target horizon that will not be exceeded with a 
given level of confidence [18]. More formally, (𝛼𝛼)VaR is 
expressed as Equation (25) 

Pr( )> =L VaR α               (25) 

where L  is the loss on a given day and α  is the 
significance level. VaR is therefore a quantile in the 
distribution of profit and loss that is expected to be exceeded 
only with a certain probability, which is given Equation (26) 

( )
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= ∫
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qp f x dx             (26) 

Throughout this study, the VaR were observed at 1% 
significance level. VaR would be computed using the 
conditional volatility of returns multiplied by the quantile of 
a given probability distribution. 

2.2.10. Backtesting VaR 

Finding suitable forecast models for VaR estimates 
requires a method for evaluating the predictions ex-post. The 
VaR estimates in this study would be evaluated using two 
tests: an unconditional and a conditional test of coverage 
originally developed by [19]. 

Thus, daily returns would be labelled according to 
Equation (27) in order to define whether the daily return 
exceeded the VaR estimate or not. The indicator variable is 
constructed as shown in Equation (27) 
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where 1 indicates a violation and 0 indicates a return less 
than the VaR. The violations are thereafter summed and 
divided by the total number of out-of-sample VaR estimates 
with the intention of obtaining the empirical size. 
Christoffersen’s Joint Test of Unconditional Coverage 
and Independence 

The advantage with the Christoffersen test of 
independence is its deference to the conditionality in the 
volatility forecasts. This is given by Equation (28) 
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where ijη  is the number of observations with the value i  

followed by j  for , 0,1=i j  and /= ∑ij ij ijjπ η η  is the 

corresponding probabilities. 2~indLR χ  under the null 
hypothesis which states that the violations are independently 
distributed. Hence, a rejection of the null hypothesis infers 
that the violations are clustered and consequently not 
independent. 

3. Results and Discussions 
3.1. Preliminary Analysis of Data 

The descriptive statistics of return of Bitcoins is presented 
in Table 1. As observed, the average return within the study 
period was 0.0041. The returns showed a positive skewness 
with indication of leptokurtic (Excess Kurtosis > 3) depicting 
increased in probability at the higher quantiles (heavy and 
longer right tails). Also, the return series does not follow a 
normal distribution since normality test for it is firmly 
rejected by the Jarque-Bera statistics (P-Value < 0.05).  

Table 1.  Descriptive Statistics of Returns 

Mean 0.0041 

Standard Deviation 0.0482 

Min -0.1874 

Max 0.2525 

Skewness 0.2502 

Excess Kurtosis 3.156 

Jarque-Bera 
Statistic 267.06 

P-Value <0.0001 

Figure 1(a) shows the pattern of daily returns of Bitcoin. 
As observed, the series displays a considerable level of 
variation indicating little evidence of seasonality. Also, the 

change in variations from day to day throughout the period 
indicates the existence of stationarity. This was confirmed by 
the Autocorrelation Function (ACF) and the Partial ACF 
(PACF) plots in Figures 1(b) and 1(c). They show a very fast 
decay which is typical of a stationary series. To validate this 
claim, the Augmented Dickey-Fuller (ADF), as well as the 
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test, were, 
therefore computed as shown in Table 2. As observed, the 
series under consideration is stationary (p-value of ADF < 
0.05; p-value of KPSS > 0.05). 

 

Figure 1.  Time Series Plot of Daily Returns of Bitcoins 

Table 2.  Stationarity Test 

Test Hypothesis Statistic P-Value 

Augmented 
Dickey-Fuller 

H0: Not Stationary 
H1: Stationary 

-7.9877 0.0100 

Kwiatkowski–Phill
ips–Schmidt–Shin 

H0: Stationary 
H1: Not Stationary 

0.3792 0.0861 

In volatility modelling, the first step is selection of suitable 
ARMA (p, q) model for the daily return of Bitcoins. By 
observing the ACF and the PACF in Figure 1(b) and 1(c), a 
rough order of p and q could be acquired. But, in selecting 
the ‘best’ mean model for the subsequent volatility models, 
nine competing models were fitted, and the result shown in 
Table 3. The ‘best’ model is the model with the minimum 
Akaike or Bayesian Information Criteria (AIC or BIC). Thus, 
the ‘best’ model is ARMA (0,0). Regarding the diagnostic 
checking of the best mean model, the p-values from the 
Box-Ljung test in Table 4 indicates that the residuals of the 
model are uncorrelated (0.6971>0.05). However, the 
p-values from ARCH LM test and the Box-Ljung test of the 
squared residuals confirm the existence of ARCH effects in 
the mean model. This implies that the ARMA (0,0) model 
does not explain the times series efficiently; hence, an 
ARCH or GARCH model should be employed in modelling 
the return time series.  
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Table 3.  Competing Mean Models and Information Criteria 

Model (p,q) AIC BIC 

(0,0) -1998.68 -1989.82 

(1,0) -1996.83 -1983.54 

(0,1) -1996.83 -1983.54 

(1,1) -1994.98 -1977.26 

(2,0) -1995.10 -1977.38 

(2,1) -1993.11 -1970.97 

(0,2) -1995.12 -1977.40 

(1,2) -1993.12 -1970.98 

(2,2) -1993.88 1967.30 

Table 4.  Selected Mean Model Diagnostics 

Assumption Hypothesis Statistic P-Value 

Ljung-Box 

H0: Residuals are not 
correlated 

H1: Residuals are 
correlated 

0.1522 0.6964 

ARCH LM 
H0: No ARCH Effect 

H1: ARCH Effect 

41.1450 <0.0001 

Ljung-Box 
(residual^2) 58.9640 <0.0001 

3.2. GARCH Modelling 

For the purpose of cross validation, the series is divided 
into two subsets. The first subset is called in-sample data set 
(full sample with 31-days/one month shorter, i.e. up to end of 
11th August 2018) used to build the GARCH models for 
underlying return series. The second subset, called 
out-sample data set (the remaining sample from 11th August, 
2018 to the end) is then used to validate the performance of 
volatility forecasting. Table 5 shows the Akaike Information 
Criteria (AIC) for the various combinations of the symmetric 
and asymmetric GARCH models computed under three (3) 

different error terms distributions.  
Under SGARCH models, SGARCHGED (1, 1) had the least 

AIC value (-3.4038) which indicates that it was the best 
among the SGARCH models considered. With regards to the 
TGARCH models, TGARCHGED (1, 1) had the least AIC 
value (-3.3976) which indicates that it is also the best among 
the TGARCH models considered. But, SGARCHGED (1, 1) is 
considered to be the best model among all the models 
considered since it had the least AIC value. This indeed 
provides a compelling evidence made by Hansen and [20] 
and [21], that it is difficult to find a volatility model that 
outperforms the simple GARCH (1,1) basically due to its 
better numerical stability of estimation and parsimony. 
Although these best fitted models are expected to produce 
the most accurate forecast of volatility, [22] argues that the 
best fitted models based on AIC criterion are not necessarily 
able to provide the best forecast of volatility in terms of MSE 
and MAE.  

Table 5.  Summary of AIC of Computed GARCH Models  

Model 
(p,q) SGARCH TGARCH 

 NORM STD GED NORM STD GED 

(1,0) -3.2236 -3.3261 NA -3.1856 -3.3229 NA 

(0,1) -3.1827 -3.3150 NA NA -3.3238 NA 

(1,1) -3.3029 -3.3896 -3.4038 -3.2893 -3.3868 -3.3976 

(2,0) -3.2265 -3.3357 NA -1.9112 -3.3284 NA 

(2,1) -3.3005 -3.3867 -3.4009 -3.2826 -3.3802 -3.3911 

(0,2) -3.1793 -3.3117 NA -3.1793 -3.3205 NA 

(1,2) -3.3044 -3.3872 -3.4010 -3.2913 -3.3840 -3.3958 

(2,2) -3.3010 -3.3838 -3.3984 -3.2845 -3.3772 -3.3890 

3.2.1. Performance of Volatility Forecasting 

Table 6.  Mean Absolute Error (MAE) of Best Fitted GARCH Models 

Error Measure Error Distribution SGARCH Rank TGARCH Rank 

In-Sample 

NORM 0.034639 3 0.034696 3 

STD 0.034619 1 0.034622 2 

GED 0.034620 2 0.034619 1 

Out-of-Sample 

NORM 0.017982 1 0.018125 3 

STD 0.018054 2 0.018005 1 

GED 0.018079 3 0.018029 2 

Table 7.  Mean Square Error (MSE) of best Fitted GARCH Models 

Error Measure Error 
Distribution SGARCH Rank TGARCH Rank 

In-Sample 

NORM 1.417213 1 1.418093 3 

STD 1.418173 2 1.417553 1 

GED 1.418586 3 1.417824 2 

Out-of-Sample 

NORM 0.000599 1 0.000593 1 

STD 0.000611 2 0.000606 2 

GED 0.000613 3 0.000608 3 
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In order to ascertain the validity of [22] findings and 
determine the appropriate GARCH model, the volatility 
forecast performance from the in-sample and out-of-sample 
models were evaluated. Table 6 and 7 shows the evaluation 
of the best fitted GARCH models under each error 
distributions using two error measures (MAE and MSE). 

With regards to the Mean Absolute Error (MAE) estimates, 
the rankings from the in-sample analysis supports the claim 
that the best fitted models (TGARCHGED (1,1) ranked 1st) are 
indeed the best, except in the case of SGARCHGED (1,1) 
where it ranked 2nd. On the contrary, the rankings from the 
out-of-sample analysis does not support the claim of the best 
fitted models, thus, supports [22] findings. 

With regards to the Mean Square Error (MSE) estimates, 
the rankings from both the in-sample and out-of-sample 
analysis in general does not supports the claim that the best 
fitted models (SGARCHGED (1,1), and TGARCHGED (1,1)) 
are the best. On the contrary, the rankings from both the 
in-sample and out-of-sample analysis favours the fitted 
GARCH models with normally distributed errors (NORM). 

Error measures from both the in-sample and out-of-sample 
forecast (Tables 6 and 7) do not show a clear distinction of 
the best volatility models in terms of the values of MAE and 
MSE. Also, it supports the statement that, the best fitted 
model in terms of the AIC criterion does not necessarily 
provide the minimum values of MSE and MAE and hence, 
might not produce the best performance of forecasting 
volatility. This raises the question, how much difference 
between the best forecast and the forecast given by the best 
fitted model?  

To investigate the difference of the MAE and MSE values 
given by the best fitted model and the best performance 
model, the Percent Error (PE) for each underlying case 
(GARCH-type model) is evaluated as shown in Table 8. As 
observed, majority of PE values are small and less than 
0.03%. This implies that MAE and MSE values given by the 
best fitted model is not statistically different from that given 
by the best performance model. Thus, in practical situations, 
the best fitted model can still be used for volatility 
forecasting [23]. In this regard, the SGARCHGED (1,1), with 
generalised error distribution terms is still noted to be the 
best fitted GARCH model to forecast the volatility of Bitcoin 
returns. 

Table 8.  Percentage Error of best Fitted Models and the best Performance 
Models 

Error Measure 
SGARCH TGARCH 

Difference PE (%) Difference PE (%) 

MAE 0.00007 0.00401 0.00002 0.00138 

MSE 0.00000 0.00000 0.03613 0.02227 

The parameter estimates of SGARCHGED (1,1) and 
TGARCHGED (1,1) are shown in Table 9 and 10 respectively. 
As observed, the p-values from the students t-test shows  
that most of the parameters in SGARCHGED (1,1) and 
TGARCHGED (1,1) are statistically significant at 5% level, 
which is an indication of how these parameters contribute 

significantly to the volatility models. For all fitted models, 
1 ' sβ  were significant (p-values<0.05) suggesting that 

volatility is persistent in the sense that the volatility of time 
it  is greatly affected by the volatility at time 1−it . Also, all 

the 1 ' sα  have their p-values less than 0.05 implying that 
the volatilities are less spiky since a shock at time 1−it  
(caused by an unusually high or low return) affects the 
volatility of time it . With regards to the ω , only 
SGARCHGED (1,1) has p-values greater than 0.05. The fact 
that ω  is not different from zero means that the 
unconditional long run variance is zero. Also, the estimated 
volatility persistence is very high for all best fitted models 
and implies half-lives of shocks to volatility to SGARCHGED 
(1,1) and TGARCHGED (1,1) of 20 and 15 days, respectively. 
The shape parameter ( )v , showing the estimated degrees of 
freedom are slightly different from each other which implies 
that the density plot of all the best fitted models would look 
the same. 

Table 9.  Parameter Estimates of SGARCHGED (1,1) 

Parameter Estimate Standard 
Error t-value P-value 

µ  0.0059 0.0024 2.4223 0.0154 

ω  0.0001 0.0001 1.9468 0.0516 

1α  0.1352 0.0403 3.3534 0.0008 

1β  0.8315 0.0443 18.7676 <0.0001 

ν  1.0874 0.0867 12.5389 <0.0001 

AIC=-3.4038, MAE=0.034620, MSE=1.418586, Persistence=0.9667, 
Half-life=20.49 

Table 10.  Parameter Estimates of TGARCH GED (1,1) 

Parameter Estimate Standard Error t-value P-value 
µ  0.0053 0.0016 3.3653 0.0008 

ω  0.0022 0.0011 1.9619 0.0498 

1α  0.1331 0.0346 3.8462 0.0001 

1β  0.8587 0.0398 21.5741 <0.0001 

1γ  0.0738 0.1392 0.5300 0.5961 

ν  1.0781 0.0835 12.9084 <0.0001 

AIC=-3.3976, MAE=0.034619, MSE=1.417824, Persistence=0.9546, 
Half-life=14.90 

3.2.2. Model Diagnostics 

Table 11 shows the diagnostics on the best fitted GARCH 
models (SGARCHGED (1,1) and TGARCHGED (1,1)). As 
observed, the Ljung-Box test null hypothesis is not rejected 
at 5% significance level. This indicates that the standardized 
residuals are considered as white noise. Also, the weighted 
ARCH LM test indicates the presence of no ARCH effects in 
the models. These tests collectively suggest that the best 
fitted GARCH models are sufficient to correct the serial 
correlation of the return’s series in the conditional variance 
equation. 
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Table 11.  Diagnostics of fitted GARCH Models 

Test Ljung-Box Test on 
Standardised Residual Weighted ARCH LM 

Hypothesis 

H0: 
Residuals 

are not 
correlated 

H1: Residuals 
are correlated 

H0: No 
ARCH 
Effect 

H1: 
ARCH 
Effect 

Lag 1 3 

GARCH 
Model 

SGARCH 

GED (1,1) 
TGARCH GED 

(1,1) 
SGARCH 

GED (1,1) 
TGARCH 

GED (1,1) 

Statistic 2.978 2.542 0.7874 0.8989 

P-Value 0.844 0.1109 0.3749 0.3431 

3.3. Returns of Bitcoins with 1% VaR Limits 

To validate the performance of the best fitted GARCH 
models, it is useful to perform a historical back-test to 
compare the estimated Value at Risk (VaR) with the actual 
return over the study period. If the return is less than the VaR 
in most cases, we have a VaR exceedance. In this study, a 
VaR exceedance is set to occur only in 1% of the cases, 
hence, the tests are evaluated on the 1% significance level. 
The start period of the back-test is set to 347 after the 
beginning of the series (i.e., January 2018). Also, The 
GARCH parameters are subsequently updated throughout 
the data set using rolling window estimation instead of being 
held constant over time. This is made in order to achieve 
flexibility in the parameters. The plot of the back-testing 
performance is shown in Figure 2.  

The VaR estimates produced by the volatility model are 
evaluated by Kupiec’s test [24] of unconditional coverage 
and Christoffersen’s test of independence. The tests are 
evaluated on the 1% significance level, hence the null 
hypothesis is rejected, and the model subsequently discarded, 
if the p-value is below one percent. All the fitted GARCH 
models (SGARCHGED (1,1) and TGARCHGED (1,1)) gave 
similar VaR Back-test results as shown in Table 12. From 
Table 12, despite the actual three (3) VaR exceedance versus 
an expected exceedance of 2.5, the null hypothesis that the 
exceedances are correct and independent is not rejected. This 
implies that a loss 1.2% is expected to be exceeded only 1% 
of the time.  

Table 12.  Coverage Test of Back-Testing 

Test Hypothesis Statistic P-Value 

Kupiec 
H0: Correct Exceedances 
H1: Not Correct 
Exceedances 

0.1120 0.7380 

Christoffersen 

H0: Correct Exceedances and 
Independence of Failures 
H1: Not Correct 
Exceedances and 
Independence of Failures 

0.1860 0.9110 

 

Overall, no model is clearly superior after evaluation 
through Kupiec’s unconditional coverage test and 
Christoffersen’s test of independence. Figure 3 shows the 
volatility forecast after the back testing. As observed, the 
volatility of Bitcoin returns in the first quarter of 2018 was 
relatively high but has been steadily decreasing with time. 
This could be as a result of the rejection of the first ever 
cryptocurrency exchange traded fund (ETF) by the US 
security exchange commission. 

Expected Exceed=2.5, Actual VaR Exceed=3, 
Actual %=1.2% 

 

Figure 2.  1% VaR Forecast at 1% 

 

Figure 3.  Forecast of Volatility vs Daily Returns of Bitcoins (Absolute) 

4. Conclusions 
This paper modelled volatility and the Value at Risk (VaR) 

of daily returns of Bitcoins by conducting a comparative 
study in the forecast performance of symmetric and 
asymmetric GARCH models based on three different type of 
error distributions. The models include SGARCH and 
TGARCH. The performance of the models was evaluated 
using AIC, MAE and MSE. The results indicated that the 
SGARCHGED (1,1) with generalised error distribution term 
was identified as the best fitted GARCH model computed 
based on the AIC criterion. This indeed provides a 
compelling evidence made that it is difficult to find a 
volatility model that outperforms the simple GARCH (1,1) 
basically due to its better numerical stability of estimation 
and parsimony. Though, these bests fitted model based on 
information loss (AIC) did not provide the best 
out-of-sample forecast, the error measures (MAE/MSE 
values) given by the best fitted models were insignificantly 
different from that given by the best forecast performance 
models. Since it is not practicable to identify the best 
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performance model in practice, this study clearly 
demonstrates that it is reliable to use the best fitted model for 
volatility forecasting. Also, in order to further validate the 
performance of the best fitted model, it was subjected to a 
historical back-test using Value at Risk (VaR) at 1% 
significance level. Although, no model clearly emerged as 
superior, it was indicated that an average loss of 1.2% is 
expected to be exceeded only 1% of the time. Moreover, 
volatility forecast from the back testing was relatively high 
during the first quarter of 2018 but however begun 
decreasing steadily with time. 
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