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Abstract  Many studies discussed different numerical representations of DNA sequences. In this paper, we discussed the 

kernel density estimation for the first, second, third and fourth eigenvalues of variance covariance matrix of Fast Fourier 

Transform (FFT) for numerical values representation of DNA sequences of five organisms, Human, E. coli, Rat, Wheat and 

Grasshopper. We computed an empirical values for the kernel density estimation for data series according to the following 

Kernels, Gaussian, Epanechnikov, Rectangular, Triangular, Biweight, Cosine, and Optcosine. To determine the valuable of 

our work, it should be noted that it is the first time that the variance covariance matrix eigenvalues of (FFT) for numerical 

values representation of DNA sequences, is used in an analysis like this and related analyzes. 
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1. Introduction 

In the process of developing the technology, many 

possible interesting adaptations became apparent: One of 

the most interesting directions was the use of the 

technology in the analysis of long DNA sequences. A 

benefit of the techniques was that it combined rigorous 

statistical analysis with modern computer power to quickly 

search for diagnostic patterns within long DNA sequences. 

Briefly, a DNA strand can be viewed as a long string of 

linked nucleotides. Each nucleotide is composed of a 

nitrogenous base, a five carbon sugar, and a phosphate 

group. There are four different bases that can be grouped by 

size, the pyrimidines, thymine (T) and cytosine (C), and the 

purines, adenine (A) and guanine (G). The nucleotides are 

linked together by a backbone of alternating sugar and 

phosphate groups with the /5  carbon of one sugar linked 

to the /3  carbon of the next, giving the string direction. 

DNA molecules occur naturally as a double helix composed 

of polynucleotide strands with the bases facing inward. The 

two strands are complementary, so it is sufficient to 

represent a DNA molecule by a sequence of bases on a 

single strand;  refer to Fig. 1.  Thus, a strand of DNA can    
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be represented as a sequence  ; 1,2,...,tX t n  of letters, 

termed base pairs (bp), from the finite alphabet

 , , ,A C G T .1 The order of the nucleotides contains the 

genetic information specific to the organism. Expression of 

information stored in these molecules is a complex 

multistage process. One important task is to translate the 

information stored in the protein-coding sequences (CDS) 

of the DNA (Polovinkina et al. (2016)). 

 
Figure 1.  The general structure of DNA and its bases 

A common problem in analyzing long DNA sequence 

data is in identifying CDS that are dispersed throughout the 

sequence and separated by regions of noncoding (which 
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makes up most of the DNA). Another problem of interest 

that we will address here is that of matching two DNA 

sequences, say 1tX  and 2tX . The background behind the 

problem is discussed in detail in the study by Waterman and 

Vingron (1994). For example, every new DNA or protein 

sequence is compared with one or more sequence databases 

to find similar or homologous sequences that have already 

been studied, and there are numerous examples of important 

discoveries resulting from these database searches. 

One naive approach for exploring the nature of a DNA 

sequence is to assign numerical values (or scales) to the 

nucleotides and then proceed with standard time series 

methods. It is clear, however, that the analysis will depend 

on the particular assignment of numerical values. Consider 

the artificial sequence ACGTACGTACGT. . . Then, setting 

A = G = 0 and C = T = 1, yields the numerical sequence 

010101010101. . . , or one cycle every two base pairs (i.e., a 

frequency of oscillation of 1/ 2  Cycle/bp, or a period 

of oscillation of length 1/ 2 bp=cycle). Another 

interesting scaling is A = 1, C = 2, G = 3, and T = 4, which 

results in the sequence 123412341234. . . , or one cycle 

every four bp ( 1/ 4) . In this example, both scalings of 

the nucleotides are interesting and bring out different 

properties of the sequence. It is clear, then, that one does 

not want to focus on only one scaling. Instead, the focus 

should be on finding all possible scalings that bring our 

interesting features of the data. Rather than choose values 

arbitrarily, the spectral envelope approach selects scales that 

help emphasize any periodic feature that exists in a DNA 

sequence of virtually any length in a quick and automated 

fashion. In addition, the technique can determine whether a 

sequence is merely a random assignment of letters 

(Polovinkina et al. (2016)). 

Fourier analysis has been applied successfully in DNA 

analysis; McLachlan and Stewart (1976) and Eisenberg et al. 

(1994) studied the periodicity in proteins using Fourier 

analysis.  

Stoffer et al. (1993) proposed the spectral envelope as a 

general technique for analyzing categorical-valued time 

series in the frequency domain. The basic technique is 

similar to the methods established by Tavar é and Giddings 

(1989) and Viari et al. (1990), however, there are some 

differences. The main difference is that the spectral 

envelope methodology is developed in a statistical setting to 

allow the investigator to distinguish between significant 

results and those results that can be attributed to chance. 

The article authored by Marhon and Kremer 2011, 

partitions the identification of protein-coding regions into 

four discrete steps. Based on this partitioning, digital signal 

processing DSP techniques can be easily described and 

compared based on their unique implementations of the 

processing steps. They compared the approaches, and 

discussed strengths and weaknesses of each in the context of 

different applications. Their work provides an accessible 

introduction and comparative review of DSP methods for the 

identification of protein-coding regions. Additionally, by 

breaking down the approaches into four steps, they 

suggested new combinations that may be worthy of future 

studies. A new methodology for the analysis of DNA/RNA 

and protein sequences is presented by Bajic in 2000. It is 

based on a combined application of spectral analysis and 

artificial neural networks for extraction of common spectral 

characterization of a group of sequences that have the same 

or similar biological functions. The method does not rely on 

homology comparison and provides a novel insight into the 

inherent structural features of a functional group of 

biological sequences. The nature of the method allows 

possible applications to a number of relevant problems such 

as recognition of membership of a particular sequence to a 

specific functional group or localization of an unknown 

sequence of a specific functional group within a longer 

sequence. The results are of general nature and represent an 

attempt to introduce a new methodology to the field of 

biocomputing. Fourier transform infrared (FTIR) 

spectroscopy has been considered by Han et al. in 2018 as a 

powerful tool for analysing the characteristics of DNA 

sequence. This work investigated the key factors in FTIR 

spectroscopic analysis of DNA and explored the influence of 

FTIR acquisition parameters, including FTIR sampling 

techniques, pretreatment temperature, and sample 

concentration, on calf thymus DNA. The results showed that 

the FTIR sampling techniques had a significant influence on 

the spectral characteristics, spectral quality, and sampling 

efficiency. Ruiz et al. 2018 proposed a novel approach for 

performing cluster analysis of DNA sequences that is based 

on the use of Genomic signal processing GSP methods and 

the K-means algorithm. We also propose a visualization 

method that facilitates the easy inspection and analysis of the 

results and possible hidden behaviors. Our results support 

the feasibility of employing the proposed method to find and 

easily visualize interesting features of sets of DNA data. A 

novel clustering method is proposed by Hoang et al. in 2015 

to classify genes and genomes. For a given DNA sequence, a 

binary indicator sequence of each nucleotide is constructed, 

and Discrete Fourier Transform is applied on these four 

sequences to attain respective power spectra. Mathematical 

moments are built from these spectra, and multidimensional 

vectors of real numbers are constructed from these moments. 

Cluster analysis is then performed in order to determine the 

evolutionary relationship between DNA sequences. The 

novelty of this method is that sequences with different 

lengths can be compared easily via the use of power spectra 

and moments. Experimental results on various datasets show 

that the proposed method provides an efficient tool to 

classify genes and genomes. It not only gives comparable 

results but also is remarkably faster than other multiple 

sequence alignment and alignment-free methods. One 

challenge of GSP is how to minimize the error of detection of 

the protein coding region in a specified DNA sequence with 

a minimum processing time. Since the type of numerical 

representation of a DNA sequence extremely affects the 

prediction accuracy and precision, by this study Mabrouk in 

2017 aimed to compare different DNA numerical 
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representations by measuring the sensitivity, specificity, 

correlation coefficient (CC) and the processing time for the 

protein coding region detection. The proposed technique 

based on digital filters was used to read-out the period 3 

components and to eliminate the unwanted noise from DNA 

sequence. This method applied to 20 human genes 

demonstrated that the maximum accuracy and minimum 

processing time are for the 2-bit binary representation 

method comparing to the other used representation methods. 

Results suggest that using 2-bit binary representation method 

significantly enhanced the accuracy of detection and 

efficiency of the prediction of coding regions using digital 

filters. Identification and analysis of hidden features of 

coding and non-coding regions of DNA sequence is a 

challenging problem in the area of genomics. The objective 

of the paper authored by Roy and Barman in 2011 is to 

estimate and compare spectral content of coding and 

non-coding segments of DNA sequence both by Parametric 

and Nonparametric methods. Consequently an attempt has 

been made so that some hidden internal properties of the 

DNA sequence can be brought into light in order to identify 

coding regions from non-coding ones. In this approach the 

DNA sequence from various Homo Sapien genes have been 

identified for sample test and assigned numerical values 

based on weak-strong hydrogen bonding (WSHB) before 

application of digital signal analysis techniques. The 

statistical methodology applied for computation of Spectral 

content are simple and the Spectrum plots obtained show 

satisfactory results. Spectral analysis can be applied to study 

base-base correlation in DNA sequences. A key role is 

played by the mapping between nucleotides and 

real/complex numbers. In 2006, Galleani and Garello 

presented a new approach where the mapping is not kept 

fixed: it is allowed to vary aiming to minimize the spectrum 

entropy, thus detecting the main hidden periodicities. The 

new technique is first introduced and discussed through a 

number of case studies, then extended to encompass 

time-frequency analysis. 

For analyzing periodicities in categorical valued time 

series, the concept of the spectral envelope was introduced 

by Stoffer et al., 1993 as a computationally simple and 

general statistical methodology for the harmonic analysis 

and scaling of non-numeric sequences. However, The 

spectral envelope methodology is computationally fast and 

simple because it is based on the fast Fourier transform and is 

nonparametric (i.e., it is model independent). This makes the 

methodology ideal for the analysis of long DNA sequences. 

Fourier analysis has been used in the analysis of correlated 

data (time series) since the turn of the century. Of 

fundamental interest in the use of Fourier techniques is the 

discovery of hidden periodicities or regularities in the data. 

Although Fourier analysis and related signal processing are 

well established in the physical sciences and engineering, 

they have only recently been applied in molecular    

biology. Since a DNA sequence can be regarded as a 

categorical-valued time series it is of interest to discover 

ways in which time series methodologies based on Fourier 

(or spectral) analysis can be applied to discover patterns in a 

long DNA sequence or similar patterns in two long 

sequences. Actually, the spectral envelope is an extension of 

spectral analysis when the data are categorical valued such as 

DNA sequences. 

An algorithm for estimating the spectral envelope and the 

optimal scalings given a particular DNA sequence with 

alphabe  1 2 1, ,....,  rb b b , is as follows (Stoffer 2012). 

1.  Given a DNA sequence of length n, from the 1r

vectors , 1,2,...,tY t n ; namely, for 

1,2,..., , t jj r Y e  if t jX b  where je  is a 1r

vector with a 1 in the jth position as zeros elsewhere, 

and 0tY if 1t jX b . 

2.  Calculate the Fast Fourier Transform FFT of the data, 

 
1

( / ) exp 2


 
n

tt
d j n Y itj n n . 

Note that ( / )d j n is a 1r complex-valued vector. 

Calculate the periodogram, 

   *( / ) ,f j n d j n d j n for  1,2,...., 2 ,j n and 

retain only the real part, say  
~re

f j n . 

3.  Smooth the real part of the periodogram as preferred 

to obtain  
~re

f j n , a consistent estimator of the 

real part of the spectral matrix.  

4.  Calculate the r r  variance–covariance matrix of the 

data,   1


  

n
t tt

S Y Y Y Y n , where Y  is the 

sample mean of the data.  

5.  For each  , 1,2,...., 2 , j n j n determine the 

largest eigenvalue and the corresponding eigenvector 

of the matrix  
~1 2 1 22 . re

jS f S n  

6.  The sample spectral envelope  ˆ
j 

 
is the 

eigenvalue obtained in the previous step.  

7.  The optimal sample scaling is    1 2ˆ ,j jS v    

where  jv   the eigenvector obtained in the 

previous step.  

In this paper, we discussed the kernel density estimation 

for the first, second, third and fourth eigenvalues of variance 

covariance matrix of Fast Fourier Transform for numerical 

values representation of DNA sequences of five organisms, 

Human, E. coli, Rat, Wheat and Grasshopper. We computed 

an empirical values for the kernel density estimation for data 

series according to the following Kernels: Gaussian, 

Epanechnikov, Rectangular, Triangular, Biweight, Cosine, 

and Optcosine. To determine the valuable of our work, it 

should be noted that it is the first time that the variance 

covariance matrix eigenvalues of Fast Fourier Transform 

(FFT) for numerical values representation of DNA 

sequences, is used in an analysis like this and related 

analyzes. 
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2. Kernel Density Estimation 

The problem of estimation of a probability density 

function f (x) is interesting for many reasons, among which 

are the possible applications in the field of discriminant 

analysis or the estimation of functions of the density. The 

parametric approach to density estimation assumes a 

functional form for the density and then estimates the 

unknown parameters using techniques such as the maximum 

likelihood estimation or Pearson system based on the 

estimation of the skewness and the Kurtosis (Oja (1981)). 

Unless the form of density is known a priori, assuming a 

functional form for a density very often leads to erroneous 

inference. It is clear that, nonparametric methods do not 

make any assumptions as to the form of the underlying 

density. Today, a rich basket of nonparametric density 

estimators (Kernel, orthogonal series, histogram, etc.) exists 

(Bowman and Azzalini (1997); Hall (1982); Silverman 

(1986)). On other words, the parametric methods assumes 

that the data is drawn from a known parametric family of 

distributions, for example a normal distribution but the 

nonparametric methods does not make this assumption. The 

main restriction of parametric methods is that they impose 

restrictions on the shapes that f can have (Lopez-Novoa et al. 

(2015)). This work focuses on kernel density estimators 

(KDE).  

The kernel density estimator represents one of the 

important scientific subjects in spectrum theory. It is evident 

that, the kernel density estimator is a very useful 

nonparametric method and is very robust to the shape of 

distribution. An attractive feature of the kernel density 

estimator is that the resulting estimator can always be 

bimodal for an appropriate choice of bandwidth, which 

controls the smoothness of the estimator (Bae and Kim 

(2008)). Several techniques have been proposed for optimal 

bandwidth selection. The best known of these contain rules 

of thumb, oversmoothing, least squares cross-validation, 

direct plug-in methods, solve-the-equation plug-in method, 

and the smoothed bootstrap Jones, Marron and Sheather, 

(1996).  

KDE is a common tool in many research areas, used for a 

variety of purposes, some of the relevant scientific literatures 

are as follows.  

Andre ś Ferreyra et al. in (2001) used density estimates to 

forecast weather and other factors as part of a model for 

optimizing maize production. In the same field, it has been 

applied to evaluate the signature of climate change in the 

frequency of weather regimes (Corti et al., 1999). 

Furthermore, in the field of evolutionary computation, 

density estimation has been used to estimate a distribution of 

the problem variables in estimation of distribution 

algorithms (Bosman and Thierens, 2000).  

Li et al. in (2007) suggested a nonparametric estimator of 

the correlation function for data, using kernel methods. They 

developed a pointwise asymptotic normal distribution for the 

suggested estimator, when the number of subjects is fixed 

and the number of vectors or functions within each subject 

goes to infinity. Based on the asymptotic theory, they 

suggested a weighted block bootstrapping method for 

making inferences about the correlation function, where the 

weights account for the inhomogeneity of the distribution of 

the times or locations. The method is applied to a data set 

from a colon carcinogenesis study, in which colonic crypts 

were sampled from a piece of colon segment from each of 

the rats in the experiment and the expression level of p27, an 

important cell cycle protein, was then measured for each cell 

within the sampled crypts. 

Troudi et al. in (2008) suggested a faster procedure than 

that of the common plug-in method. The mean integrated 

square error (MISE) depends directly upon J(f) which is 

linked the second-order derivative of the pdf. They presented 

an analytical approximation of J(f), such that the pdf is 

estimated only once, at the end of iterations. Thus, these two 

kinds of algorithm are tested on different random variables 

having distributions known for their difficult estimation. 

Bae and Kim in 2008 presented a kernel density 

estimation approach for the segmentation of the microarray 

spot. They estimated the density of n pixel intensities for a 

given target area by the kernel density estimation, and the 

resulting kernel density estimate gives bimodal density by 

appropriate choice of the smoothing parameter. They 

proposed two modes of the kernel density estimate for n 

pixel intensities as estimates of the foreground (mode with 

larger value) and the background (mode with smaller value) 

intensity, respectively. 

Fan et al. in (2010) studied nonparametric estimation of 

genewise variance for microarray data. Microarray 

experiments are one of widely used technologies nowadays, 

allowing scientists to monitor thousands of gene expressions 

simultaneously. They presented a two-way nonparametric 

model, which is an extension of the famous Neyman-Scott 

model and is applicable beyond microarray data. The 

problem itself posed interesting challenges because the 

number of nuisance parameters is proportional to the sample 

size and it is not obvious how the variance function can be 

estimated when measurements are correlated. In such a 

high-dimensional nonparametric problem, they suggested 

two novel nonparametric estimators for genewise variance 

function and semiparametric estimators for measurement 

correlation, via solving a system of nonlinear equations. 

Their asymptotic normality is established. The finite sample 

property is demonstrated by simulation studies. The 

estimators also improve the power of the tests for detecting 

statistically differentially expressed genes. 

Weyenberg et al. in (2014) suggested and implemented 

KDETREES, a non-parametric method for estimating 

distributions of phylogenetic trees, with the goal of 

identifying trees that are significantly different from the rest 

of the trees in the sample. This method compared favorably 

with a similar recently published method, featuring an 

improvement of one polynomial order of computational 

complexity (to quadratic in the number of trees analyzed), 

with simulation studies proposing only a small penalty to 

classification accuracy. Application of KDE TREES to a set 
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of apicomplexa genes identified several unreliable sequence 

alignments that had escaped previous detection, as well as a 

gene independently reported as a possible case of horizontal 

gene transfer. They also analyzed a set of Epichlo€e genes, 

fungi symbiotic with grasses, successfully identifying a 

contrived instance of paralogy. An extensive list of 

application fields of KDE can be found in Sheather (2004). 

Colbrook et al. in (2018) considered a new type of 

boundary constraint, in which the values of the estimator at 

the two boundary points are linked. They provided a kernel 

density estimator that successfully incorporates this linked 

boundary condition. This is studied via a nonsymmetric heat 

kernel which generates a series expansion in nonseparable 

generalised eigenfunctions of the spatial derivative operator. 

Despite the increased technical challenges, the model is 

proven to outperform the more familiar Gaussian kernel 

estimator, yet it inherits many desirable analytical properties 

of the latter KDE model. 

The probability distribution of a random variable X is 

described through its probability density function (PDF) f. 

This function f gives a natural description of the distribution 

of X, and allows us to determine the probabilities associated 

with X using the relationship  

(P a > X > ) ( ) 
b

a

b f X dX  

Given several observed data points (samples) from a 

random variable X, with unknown density function f, density 

estimation is used to create an estimated density function f̂  

from the observed data. Here, we use the non-parametric 

approach (KDE). 

Furthermore, one of the most common techniques for 

density estimation of a continuous variable is the histogram, 

which is a representation of the frequencies of the data over 

discrete intervals (bins). It is widely used due to its simplicity, 

but it has several shortcomings, such as the lack of continuity. 

The KDE technique relies on assigning a kernel function K to 

each sample (observation in the dataset), and then summing 

all the kernels to obtain the estimate. In contrast to the 

histogram, KDE constructs a smooth probability density 

function, which may reflect more accurately the real 

distribution of the data. We now describe the KDE technique 

in more detail as follows (Lopez-Novoa et al. (2015)). 

Let 1 2, ,....., nx x x  represent a random sample of size n  

from a random variable with density  .f . Silverman 

in1986 defined the following kernel density estimate of f at 

the point x  by  

 
1

1ˆ


 
  

 


n i
h i

x x
f x K

nh h
            (1) 

where the smoothing parameter h is called the bandwidth and 

K is generally chosen to be a unimodal probability density 

symmetric about zero. That is, K is assumed to be an even 

regular function with unit variance and zero mean. The 

Kernel K is called regular if it is a square integrated density.  

For a practical implementation of KDE, the choice of the 

bandwidth h is very important. Small h leads to an estimator 

with a small bias and large variance, whereas large h leads to 

a small variance at the expense of increase: the bandwidth 

has to be optimally chosen (Troudi et al. (2008)). 

In this case, K satisfies the following conditions, as may be 

seen below (Sheather and Jones (1991) and Sheather 

(2004)),
 
 

( ) 1,K y dy  ( ) 0, yK y dy  2 ( ) 0. y K y dy  

 

Table (1).  Kernels under considerations for the kernel density estimation of f (Wolodzko, 2017) 

Kernel Equation Notes 

Gaussian  
1 2

2
1

2




y
K y e


 

   y

 

Epanechnikov      
2

1

3
1 1

4 
 

y
K y y   1

1 1
1

0


 
 


y

if y

otherwise
 

Rectangular  
1

2
K y  1,y

 

Triangular    1 K y y  1.y
 

Biweight (Quartic)    
2

215
1

16
 K y y  1y

 

Cosine     
1

1 cos
2

 K y y  1y

 

Optcosine   cos
4 2

 
  

 
K y y

 
 1y
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In practice, there are a lot of popular choices of kernel 

function K such as: Gaussian, Epanechnikov, Rectangular, 

Triangular, Biweight, Cosine, Optcosine and others, the 

focus of attention was on this kernels (Silverman (1986)). 

The most commonly kernels used have been considered as 

in Table (1). 

In addition, the bandwidth controls the smoothness of the 

density estimate and highly influences its appearance. 

Selecting a suitable h is a pivotal step in estimating f(x).  

Supposing that the underlying density is sufficiently 

smooth and that the kernel has finite fourth moment, by 

using Taylor series it can be clearly demonstrated that 

(Sheather (2004)),
 
 

        
2

2
2

ˆ
2

 h
h

Bias f x K f x o h  

      
1 1ˆ ,

 
   

 
hVar f x f x R K o

nh nh
 

where   2 ( ) R K K y dy  

Adding the leading variance and squared bias terms 

produces the asymptotic mean squared error (AMSE) as, 

           
4

22
2

1ˆ ,
4

  h
h

A SE f x f x R K K f x
nh

  

An extensively used choice of an overall measure of the 

discrepancy between f̂  and f is the mean integrated 

squared error (MISE), which is defined by, 

      
2

ˆ ˆ 
   

 
h hISE f E f y f y dy

 

     
2

ˆ ˆ  h hBias f y dy Var f y dy  

Under an integrability assumption on f , integrating the 

expression for AMSE gives the expression for the 

asymptotic mean integrated squared error (AMISE), that is, 

       
4

2
2

1ˆ ,
4

  h
h

A ISE f R K K R f
nh

     (2) 

where    
2

    R f f y dy   

In this way, the value of the bandwidth that minimizes the 

AMISE is obtained by the following  

 

   

1/5

1/5

2
2




 
 
  

A ISE

R K
h n

R f K
 

supposing that f is sufficiently smooth, we can use 

integration by parts to demonstrate that, 

         
2 4

      R f f y dy f y f y dy  

Thus, the functional  R f  is a measure of the 

underlying roughness or curvature. In particular, It is clear 

that the larger the value of  R f  is, the larger is the value 

of AMISE (i.e., the more difficult it is to estimate f ) and 

the smaller is the value of hAMISE (i.e., the smaller the 

bandwidth needed to capture the curvature in f). 

Following, we will briefly review some famous methods 

for choosing a global value of the bandwidth h, 

2.1. Rules of Thumb 

The computationally simplest method for choosing a 

global bandwidth h is based on replacing  R f , the 

unknown part of hAMISE, by its value for a parametric family 

expressed as a multiple of a scale parameter, which is then 

estimated from the data. The method seems to date back to 

Deheuvels, (1977) and Scott, (1979), who each introduced it 

for histograms. The method was popularized for kernel 

density estimates by Silverman, 1986, who used the normal 

distribution as the parametric family. 

Let σ and Q denote the standard deviation and interquartile 

range of X, respectively. Take the kernel K to be the usual 

Gaussian kernel. Assuming that the underlying distribution 

is normal, Silverman, 1986
 
showed that (2) reduces to, 

1/50.9 SROTh An  

where  , /1.34 ,A in s q  and ,s q  are sample standard 

deviation and sample interquartile range respectively. This 

rule is commonly used in practice and it is often referred to as 

Silverman’s rule of thumb. 

2.2. Cross-Validation Methods 

A measure of the closeness of f̂  and f  for a given 

sample is the integrated squared error (ISE), which is defined 

by Bowman, 1984 

      
2

ˆ ˆ h hISE f f y f y dy  

        
2 2ˆ ˆ2 .    h hf y dy f y f y dy f y dy  

It is clear that, the last term on the right-hand side of the 

previous expression does not involve h. Bowman, 1984 

presented choosing the bandwidth as the value of h that 

minimizes the estimate of the two other terms in the last 

expression, namely, 

    
2

1 1

1 2ˆ ˆ
 

 

 
n n

i i i
i i

f y dy f X
n n

 

where  ˆ
if y  denotes the kernel estimator constructed 

from the data without the observation xi. However, the 

method is commonly referred to as least squares 

cross-validation, since it is based on the so-called 

leave-one-out density estimator  ˆ
if y . 

Scott and Terrell, 1987 introduced a method called biased 

cross-validation (BCV), which is based on choosing the 

bandwidth that minimizes an estimate of AMISE rather than 

an estimate of ISE. The BCV objective function is just the 

estimate of AMISE obtained by replacing  R f  in (2) by 
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   
5

1ˆ  hR f R K
nh

 

where ˆ hf  is the second derivative of the kernel density 

estimate (1) and the subscript h denotes the fact that the 

bandwidth used for this estimate is the same one used to 

estimate the density f itself. The BCV objective function is 

thus defined by
 
Scott and Terrell, 1987  

   
 2

2

2

1

2


 
    

 
 

i j

i j

X XK
BCV h R K

nh hhn


  

Where        c K w K w c dw . We denote the 

bandwidth that minimizes
  BCV h  by .BCVh

 
It can be 

seen that, the above methods are well-known first generation 

methods for bandwidth selection. These methods were 

mostly introduced before 1990. 
 

Following some of second generation methods, which are 

introduced after 1990.  

2.3. Smoothed Bootstrap 

One approach to this method is to consider the bandwidth 

that is a minimizer of a smoothed bootstrap approximation to 

the MISE. Early versions of this were presented by Faraway 

and Jhun, 1990. An interesting feature of this approach is that 

unlike most bootstrap applications, the MISE in the 

"bootstrap world can be calculated exactly, instead of 

requiring the usual simulation step, which makes it as 

computationally fast as other methods discussed here. 

Furthermore, the basic idea behind bootstrap smoothing is 

very simple, we estimate 𝑀𝐼𝑆𝐸(ℎ) by a bootstrap version of 

the form, 

      
2

*
* *

ˆ ˆ   h gISE h E f y f y dy  

where *E  denotes the expectation with respect to the 

bootstrap sample  * * *
1 2, ,..., nx x x  , g is some pilot bandwidth,

 
ˆ ( )gf y  is a density estimate which depends on the original 

sample 1 2, ,..., nx x x  and *ˆ ( )hf y  is an estimate, based on 

* * *
1 2, ,..., nx x x  . Then, we choose the value h  minimizing

 * .ISE h . The basic differences among the various 

versions of this bootstrap methodology lie on the choice of 

the auxiliary window g and on the procedure (smoothed or 

not) for generating the resampled data * * *
1 2, ,..., nx x x . Here 

we introduced a smoothed bootstrap procedure (Smoothed 

bootstrap with pilot bandwidth) which is considered by 

Faraway and Jhun, 1990 (the bootstrap sample is taken from
ˆ
gf ) where g is chosen by least-squares cross-validation 

from 1 2, ,..., nx x x . These authors do not use an exact 

expression for  * .ISE h
 

They approximate  *ISE h  

by resampling; that is, B bootstrap samples are drawn from

ˆ
gf , and  *ISE h  is approximated by, 

        
2

1 *

1
ˆ ˆ


   

B
gh jj

B ISE h B f y f y dy  

Where    *ˆ
h jf y  denotes the value of the estimator for 

the j-th bootstrap sample. The resulting bandwidth h, is 

defined as the value of h which minimizes  .B ISE h   

2.4. Plug-in Methods 

The slow rate of convergence of LSCV and BCV 

encouraged much research on faster converging methods. A 

popular approach, commonly called plug-in methods, is to 

replace the unknown quantity 𝑅(𝑓 ′′ )in the expression for

A ISEh  given by (2) with an estimate. We next describe the 

“solve the-equation” plug-in approach developed by 

Sheather and Jones, 1991, since this method is widely 

recommended (e.g., Bowman and Azzalini, 1997). The 

Sheather and Jones, 1991 approach is based on writing g, the 

pilot bandwidth for the estimate  ˆ R f as a function of h, 

namely, 

 
 

 

1/7

5/7( )
 

  
  

R f
g h C K h

R f
 

The Sheather–Jones plug-in bandwidth hSJ is the solution 

to the above equation. 

3. Bivariate Kernel Density Estimation  

In the bivariate case the data points are considered by two 

vectors  1 11 12 13 1, , ,..., nx x x x x
 

and  2 21 22 23 2, , ,..., nx x x x x  

where  1 2,i i ix x x is a sample from a bivariate 

distribution f. In analogy with the univariate case, the 

bivariate kernel density estimate is given by the following 

equation (Bilock et al. (2016))  

 
1

1ˆ


 
  

 


n i
H i

x x
f x K

nH H
          (3) 

Here the bandwidth is the positive definite matrix, 

11 12

12 22

,
 

  
 

h h
H

h h
 

and the kernel function K  is a symmetric and non negative 

function fulfilling such that 
 

2

1
R

K y dy
. 

As in the univariate case the bivariate kernels used in this 

work have been the Gaussian kernel, 

 
1

2
1

,
2




Ty y
K y e


 and the Epanechnikov kernel 



 American Journal of Mathematics and Statistics 2019, 9(2): 66-91 73 

 

 

     1
2

1 1 ,


  T
Ty y

K y y y


  

and other bivariate kernels. To evaluate the closeness of a 

kernel density estimator to the target density an error criteria 

must be used. A common error estimate for kernel density 

estimation is the Mean Integrated Square Error (MISE) 

which is defined by (Bilock et al. (2016)): 

      
2

ˆ ˆ 
   

 
 HISE f E f x f x dx  

In this case, since the Mean Integrated Square Error 

depends on the true density f  it can only be computed for 

data sets drawn from known distributions f . The Mean 

Integrated Square Error can be approximated with the 

Integrated Mean Square Error IMSE. The expression for the 

Integrated Mean Square Error IMSE is extracted by moving 

the expectation value in above equation inside the integral. 

The IMSE can be computed numerically using Monte Carlo 

integration, for example. In the bivariate case the plug in 

method aims to minimize the bivariate AMISE, that is: 

    

   

1
1

2

2
2 4

ˆ

1
,

4

 

 T

A ISE f H n H R K

K vech H vechH 

 

where vech represents the following operation 

 
11 12

11 12 22

12 22

 
  
 
 

T
h h

vechH vech h h h

h h

. 

The 3 3 matrix 4  is given as 

40 31 22

4 31 22 13

22 13 04

1 1 1

2 4 2 ,

1 2 1

 
 

  
 
 

  

   

  

 

where      ,1 2
1 2

2

 
r r

r r

R

f x f x dx   

and 
     

4
,1 2

1 2
1 2



 

r r

r r
f x f x

x x
 

is the partial derivatives of x  with respect to 1x  and 2x . 

Thus, As in the univariate case ,1 2r r  has to be estimated. 

A commonly used estimate is 

       ,2 1 2
,1 2

1 1

ˆ ,

 

 
n n

r r
i jr r G

i j

G n K X X  

where  
1  

  
 

G
y

K y K
G G

 

and G is the pilot bandwidth matrix. In Doung and Hazelton 

(2003), it is proposed that this matrix should be on the form
2G g I . Choosing g  can be done in a similar way as in 

the univariate case. For each entry  ,1 2r r  in 4̂ , 

 AMSEg g  is chosen such that it minimises the Asymptotic 

Mean Square Error approximation 

        
        

2 22 1 2 1 2
0,1 2

2
21 21 2 1 2

2 2, , 21 2 1 2

ˆ 2

1
0

2

   

   
 

 

 
   
 

r r r r
r r

r r r r
r r r r

A SE g n g R K

n g K g K

 

  

 

This method may produce 4  matrices that are not positive 

definite. In that case a minimum to the objective function 

does not exist. To solve this issue, many researchers such as 

Doung and Hazelton propose a new approach as opposed to 

finding one optimal g  for each entry in 4̂ . Instead,

 
4 SAMSEg g  that minimizes the sum 

   ,1 2
41 2

ˆ

 

  r r
r r

SAMSE AMSE g  

should be calculated and used as a common g  for all entries 

in 4̂ . A closed form expression for 4SAMSEg  is given in 

Doung and Hazelton (2003). In analogy with the univariate 

case, the estimates of g depends on ,1 2r r  and therefore an 

easy estimate of ,1 2
ˆr r  has to be made at some stage 

(Bilock et al. (2016)). 

4. The Proposed Algorithm 

The following algorithm steps is performed to achieve our 

aims 

1. Generate the DNA sequence for five organisms, Human, 

E. coli, Rat, Wheat and Grasshopper with 

corresponding information in table (2). 

Table (2).  Relative proportions (%) of Bases in DNA 

Organisms A T G C 

Human 30.9 29.4 19.9 19.8 

E. coli 26.0 23.9 24.9 25.2 

Rat 28.6 28.4 21.4 21.5 

Wheat 27.3 27.1 22.7 22.8 

Grasshopper 29.3 29.3 20.5 20.7 

2.  The sequence size is n=500 and run size is k=205. 

3.  Transform DNA sequence to numerical values by 

setting one to the base that appears and zero to the 

other bases. 

4.  Transform the sequence of numerical values to the 

corresponding FFT values. 

5.  Calculate the eigenvalues of variance covariance 

matrix for each run results, and then we get 205 fourth 

order vectors of eigenvalues for each organism. Each 

vector contains the four eigenvalues, rank from the 

largest one to the smallest. 
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5. An Empirical Study and Results 
Discussion 

5.1. Univariate Density Estimation 

The nonparametric method (kernel density estimation) has 

been applied of the first, second, third and fourth eigenvalues 

of variance - covariance matrix of Fast Fourier Transform 

(FFT) for numerical values representation of DNA 

sequences of five organisms, Human, E. coli, Rat, Wheat and 

Grasshopper. It should be noted that it is the first time that 

the variance covariance matrix eigenvalues of Fast Fourier 

Transform (FFT) for numerical values representation of 

DNA sequences, is used in an analysis like this and related 

analyzes. 

We compute an empirical values for the kernel density 

estimation for data series according to the following Kernels: 

Gaussian, Epanechnikov, Rectangular, Triangular, Biweight, 

Cosine, and Optcosine. The results of simulaion experiment 

are recorded in variety of tables as may be seen below that is, 

the results is displayed in a series of images. This section 

summarizes the results of this work by table (8) in appendix 

(1) and represented in Figures (12 – 31) in appendix (2).  

Table (3).  Min Max density (at corresponding x-value) and bandwidth for 
a kernel among kernels under consideration of the first eigenvalue for each 
organism 

Organism Bandwidth 
Min 

max 
x-value Kernel 

Human 1.85671 0.06740 154.88260 Optcosine 

Grasshopper 1.97662 0.06025 151.28073 Biweight 

E-Coli 1.93667 0.06154 138.54199 Biweight 

Rat 2.55799 0.04759 147.27848 Triangular 

Wheat 2.11323 0.05259 146.07245 Cosine 

Table (4).  Min Max density (at corresponding x-value) and bandwidth for 
a kernel among kernels under consideration of the second eigenvalue for 
each organism 

Organism Bandwidth 
Min 

max 
x-value Kernel 

Human 2.16573 0.05499 141.80183 Epanechnikov 

Grasshopper 2.35564 0.04921 142.70795 Epanechnikov 

E-Coli 1.28408 0.09281 130.25672 Triangular 

Rat 2.40422 0.04378 134.74596 Biweight 

Wheat 1.72088 0.06842 128.31104 Gaussian 

Table (5).  Min Max density (at corresponding x-value) and bandwidth for 
a kernel among kernels under consideration of the third eigenvalue for each 
organism 

Organism Bandwidth 
Min 

max 
x-value Kernel 

Human 1.85671 0.06343 106.89360 Epanechnikov 

Grasshopper 2.29603 0.05181 108.56873 Cosine 

E-Coli 1.39526 0.08385 122.81705 Optcosine 

Rat 2.01501 0.06203 115.36226 Epanechnikov 

Wheat 1.39526 0.08040 118.20472 Gaussian 

Table (6).  Min Max density (at corresponding x-value) and bandwidth for 
a kernel among kernels under consideration of the fourth eigenvalue for 
each organism 

Organism Bandwidth 
Min 

max 
x-value Kernel 

Human 1.85671 0.06863 97.64718 Optcosine 

Grasshopper 1.86035 0.06063 97.56647 Epanechnikov 

E-Coli 2.15815 0.05620 109.65297 Epanechnikov 

Rat 2.32544 0.05368 104.59309 Gaussian 

Wheat 1.95486 0.06345 109.84217 Cosine 

Tables (3 - 6) shows an optimal kernel estimation among 

kernels under considerations, which are commonly used for 

these purposes worldwide. 

5.2. Bivariate Density Estimation 

The bivariate kernel density estimation has been applied 

of the first and second eigenvalues from a side and the first 

and fourth eigenvalues from another side. These eigenvalues 

of variance covariance matrix of Fast Fourier Transform for 

numerical values representation of DNA sequences of five 

organisms, Human, E. coli, Rat, Wheat and Grasshopper. 

Table (7) contain the results referred to below. 

 

 

 

 

 

 

 

 

Table (7).  Empirical values for the Bandwidth and Correlation used in KDE of each of five organisms 

Organism 

First and Second Eigenvalues First and Fourth Eigenvalues 

x-axis 

Bandwidth 

y-axis 

Bandwidth 
Correlation 

x-axis 

Bandwidth 

y-axis 

Bandwidth 
Correlation 

Human 1.85392 2.66480 -0.06517 1.85392 1.97014 -0.57761 

Grasshopper 2.41621 2.47512 0.05680 2.41621 2.46776 -0.49434 

E-Coli 2.36051 1.48344 0.05752 2.36051 2.32454 -0.58715 

Rat 3.13377 2.90817 -0.12735 3.13377 2.64811 -0.66749 

Wheat 2.57170 2.08196 -0.19545 2.57170 2.28586 -0.55060 
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Figure 2.  Plot of bivariate kernel density for Human according to first and 

second eigenvalues 

 

Figure 3.  Plot of bivariate kernel density for Human according to first and 

fourth eigenvalues 

 

Figure 4.  Plot of bivariate kernel density for Grasshopper according to 

first and second eigenvalues 

 

Figure 5.  Plot of bivariate kernel density for Grasshopper according to 

first and fourth eigenvalues 

 

Figure 6.  Plot of bivariate kernel density for E-Coli according to first and 

second eigenvalues 

 

Figure 7.  Plot of bivariate kernel density for E-Coli according to first and 

fourth eigenvalues 

 

Figure 8.  Plot of bivariate kernel density for Rat according to first and 

second eigenvalues 

 

Figure 9.  Plot of bivariate kernel density for Rat according to first and 

fourth eigenvalues 
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Figure 10.  Plot of bivariate kernel density for Wheat according to first and 

second eigenvalues 

 

Figure 11.  Plot of bivariate kernel density for Wheat according to first and 

fourth eigenvalues 

The results in table (7) and plots will be crucial to 

determine DNA afiliation. 

6. Summary 

One of important properties of FFT, which is return the 

variations to their original sources help us tremendously to 

understand, discriminant and deal with DNA sequences. 

Probability behavior of DNA data, represented by the 

density estimation, is very important. The references stated 

here, highlights some aspects of that importance. 

Univariate density estimation is fitted for first, second, 

third and fourth eigenvalues of variance covariance matrix of 

Fast Fourier Transform for numerical values representation 

of DNA sequences of five organisms, Human, E. coli, Rat, 

Wheat and Grasshopper. 

Bivariate density estimation is fitted for first and second 

eigenvalues from a side and first and fourth eigenvalues from 

another side. We treat here with first and second eigenvalues 

from a side and first and fourth eigenvalues from another 

side because we think that the relations between them are 

more interactive than others. These eigenvalues of variance 

covariance matrix of Fast Fourier Transform for numerical 

values representation of DNA sequences of five organisms, 

Human, E. coli, Rat, Wheat and Grasshopper. 

The methods used here are aimed to discriminant among 

different organisms using another point of view. This point 

of view is based on eigenvalues of variance covariance 

matrix of FFT for numerical values representation of DNA 

sequences. It should be noted that, it is the first time this 

point of view is used to achieve aims like ours. 

Empirical studies are conducted to show the value of our 

point of view and the applications based on. So we 

recommended that, 

(1)  Other empirical studies should be done for other 

organisms and statistical methods by using the point 

of view adopted here. 

(2)  Aspects stated here must be used in an applied 

manner for DNA sequences discrimination. 

Appendix (1) 

Table (A.1).  Empirical values of maximum density and bandwidth for the (first, second, third and fourth) eigenvalues of each of five organisms 

Kernel x-value Max. Density Bandwidth(h) Organisms 

Gaussian 154.77060 0.06857 

1.85671 
Human 

(first eigenvalue) 

Epanechnikov 154.88260 0.06748 

Rectangular 155.33061 0.07119 

Triangular 154.32260 0.06812 

Biweight 154.99460 0.06768 

Cosine 154.88260 0.06784 

Optcosine 154.88260 0.06740 

Kernel x-value max. density Bandwidth(h) Organisms 

Gaussian 142.55431 0.05680 

2.16573 
Human 

(second eigenvalue) 

Epanechnikov 141.80183 0.05499 

Rectangular 140.67311 0.05721 

Triangular 142.27213 0.05610 

Biweight 142.36619 0.05550 

Cosine 142.36619 0.05570 

Optcosine 142.74243 0.05511 
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Kernel x-value max. density Bandwidth(h) Organisms 

Gaussian 106.63408 0.06423 

1.85671 
Human 

(third eigenvalue) 

Epanechnikov 106.89360 0.06343 

Rectangular 107.23964 0.06825 

Triangular 106.20153 0.06488 

Biweight 106.98011 0.06344 

Cosine 106.72059 0.06361 

Optcosine 107.15313 0.06348 

Kernel x-value max. density Bandwidth(h) Organisms 

Gaussian 97.84765 0.06978 

1.85671 
Human 

(fourth eigenvalue) 

Epanechnikov 97.64718 0.06865 

Rectangular 97.24624 0.07204 

Triangular 98.14836 0.06965 

Biweight 97.74742 0.06880 

Cosine 97.74742 0.06897 

Optcosine 97.64718 0.06863 

Kernel x-value max. density Bandwidth(h) Organisms 

Gaussian 151.28073 0.06032 

1.97662 
Grasshopper 

(first eigenvalue) 

Epanechnikov 151.38825 0.06048 

Rectangular 151.17320 0.06115 

Triangular 151.28073 0.06053 

Biweight 151.28073 0.06025 

Cosine 151.28073 0.06026 

Optcosine 151.38825 0.06048 

Kernel x-value max. density Bandwidth(h) Organisms 

Gaussian 142.41320 0.04975 

2.35564 
Grasshopper 

(second eigenvalue) 

Epanechnikov 142.70795 0.04921 

Rectangular 142.31495 0.05294 

Triangular 142.31495 0.04973 

Biweight 142.60970 0.04933 

Cosine 142.51145 0.04937 

Optcosine 142.41320 0.04930 

Kernel x-value max. density Bandwidth(h) Organisms 

Gaussian 108.77560 0.05200 

2.29603 
Grasshopper 

(third eigenvalue) 

Epanechnikov 108.36187 0.05199 

Rectangular 107.53440 0.05450 

Triangular 108.25843 0.05212 

Biweight 108.46530 0.05182 

Cosine 108.56873 0.05181 

Optcosine 108.25843 0.05201 

Kernel x-value max. density Bandwidth(h) Organisms 

Gaussian 97.47599 0.06161 

1.86035 
Grasshopper 

(fourth eigenvalue) 

Epanechnikov 97.56647 0.06063 

Rectangular 97.20457 0.06494 

Triangular 97.20457 0.06210 

Biweight 97.38552 0.06075 

Cosine 97.56647 0.06089 

Optcosine 97.29504 0.06070 
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Kernel x-value max. density Bandwidth(h) Organisms 

Gaussian 138.45650 0.06199 

1.93667 
E-Coli 

(first eigenvalue) 

Epanechnikov 138.20004 0.06173 

Rectangular 138.20004 0.06461 

Triangular 138.28552 0.06231 

Biweight 138.54199 0.06154 

Cosine 138.54199 0.06163 

Optcosine 138.20004 0.06175 

Kernel x-value max. density Bandwidth(h) Organisms 

Gaussian 129.99505 0.09295 

1.28408 
E-Coli 

(second eigenvalue) 

Epanechnikov 129.89038 0.09363 

Rectangular 130.20438 0.10188 

Triangular 130.25672 0.09281 

Biweight 129.99505 0.09310 

Cosine 130.04738 0.09301 

Optcosine 129.89038 0.09353 

Kernel x-value max. density Bandwidth(h) Organisms 

Gaussian 123.42334 0.08471 

1.39526 
E-Coli 

(third eigenvalue) 

Epanechnikov 122.81705 0.08420 

Rectangular 121.87394 0.08663 

Triangular 123.28861 0.08651 

Biweight 123.22124 0.08399 

Cosine 123.28861 0.08409 

Optcosine 122.81705 0.08385 

Kernel x-value max. density Bandwidth(h) Organisms 

Gaussian 110.04454 0.05686 

2.15815 
E-Coli 

(fourth eigenvalue) 

Epanechnikov 109.65297 0.05620 

Rectangular 107.59723 0.05864 

Triangular 110.14243 0.05663 

Biweight 109.84876 0.05632 

Cosine 109.84876 0.05642 

Optcosine 109.65297 0.05634 

Kernel x-value max. density Bandwidth(h) Organisms 

Gaussian 147.12883 0.04778 

2.55799 
Rat 

(first eigenvalue) 

Epanechnikov 146.97918 0.04774 

Rectangular 147.12883 0.04892 

Triangular 147.27848 0.04759 

Biweight 146.97918 0.04772 

Cosine 146.97918 0.04770 

Optcosine 146.82954 0.04779 

Kernel x-value max. density Bandwidth(h) Organisms 

Gaussian 135.18831 0.04419 

2.40422 
Rat 

(second eigenvalue) 

Epanechnikov 133.30834 0.04387 

Rectangular 132.31306 0.04850 

Triangular 134.30362 0.04434 

Biweight 134.74596 0.04378 

Cosine 134.96713 0.04386 

Optcosine 134.19303 0.04381 
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Kernel x-value max. density Bandwidth(h) Organisms 

Gaussian 116.33431 0.06344 

2.01501 
Rat 

(third eigenvalue) 

Epanechnikov 115.36226 0.06203 

Rectangular 114.74368 0.06576 

Triangular 116.15757 0.06259 

Biweight 115.89247 0.06229 

Cosine 116.15757 0.06249 

Optcosine 116.06921 0.06204 

Kernel x-value max. density Bandwidth(h) Organisms 

Gaussian 104.59309 0.05368 

2.32544 
Rat 

(fourth eigenvalue) 

Epanechnikov 104.80065 0.05447 

Rectangular 104.48931 0.05564 

Triangular 105.21576 0.05373 

Biweight 104.69687 0.05410 

Cosine 104.69687 0.05398 

Optcosine 105.00821 0.05425 

Kernel x-value max. density Bandwidth(h) Organisms 

Gaussian 145.52356 0.05280 

2.11323 
Wheat 

(first eigenvalue) 

Epanechnikov 146.25542 0.05280 

Rectangular 141.77278 0.05921 

Triangular 145.34059 0.05298 

Biweight 146.16393 0.05262 

Cosine 146.07245 0.05259 

Optcosine 145.88949 0.052707   

Kernel x-value max. density Bandwidth(h) Organisms 

Gaussian 128.31104 0.06842 

1.72088 
Wheat 

(second eigenvalue) 

Epanechnikov 128.74993 0.06928 

Rectangular 128.67678 0.07106 

Triangular 128.23789 0.06893 

Biweight 128.89623 0.06864 

Cosine 128.53048 0.06856 

Optcosine 128.74993 0.06918 

Kernel x-value max. density Bandwidth(h) Organisms 

Gaussian 118.20472 0.08040 

1.39526 
Wheat 

(third eigenvalue) 

Epanechnikov 118.71227 0.08186 

Rectangular 118.90260 0.08459 

Triangular 119.21982 0.08108 

Biweight 118.45850 0.08089 

Cosine 118.39505 0.08072 

Optcosine 118.64883 0.08143 

Kernel x-value max. density Bandwidth(h) Organisms 

Gaussian 109.57330 0.06352 

1.95486 
Wheat 

(fourth eigenvalue) 

Epanechnikov 110.02142 0.06382 

Rectangular 108.94594 0.06619 

Triangular 110.20066 0.06380 

Biweight 109.84217 0.06356 

Cosine 109.84217 0.06345 

Optcosine 110.02142 0.06380 
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Appendix (2) 

 

 

 

Figure A.1.  Kernel density estimation plots for the first eigenvalue of Human according to Gaussian, Epanechnikov, Rectangular, Triangular, Biweight, 

Cosine, and Optcosine kernels  

 

   

Figure A.2.  Kernel density estimation plots for the second eigenvalue of Human according to Gaussian, Epanechnikov, Rectangular, Triangular, Biweight, 

Cosine, and Optcosine kernels 
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Figure A.3.  Kernel density estimation plots for the third eigenvalue of Human according to Gaussian, Epanechnikov, Rectangular, Triangular, Biweight, 

Cosine, and Optcosine kernels  

 

 

 

Figure A.4.  Kernel density estimation plots for the fourth eigenvalue of Human according to Gaussian, Epanechnikov, Rectangular, Triangular, Biweight, 

Cosine, and Optcosine kernels 



82 Salah H. Abid and Jinan H. Farhood:  Kernel Density Estimation for the Eigenvalues of Variance  

Covariance Matrix of FFT Scaling of DNA Sequences: An Empirical Study of Some Organisms 

 

 

 

 

Figure A.5.  Kernel density estimation plots for the first eigenvalue of Grasshopper according to Gaussian, Epanechnikov, Rectangular, Triangular, 

Biweight, Cosine, and Optcosine kernels  

 

 

 

Figure A.6.  Kernel density estimation plots for the second eigenvalue of Grasshopper according to Gaussian, Epanechnikov, Rectangular, Triangular, 

Biweight, Cosine, and Optcosine kernels 
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Figure A.7.  Kernel density estimation plots for the third eigenvalue of Grasshopper according to Gaussian, Epanechnikov, Rectangular, Triangular, 

Biweight, Cosine, and Optcosine kernels  

 

 

 

Figure A.8.  Kernel density estimation plots for the fourth eigenvalue of Grasshopper according to Gaussian, Epanechnikov, Rectangular, Triangular, 

Biweight, Cosine, and Optcosine kernels  
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Figure A.9.  Kernel density estimation plots for the first eigenvalue of E-Coli according to Gaussian, Epanechnikov, Rectangular, Triangular, Biweight, 

Cosine, and Optcosine kernels  

 

 

Figure A.10.  Kernel density estimation plots for the second eigenvalue of E-Coli according to Gaussian, Epanechnikov, Rectangular, Triangular, Biweight, 

Cosine, and Optcosine kernels  
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Figure A.11.  Kernel density estimation plots for the third eigenvalue of E-Coli according to Gaussian, Epanechnikov, Rectangular, Triangular, Biweight, 

Cosine, and Optcosine kernels  

 

 

Figure A.12.  Kernel density estimation plots for the fourth eigenvalue of E-Coli according to Gaussian, Epanechnikov, Rectangular, Triangular, Biweight, 

Cosine, and Optcosine kernels  
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Figure A.13.  Kernel density estimation plots for the first eigenvalue of Rat according to Gaussian, Epanechnikov, Rectangular, Triangular, Biweight, 

Cosine, and Optcosine kernels  

 

 

 

Figure A.14.  Kernel density estimation plots for the second eigenvalue of Rat according to Gaussian, Epanechnikov, Rectangular, Triangular, Biweight, 

Cosine, and Optcosine kernels  
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Figure A.15.  Kernel density estimation plots for the third eigenvalue of Rat according to Gaussian, Epanechnikov, Rectangular, Triangular, Biweight, 

Cosine, and Optcosine kernels  

 

 

 

Figure A.16.  Kernel density estimation plots for the fourth eigenvalue of Rat according to Gaussian, Epanechnikov, Rectangular, Triangular, Biweight, 

Cosine, and Optcosine kernels  
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Figure A.17.  Kernel density estimation plots for the first eigenvalue of Wheat according to Gaussian, Epanechnikov, Rectangular, Triangular, Biweight, 

Cosine, and Optcosine kernels  

 

 

 

Figure A.18.  Kernel density estimation plots for the second eigenvalue of Wheat according to Gaussian, Epanechnikov, Rectangular, Triangular, Biweight, 

Cosine, and Optcosine kernels  
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Figure A.19.  Kernel density estimation plots for the third eigenvalue of Wheat according to Gaussian, Epanechnikov, Rectangular, Triangular, Biweight, 

Cosine, and Optcosine kernels  

 

 

 

Figure A.20.  Kernel density estimation plots for the fourth eigenvalue of Wheat according to Gaussian, Epanechnikov, Rectangular, Triangular, Biweight, 

Cosine, and Optcosine kernels  
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