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Abstract  Count Data Models allow for regression-type analyses when the dependent variable of interest is a numerical 
count. They can be used to estimate the effect of a policy intervention either on the average rate or on the probability of no 
event, a single event, or multiple events. The mostly used distribution for modeling count data is the Poisson distribution 
(Horim and Levy; 1981) which assume equidispersion (Variance is equal to the mean). Since observed count data often 
exhibit over or under dispersion, the Poisson model becomes less ideal for modeling. To deal with a wide range of dispersion 
levels, Negative Binomial Regression, Generalized Poisson Regression, Poisson Regression, and lately 
Conway-Maxwell-Poisson (COM-Poisson) Regression can be used as alternative regression models. We compared the 
Generalized Poisson regression to all other regression models and also stated their advantages and usefulness. Data were 
analyzed using these four methods, the results from the four methods are compared using the Akaike Information Criterion 
(AIC) and Bayesian Information Criterion with the Generalized Poisson Regression having the smallest AIC and BIC values. 
The Generalized Poisson Regression Model was considered a better model when analyzing road traffic crashes for the data 
set considered.  
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1. Introduction 
Count data is a statistical data type, a type of data in which 

the observations can take only the non-negative integer 
values {0, 1, 2, 3, ...}, and where these integers arise from 
counting rather than ranking [1-3]. The statistical treatment 
of count data is distinct from that of binary data, in which the 
observations can take only two values, usually represented 
by 0 and 1, and from ordinal data, which may also consist of 
integers but where the individual values fall on an arbitrary 
scale and only the relative ranking is important. Count data 
models have a dependent variable that is counts (0, 1, 2, 3, 
and so on) [4]. Most of the data are concentrated on a few 
small discrete values. Examples include: the number of 
children a couple has, the number of doctor’s visit per year a 
person makes, and the number of trips per month that a 
person takes. Count data arise in many fields which includes; 
biology, healthcare, psychology, marketing and many more. 
When  response variable  is a count and the  researcher is  
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interested in how this count changes as the explanatory 
variable increases. Classical Poisson regression is the most 
well-known methods for modeling count data, but its 
underlying assumption of equidispersion limits its use in 
many real-world applications with over-or under dispersed 
data [5-7]. This excess variation may result to incorrect 
inference about parameter estimates, standard errors, tests 
and confidence intervals. Over-dispersion mostly arises for 
various reasons including mechanisms that generate 
excessive zero counts or censoring [9-11]. As a result 
over-dispersed count data are common in many areas which 
in turn, have led to the development of statistical 
methodology for modeling over-dispersed data. For 
over-dispersed data, the Negative Binomial model is a 
popular choice. Other over-dispersion models include 
Poisson mixtures and Conway-Maxwell-Poisson. A flexible 
alternative that captures both over- and under-dispersion is 
the Conway-Maxwell-Poisson (COM-Poisson) distribution. 
The COM-Poisson is a two-parameter generalization of the 
Poisson distribution which also includes the Bernoulli and 
Geometric distributions as special cases [12]. The 
COM-Poisson distribution has been used in so many count 
data application and has been extended methodologically in 
various directions. Therefore in this work, because of the 
problem of model selection and the appropriate method to 
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apply in the analysis of auto-crash data bearing in mind their 
underlying assumptions, we wish to find the model that is 
most adequate. 

2. Materials and Method 
In this section we shall review the models that most widely 

used in the analysis of count data which include: the Poisson 
models, Conway- Maxwell- Poisson models, Generalized 
Poisson Regression model, and the Negative Binomial 
Regression Model. 

2.1. Poisson Models  

This is a special case of Generalized Linear Models (GLM) 
framework. The simplest distribution used for modeling 
count data is the Poisson distribution with probability density 
function. 

𝑃𝑃𝑟𝑟(𝑌𝑌 = 𝑦𝑦|𝜆𝜆) =
𝑒𝑒−𝜆𝜆𝜆𝜆𝑦𝑦

𝑦𝑦!
 𝑓𝑓𝑓𝑓𝑓𝑓 𝑦𝑦 = 0,1,2, … 

For 𝜇𝜇 > 0. The mean and variance of this distribution can 
be shown to be 𝐸𝐸(𝑌𝑌 )  =  𝑣𝑣𝑣𝑣𝑣𝑣(𝑌𝑌 )  =  𝜇𝜇. Since the mean is 
equal to the variance, any factor that affects one will      
also affect the other. Thus, the usual assumption of 
homoscedasticity would not be appropriate for Poisson data. 

Suppose that we have a sample of n observations 
𝑦𝑦1, 𝑦𝑦2, … , 𝑦𝑦𝑛𝑛   which can be treated as realizations of 
independent Poisson random variables, with 𝑌𝑌𝑖𝑖  ∼  𝑃𝑃(𝜇𝜇𝑖𝑖) 
and suppose that we want to let the mean µi (and therefore 
the variance) depend on a vector of explanatory variables 𝑥𝑥𝑖𝑖  
[13-15].  

We could entertain a simple linear model of the form  
𝜇𝜇𝑖𝑖  =  𝑥𝑥𝑖𝑖𝛽𝛽 

but this model has the disadvantage that the linear predictor 
on the right hand side can assume any real value, whereas the 
Poisson mean on the left hand side, which represents an 
expected count, has to be non-negative. A straightforward 
solution to this problem is to model instead the logarithm of 
the mean using a linear model. Thus, we take logs calculating  

𝜂𝜂𝑖𝑖  =  𝑙𝑙𝑙𝑙𝑙𝑙(𝜇𝜇𝑖𝑖) 
and assume that the transformed mean follows a linear model  

𝜂𝜂𝑖𝑖  =  𝑥𝑥𝑖𝑖𝛽𝛽 
Thus, we consider a generalized linear model with link log. 

Combining these two steps in one we can write the log-linear 
model as  

𝑙𝑙𝑙𝑙𝑙𝑙(𝜇𝜇𝑖𝑖) = 𝑥𝑥𝑖𝑖𝛽𝛽. 
In this model the regression coefficient 𝛽𝛽𝑗𝑗  represents the 

expected change in the log of the mean per unit change in the 
predictor 𝑥𝑥𝑗𝑗  . In other words increasing 𝑥𝑥𝑗𝑗  by one unit is 
associated with an increase of 𝛽𝛽𝑗𝑗  in the log of the mean. 
Exponentiating the above equation, we obtain a 
multiplicative model for the mean itself:  

𝜇𝜇𝑖𝑖  =  𝑒𝑒𝑒𝑒𝑒𝑒{𝑥𝑥𝑖𝑖𝛽𝛽}. 

In this model, an exponentiated regression coefficient 
𝑒𝑒𝑒𝑒𝑒𝑒{𝛽𝛽 } represents a multiplicative effect of the 𝑗𝑗 − 𝑡𝑡ℎ 
predictor on the mean. Increasing 𝑥𝑥𝑗𝑗  by one unit multiplies 
the mean by a factor 𝑒𝑒𝑒𝑒𝑒𝑒{𝛽𝛽𝑗𝑗}. A further advantage of using 
the log link stems from the empirical observation that with 
count data the effects of predictors are often multiplicative 
rather than additive [16]. That is, one typically observes 
small effects for small counts, and large effects for large 
counts. If the effect is in fact proportional to the count, 
working in the log scale leads to a much simpler model. 

The Likelihood function for the Poisson model is; 

𝐿𝐿(𝛽𝛽|𝑦𝑦, 𝑋𝑋) = �𝑃𝑃𝑃𝑃(𝑦𝑦𝑖𝑖|𝜇𝜇𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

= �
𝑒𝑒𝑒𝑒𝑒𝑒(−𝜇𝜇𝑖𝑖)𝜇𝜇𝑖𝑖

𝑦𝑦𝑖𝑖

𝑦𝑦!

𝑁𝑁

𝑖𝑖=1

 

2.2. Conway-Maxwell-Poisson (COM-Poisson) Models 

The Conway Maxwell Poisson (COM-Poisson) 
distribution with two parameters was originally developed  
as a solution to handling queueing systems with 
state-dependent arrival or service rates. This distribution 
generalizes the Poisson distribution by adding a parameter to 
model over-dispersion and under-dispersion and includes the 
geometric distribution as a special case and the Bernoulli 
distribution as a limiting case. The COM-Poisson 
distribution is a two parameter generalization of the Poisson 
distribution that is flexible enough to describe a wide range 
of counts data distributions, since its revival, it has been 
further developed in several directions and applied in 
multiple fields.  

The COM-Poisson probability distribution function is 
given by the equation: 

𝑃𝑃(𝑋𝑋 = 𝑗𝑗) =  1
𝑍𝑍(𝜆𝜆,𝑣𝑣)

𝜆𝜆𝑗𝑗

(𝑗𝑗 !)𝑣𝑣
 , 𝑗𝑗 ∈ 𝑍𝑍+ = {0,1,2, … } 

Where 𝑍𝑍(𝜆𝜆, 𝑣𝑣) is a normalizing constant defined by 

𝑍𝑍(𝜆𝜆, 𝑣𝑣) = �
𝜆𝜆𝑖𝑖

(𝑖𝑖!)𝑣𝑣

∞

𝑖𝑖=0

 

The domain of admissible parameters for which defines a 
probability distribution is 𝜆𝜆, 𝜈𝜈 >  0, 𝑎𝑎𝑎𝑎𝑎𝑎 0 <  𝜆𝜆 <  1,  
𝜈𝜈 =  0. The introduction of the second parameter ν allows 
for either sub or super-linear growth of the ratio      
𝑃𝑃(𝑋𝑋 =  𝑗𝑗 −  1)/𝑃𝑃(𝑋𝑋 =  𝑗𝑗), and allows 𝑋𝑋 to have variance 
either less than or greater than it’s mean. Of course, the mean 
of 𝑋𝑋 ∼  𝐶𝐶𝐶𝐶𝐶𝐶(𝜆𝜆, 𝜈𝜈) is not, in general, 𝜆𝜆. Clearly, in the case 
where 𝜈𝜈 =  1, 𝑋𝑋 ∼  𝐶𝐶𝐶𝐶𝐶𝐶 (𝜆𝜆, 1)  has the Poisson 
distribution 𝑃𝑃𝑜𝑜(𝜆𝜆)  and the normalizing constant  
𝑍𝑍 (𝜆𝜆, 1)  =  𝑒𝑒𝜆𝜆 . Note, other choices of ν also give rise to 
well-known distributions. For example, in the case where 
𝜈𝜈 =  0 and 0 <  𝜆𝜆 <  1, X has a geometric distribution, 
with 𝑍𝑍(𝜆𝜆, 0)  =  (1 − 𝜆𝜆)−1 . In the limit 𝜈𝜈 →  ∞ , X 
converges in distribution to a Bernoulli random variable with 
mean 𝜆𝜆(1 +  𝜆𝜆)−1 and lim 𝜈𝜈 → ∞ 𝑍𝑍(𝜆𝜆, 𝜈𝜈)  =  1 +  𝜆𝜆 . In 
general, of course, the normalizing constant 𝑍𝑍(𝜆𝜆, 𝜈𝜈) does 
not permit such a neat, closed-form expression. Asymptotic 
results are available, however. Gillispie and Green [17] 
prove that, for fixed ν,  
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𝑍𝑍(𝜆𝜆, 𝜈𝜈)~
𝑒𝑒𝑒𝑒𝑒𝑒�𝑣𝑣𝜆𝜆1 𝑣𝑣� �

𝜆𝜆(𝑣𝑣−1 2𝑣𝑣⁄ )(2𝜋𝜋)(𝑣𝑣−1) 2⁄ √𝑣𝑣
�1 + 𝑂𝑂�𝜆𝜆−1 𝑣𝑣⁄ �� 

As 𝜆𝜆 → ∞, confirming a conjecture made by Shmueli et al 
[18-19]. This asymptotic result may also be used to obtain 
asymptotic results for the probability generating function of 
𝑋𝑋 ∼  𝐶𝐶𝐶𝐶𝐶𝐶(𝜆𝜆, 𝜈𝜈), since it may be easily seen that  

𝐸𝐸𝑠𝑠𝑋𝑋 =
𝑍𝑍(𝑠𝑠𝜆𝜆, 𝑣𝑣)
𝑍𝑍(𝜆𝜆, 𝑣𝑣)  

2.3. The Generalized Poisson Regression Model  
The advantage of using the generalized Poisson regression 

model is that it can be fitted for both over-dispersion, 
𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦𝑖𝑖) > 𝐸𝐸(𝑦𝑦𝑖𝑖) , as well as under-dispersion,   
𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦𝑖𝑖) > 𝐸𝐸(𝑦𝑦𝑖𝑖). Suppose is a count response variable that 
follows a generalized Poisson distribution, the probability 
density function of 𝑦𝑦𝑖𝑖, 𝑖𝑖 = 1,2, … , 𝑛𝑛  is given as (Famoye 
(1993), Wang and Famoye (1997)) [20]; 

𝑓𝑓𝑖𝑖(𝑦𝑦𝑖𝑖 , 𝜇𝜇𝑖𝑖 , 𝛼𝛼) = �
𝜇𝜇𝑖𝑖

1 + 𝛼𝛼𝜇𝜇𝑖𝑖
�

(1 + 𝛼𝛼𝑦𝑦𝑖𝑖)𝑦𝑦𝑖𝑖−1

𝑦𝑦𝑖𝑖!
exp �

𝜇𝜇𝑖𝑖(1 + 𝛼𝛼𝑦𝑦𝑖𝑖)
1 + 𝛼𝛼𝜇𝜇𝑖𝑖

� 

𝑦𝑦𝑖𝑖  =  0, 1, 2, . . . , 𝑎𝑎𝑎𝑎𝑎𝑎 𝜇𝜇𝑖𝑖  =  𝜇𝜇𝑖𝑖(𝑥𝑥𝑖𝑖)  =  𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑖𝑖𝛽𝛽), 
Where 𝑥𝑥𝑖𝑖  is a (𝑘𝑘 −  1) dimensional vector of covariates 

including demographic factors, driving habits and 
medication use, and 𝛽𝛽  is a 𝑘𝑘 − dimensional vector of 
regression parameters. For details on the generalized Poisson 
regression model, the reader is referred to Famoye (1993) 
[21]. The mean and variance of 𝑌𝑌𝑖𝑖  are, respectively, given 
by 

𝐸𝐸(𝑌𝑌𝑖𝑖|𝑥𝑥 + 𝑖𝑖)  =  𝜇𝜇𝑖𝑖   
and  

𝑉𝑉 (𝑌𝑌𝑖𝑖|𝑥𝑥𝑖𝑖) = 𝜇𝜇𝑖𝑖(1 +  𝛼𝛼𝜇𝜇𝑖𝑖)2  
The generalized Poisson regression model above is a 

generalization of the standard Poisson regression (PR) model. 
When 𝛼𝛼 =  0 the probability function model, the equality 
constraint is observed between the conditional mean 
𝐸𝐸(𝑌𝑌𝑖𝑖|𝑥𝑥𝑖𝑖)  and the conditional variance 𝑉𝑉(𝑌𝑌𝑖𝑖|𝑥𝑥𝑖𝑖)  of the 
dependent variable for each observation. In practical 
applications and in “real” situations, this assumption is 
questionable since the variance can either be larger or 
smaller than the mean. If the variance is not equal to the 
mean, the estimates in PR model are still consistent but are 
inefficient, which leads to the invalidation of inference based 
on the estimated standard errors.  

2.4. Negative Binomial Regression 

Negative binomial regression is similar to regular multiple 
regression except that the dependent (Y) variable is an 
observed count that follows the negative binomial 
distribution. Thus, the possible values of Y are the 
nonnegative integers: 0, 1, 2, 3, and so on. Negative binomial 
regression is a generalization of Poisson regression which 
loosens the restrictive assumption that the variance is equal 
to the mean made by the Poisson model. The traditional 
negative binomial regression model, commonly known as 

NB2, is based on the Poisson-gamma mixture distribution. 
This formulation is popular because it allows the modelling 
of Poisson heterogeneity using a gamma distribution [22]. 

The Poisson distribution may be generalized by including 
a gamma noise variable which has a mean of 1 and a scale 
parameter of ν. The Poisson-gamma mixture (negative 
binomial) distribution that results is  

𝑃𝑃𝑃𝑃(𝑌𝑌 = 𝑦𝑦𝑖𝑖|𝜇𝜇𝑖𝑖 , 𝛼𝛼) =
𝛤𝛤(𝑦𝑦𝑖𝑖 + 𝛼𝛼−1)

𝛤𝛤(𝑦𝑦𝑖𝑖 + 1)𝛤𝛤(𝛼𝛼−1) �
𝛼𝛼−1

𝛼𝛼−1 + 𝜇𝜇𝑖𝑖
�
𝛼𝛼−1

�
𝜇𝜇𝑖𝑖

𝛼𝛼−1 + 𝜇𝜇𝑖𝑖
�
𝑦𝑦𝑖𝑖

 

𝜇𝜇𝑖𝑖 = 𝑡𝑡𝑖𝑖𝜇𝜇 

𝛼𝛼 =
1
𝑣𝑣

 

The parameter 𝜇𝜇 is the mean incidence rate of y per unit 
of exposure. Exposure may be time, space, distance, area, 
volume, or population size. Because exposure is often a 
period of time, we use the symbol 𝑡𝑡𝑖𝑖  to represent the 
exposure for a particular observation. When no exposure 
given, it is assumed to be one. The parameter 𝜇𝜇 may be 
interpreted as the risk of a new occurrence of the event 
during a specified exposure period, t. 

The results below make use of the following relationship 
derived from the definition of the gamma function 

𝑙𝑙𝑙𝑙 �
𝛤𝛤(𝑦𝑦𝑖𝑖 + 𝛼𝛼−1)
𝛤𝛤(𝛼𝛼−1) � = � 𝑙𝑙𝑙𝑙(𝑗𝑗 + 𝛼𝛼−1)

𝑦𝑦𝑖𝑖−1

𝑗𝑗=0

 

In negative binomial regression, the mean of y is 
determined by the exposure time t and a set of k regressors 
variables (the x’s). The expression relating these quantities is  

𝜇𝜇𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑙𝑙𝑙𝑙(𝑡𝑡𝑖𝑖) + 𝛽𝛽1𝑥𝑥1𝑖𝑖 + 𝛽𝛽2𝑥𝑥2𝑖𝑖 + ⋯+ 𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘𝑘𝑘 ) 
Often, 𝑥𝑥1 ≡ 1, in which case 𝛽𝛽1 is called the intercept. 

The regression coefficients 𝛽𝛽1 , 𝛽𝛽2 ,…, 𝛽𝛽𝑘𝑘  are unknown 
parameters that are estimated from a set of data. Their 
estimates are symbolized as 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑘𝑘 . Using this 
notation, the fundamental negative binomial regression 
model for an observation 𝑖𝑖 is written as 

𝑃𝑃𝑃𝑃(𝑌𝑌 = 𝑦𝑦𝑖𝑖|𝜇𝜇𝑖𝑖 , 𝛼𝛼) =
𝛤𝛤(𝑦𝑦𝑖𝑖 + 𝛼𝛼−1)

𝛤𝛤(𝑦𝑦𝑖𝑖 + 1)𝛤𝛤(𝛼𝛼−1) �
1

1 + 𝛼𝛼𝛼𝛼𝑖𝑖
�
𝛼𝛼−1

�
𝛼𝛼𝜇𝜇𝑖𝑖

1 + 𝛼𝛼𝛼𝛼𝑖𝑖
�
𝑦𝑦𝑖𝑖

 

2.5. Multicollinearity Test  

One formal way of detecting Multicollinearity is by the 
use of the variance inflation factors (VIF) [23]. The VIF is 
used to test for the presence of Multicollinearity, and is given 
by  

𝑉𝑉𝑉𝑉𝑉𝑉 =
1

1 − 𝑅𝑅𝑗𝑗2
 

Where 𝑅𝑅𝑗𝑗2 is the coefficient of determination of a 
regression of an explanatory variable j on all the other 
explanatory variables. A VIF value of 10 and above indicates 
a Multicollinearity problem. 

Table 1 shows that all the variables have VIF values <10. 
Thus all the variables can be included in the subsequent 
analyses and modeling with the Poisson regression, 
Generalized Poisson regression, and Negative Binomial 
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Regression. 

Table 1.  Multicollinearity Test 

Model 
Collinearity Statistics 

Tolerance VIF 

1 

(Constant)   

NUMBER OF CRASHES .609 1.643 

WEEK .971 1.030 

NUMBER OF CAUSES .621 1.611 

2.6. Akaike Information Criterion (AIC)  

When several models are available, one can compare the 
models performance based on several likelihood measures 
which have been proposed in statistical literatures. One of 
the most popularly used measures is AIC [24-25]. The AIC 
penalized a model with larger number of parameters, and is 
defined as  

𝐴𝐴𝐴𝐴𝐴𝐴 = −2𝑙𝑙𝑙𝑙𝑙𝑙 + 2𝑝𝑝 = −2[𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑝𝑝] 
Where 𝑙𝑙𝑙𝑙𝑙𝑙 denotes the fitted log likelihood and 𝑝𝑝 the 

number of parameters. A relatively small value of AIC is 
favorable for the fitted model. 

2.7. Bayesian Information Criterion (BIC)  

The Bayesian information criterion (BIC) or Schwarz 
criterion (also SBC, SBIC) is a criterion for model selection 
among a finite set of models; the model with the lowest BIC 

is preferred [26]. It is based, in part, on the likelihood 
function and it is closely related to the Akaike information 
criterion (AIC). 

When fitting models, it is possible to increase the 
likelihood by adding parameters, but doing so may result in 
overfitting. Both BIC and AIC attempt to resolve this 
problem by introducing a penalty term for the number of 
parameters in the model; the penalty term is larger in BIC 
than in AIC. 

The BIC is formally defined as 

𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑙𝑙𝑙𝑙(𝑛𝑛)𝑘𝑘 − 2𝑙𝑙𝑙𝑙�𝐿𝐿�� 
Where, 
𝐿𝐿� = the maximized value of the likelihood function of the 

model. 
𝑛𝑛 = the number of data points in the observed data, the 

number of observations, or equivalently, the sample size. 
𝑘𝑘 = the number of parameters estimated by the model. 

3. Results and Discussion 
Auto crash data was collected from the Federal Road 

Safety Corps National Headquarters Abuja and data wase 
analyzed using R Software and the results obtained are given 
below. Before performing the analysis on the four methods 
used, the data were tested for Multicollinearity. The test 
results are shown on the table below. 

Table 2.  Parameter estimates, standard error and AIC value for the models 

 
POISSON REG. NEGATIVE 

BINOMIAL REG. 
GENERALIZED 
POISSON REG. 

COM-POISSON 
REG 

Estimated 
coefficient 

Std 
Error 

Estimated 
coefficient 

Std 
Error 

Estimated 
coefficient 

Std 
Error 

Estimated 
coefficient 

Std 
Error 

Intercept 2.908 0.053 2.908 0.228 2.255 0.125 16.946 6.213 

Number of crashes 0.072 0.007 0.072 0.030 0.079 0.027 2.185 0.956 

Season (Week of the year) -0.006 0.001 -0.006 -0.005 -0.004 0.005 -0.160 0.151 

Number of causes         

AIC 2325.8 944.078 896.0278 951.01 

BIC 2322.7 935.011 891.0271 950.08 

 

4. Conclusions and Recommendations 
Poisson Regression Model, Generalized Poisson 

Regression Model, Negative Binomial Regression Model, 
and Conway-Maxwell Poisson regression model were 
compared to determine a better model used in modeling 
auto-crashes in Nigeria. The criterion for selection of the best 
model used is AIC and BIC values. Best model is the model 
that has the smallest AIC and BIC value. 

Based on the values on Table 2 above, the model with the 
smallest AIC and BIC value is the Generalized Poisson 
Regression model. Thus, the best model for analyzing traffic 
crash data in Nigeria is the Generalized Poisson Regression 
model.  
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