
American Journal of Mathematics and Statistics 2018, 8(4): 99-104 
DOI: 10.5923/j.ajms.20180804.04 

 

On the Extension of the Mover-Stayer Model when Rate of 
Transition Follows Negative Binomial Distribution 

Adams Y. J.*, Abdulkadir S. S. 

Modibbo Adama University of Technology, Yola, Nigeria 

 

Abstract  The extension of the Mover-Stayer Model proposed by Blumen, Kogan and McCarthy (1955) is an active area 
of research. Spilerman (1972) extended the basic model by specifying gamma distribution for the transition rate, the mixture 
of which resulted in Negative Binomial distribution. However, the Negative Binomial distribution being a unimodal 
distribution, may not capture situations where excess zeroes exist in the distribution of movements. This paper extends the 
model using Negative Binomial distribution to model rate of transition in Poisson distribution, which gave the Polya-Aeppli 
distribution (which is bimodal) as a mixture. The obtained model was validated using a simulated data adopted from 
Spilerman (1972). 
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1. Introduction 
Markov chain model has a wide range of applications in 

social mobility. The model requires assumptions of 
stationarity and population homogeneity, that is, every 
element (individual) has the same probability of moving, say, 
from state i to state j, and the movement (transition) 
conditioned only on the state in the immediate previous time 
period. But transition from an origin state hardly conform to 
this assumption (Spilerman, 1972). However, Blumen, 
Kogan, and McCarthy, (1955) noted in their interesting 
study of the movement of workers among various industrial 
aggregates in US that some individuals simply move more 
often than, or differently from, others. This idea was also 
found in the study with intergeneration and intragenerational 
occupational mobility (Hodge, 1966; Lieberson and Fuguitt, 
1967), and with geographical migration (Rogers, 1966; 
Tarver and Gurley, 1965). This principle led to introduction 
of heterogeneity to the transition (movement) of an 
individuals in the population during a unit interval. This idea 
introduces heterogeneity to the transition (movement) of 
individuals in the population during a unit interval. With the 
assumption of heterogeneity, all individuals move according 
to an identical transition when they move but differ in their 
rate of mobility. Hence this has resulted to development of 
“mover-stayer”  model (Blumen, Kogan,  and McCarthy,  
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1955, Spilerman, 1972). This implies two types of 
individuals: the stayer, who with probability one remains in 
the same category during the entire period of study and the 
‘mover ‘whose changes in category overtime can be 
described by a Markov chain with constant probability 
matrix. The model is appropriate for the analysis of 
geographical migration or intragenerational occupation 
mobility where repeated moves can be made by a person. 
Spilerman (1972) observed that most of mobility data lacks 
significant detail at the individual level, the mover-stayer 
model can be applied where the construction of 
sub-population transition matrices is not possible. Goodman 
(1961) noted that the transition probability matrix for movers, 
and the proportion of stayers among the individuals in each 
category at, say, the initial point in time, are unknown; the 
estimators provided by BKM for the stayer-movers are 
inconsistent. There is a lot of estimation methods that have 
been provided in literatures (Goodman, 1960, Liu and Chen, 
2015; Morgan, Aneshensel, and Clark, 1983). Frydman 
(1984) obtained the maximum likelihood estimation of the 
mover-stayer model’s parameters by direct maximization of 
the likelihood, while Fuchs and greenhouse (1988) provided 
expected –maximization (EM). 

This paper is motivated by the statement made in 
Spilerman (1972) that the originators of mover-stayer model, 
Blumen, Kogan, and McCarthy (BKM), discuss strategies 
for extending the mover-stayer model to incorporate a wider 
range of heterogeneity in the rate of transition, but they do 
not develop such generalization. BKM proposed in their 
method of generalization of mover-stayer that instead of 
postulating two types of persons, we should extent to a 
process which handle several types. They argue that 
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relaxation of fixed number of movement assumption does 
not prevent the population process-level from being 
Markovian and cited the example where transitions are 
Poisson events and the population is homogeneous in its 
transition rate, the Markov requirement will be appropriate. 
It is on this basis that Spilerman (1972) extend the basic 
model by specify a distribution for the transition rate to 
follow gamma distribution. That is, he assumes Poisson 
process transition and its rate to follow gamma distribution 
which resulted in Negative binomial distribution. His 
reasoning for the choice is that there is little prior knowledge 
about its (i.e. rate) distribution. However, gamma is 
unimodal and may not capture situation where the mobility 
data consist of multi-modal. In literature different 
distributions have been suggested to model the rate of 
movement (or random effect). For instance, O’Keefe et.al 
(2012) in their study of psoriatic arthritis consider gamma, 
inverse Gaussian(IG), and Compound Poisson 
distribution(CP) for random effects in mover-stayer 
multistate models. Yiu, Farewell and Tom (2016) explore the 
existence of a stayer population with mover-stayer counting 
process model on joint damage, gamma, inverse Gaussian 
and compound Poisson were considered for random-effects. 
Cook et.al (2002) developed a generalized mover-stayer 
model for panel data where an individual is allows to move 
among states according to the underlying Markov process 
until it encounters one of its absorbing states, where he can 
no longer move. 

2. Methodology 
2.1. The Mover – Stayer Model 

In the mover-stayer first proposed by Blumen and 
associates (1955), it is noted that the computations of k-step 
transition matrices from Markov chain consistently 
underpredicts the main diagonal elements of the observed 
k-step matrix. That is, 
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Where P(1) is the observed one- step transition matrix, and 
P(k) 
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is the observed k-step transition matrix. If the P*(k) is 
predicted using Markov process, the diagonal elements of 
the predicted transition matrix will be less than the elements 
in the observed k-step transition matrix. The reason for the 
inequality in diagonal elements of the two matrices was 
attributed to some individuals move more often than others, 
for each time interval, hence BKM suggested decomposition 
of the matrix into two subpopulations: the movers and the 
stayers, because some persons are less apt to move than 
others in each time interval, 

(1)P  = S + (I – S)M   (1) 

as one-step transition where S is a diagonal matrix, the 
proportion of stayer, (I- S) is also a diagonal matrix, the 
proportion of persons with potential mobility, and M is the 
transition matrix for mobile individuals. 

P*(k) = S + (I – S)M k      (2) 
The k-step matrix in given in equation (2). 
It was at this point that BKM (1955) postulate more than 

two subpopulations in which “instead of requiring every 
person to make a fixed number of transitions in each time 
interval, we assume that transitions are random occurrences.” 
Then a Poisson process was assumed for individuals ‘move 
with designated parameter,λ . This is given by  
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where P v (t) is the transition matrix in the interval (0, t). 
For t =1 equation (3a) becomes  
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which is the Poisson probability (t=1). 
If we assume many subpopulations, say g with different 

rates of mobility, 
The equation (3b) becomes 
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Where iπ  is the proportion of the ith subpopulation who 

move with rate iλ , and if the sampling is made from a 
continuous distribution ( )f λ , we obtain 

( )vr t  = 
0
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Blumen, Kogan, and McCarthy (1955) developed 
equation (5). Thereafter the model was extended by 
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Spilerman (1972) by assuming gamma density for ( )f λ  to 
obtain negative binomial distribution. That is, 

( )vr t  = 
1 vv t

v t t
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      (6) 

The interpretation of this is that proportion of the 
population making v moves in interval (0, t) will satisfy a 
negative binomial distribution. Beside this extension authors 
have proposed various generalization of the model (Cook  
et al, 2002).  

We are motivated by the work of Spilerman (1972) and 
Johnson, Kotz and Kemp (1992) by assuming negative 
binomial for iπ . The choice of the negative binomial as a 
mixing distribution is informed by considering the number of 
transitions required to achieved desire events   
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(9) 
The equation (9) coincides with Polya-Aeppli distribution, 

where the sum stops for v > k. If the parameter ρ =0, the 
distribution in (9) reduces to the classical homogenous 
Poisson distribution (Minkova, 2002; Minkova, 2004; 
Chukova and Minkova, 2012). The Polya-Aeppli 
distribution often called the Inflated-Parameter Poisson 
[IPo(λ, ρ)] is defined as follows (Minkova & Balakrishnan, 
2014). We define the number of transitions made before the 
number of required event as N(t) in the interval (0,t) ,where 
N(t) is 

1
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The mean and variance of the IPo((λ, ρ) distribution are 
given by; 
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The Fisher Index of dispersion is 
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Therefore, not only Poisson process is a particular case  
of Pólya-Aeppli process, but for 𝜌 ≠ 0,  the Pólya-Aeppli 
process is over-dispersed, which provides a greater 
flexibility in modeling count data than the standard Poisson 
process (Chukova & Minkova, 2012). 

In general, the Neyman Type A and Thomas distributions 
can have any number of modes from one upwards. The 
Pólya-Aeppli distribution, on the other hand, has either one 
or two modes, while the negative binomial has always one 
mode (Ascombe, 1950). 

The most commonly used distribution to model 
overdispersed data is the negative binomial, but other 
distributions may be more appropriate for modelling data 
with excess zeros, because, unlike the negative binomial, 
they can have more than one mode, including a mode at zero. 
Examples include the Neyman Type A and Pólya-Aeppli 
distributions (Ridout et. al, 1998). 

3. Parameter Estimation and Model 
Validation 

3.1. Moment Estimates of λt and ρ of the Polya-Aeppli 
Distribution 
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From (11) and (12) above, 
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Equation (16) simplified for ρ, becomes 

𝜌� =
2

2

X

X
σ
σ

−

+
       (17) 

Substituting (17) in (14) gives, λ�𝑡 = 
2

2
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Therefore, the remaining parameters of the model 
λ and 𝜌  of the Polya Aeppli distribution, can be estimated 
directly from observed data on the number of moves by an 
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individual. If v  and 2
vσ  are the sampling mean and 

variance of this variable (number of moves), then estimates 
of λ and 𝜌 can be obtained in terms of these values (see also 
Minkova, 2012, p. 49). This yields 

𝜌� 

2

2
v

v

v
v

σ
σ

−
=

+
  and  λ𝑡�

2

2
2

v

v

vσ
=

+
         (18) 

Spilerman (1972), estimated α and β, the parameters of the 
negative binomial distribution using; 
𝜷� = 𝒗�

𝑺𝟐− 𝒗�
 and 𝛼� =  𝛽̂𝑣̅; from the observed data. 

3.2. Testing the Model with Simulated Data 

In order to validate the proposed model, we adopt the 
structure of the simulated data as provided by Spilerman, 
1972 (p. 610), where in the absence of full knowledge of the 
actual mobility characteristics of the hypothetical population, 

individual level transition matrix and a population 
distribution by rate of movement is presented by assuming 
six types of persons in the population who move in 
accordance with Poisson process specified by λ = 0.1, 1.0, 
2.0, 3.0, 4.0 and 5.0, while the states of the process defined 
by four geographic regions, given rise to a 4x4 transition 
matrix (Table 1). The Poisson distribution was used to 
generate an expected proportion of each subpopulation who 
make v = 0, 1, 2,…. moves during the time interval (0,1). 
These values, multiplied by their respective subpopulation 
proportions in the total population, were aggregated to 
produce a distribution of the total population by number of 
moves. In this case the Poisson estimates were considered as 
the observed data, and the expected frequencies generated 
using negative binomial and Polya – Aeppli distributions, 
and comparison were made among the three distributions 
using Chi-square as Goodness of fit test. Out of the three 
distribution, Polya-Aeppli has the smallest chi-square. 

Table 1.  Structure of the simulated data 

      
B. DISTRIBUTION OF THE 

      
POPULATION BY RATE OF MOBILITY 

A. INDIVIDUAL LEVEL 
   

Proportion of the Population 
TRANSITION MATRIX 

  
λ with this λ value 

 

         
     

0.1 
 

0.25 
 

     
1.0 

 
0.35 

 
     

2.0 
 

0.20 
 

     
3.0 

 
0.10 

 
     

4.0 
 

0.06 
 

     
5.0 

 
0.04 

 
       

1.00 
 

Table 2.  Distribution of number of moves from observed (simulated) data, negative binomial and from proposed polya aeppli estimates 

V [1000rv (1)] 
 

[1000řv (1)] [1000ŕv (1)] 

 
Number of Persons Number of Persons Number of Persons 

Number of Moves with v moves with v moves (calculated from with v moves (calculated 

 
(Observed Data) Negative Binomial; from Polya-Aeppli; 

  
α= 1.371, β = 0.915) λ = 0.9722, ρ = 0.3527) 

 
1 

 
2 3 

     0 388 
 

363 378 
1 226 

 
260 238 

2 153 
 

161 159 
3 97 

 
94 98 

4 59 
 

54 57 
5 34 

 
30 32 

6 19 
 

17 18 
7 11 

 
9 9 

8 6 
 

5 5 
9 2 

 
3 3 

10 1 
 

1 1 

 

996* 
 

997* 998* 

Chi-Square Statistics (𝝌𝟐) 
  

8.34 1.80 

Note: v  = 1.502;   σv
2 = 3.139  

*Value less than 1,000 because of rounding error. 
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4. Discussion and Conclusions 
The Poisson distribution model was used as a baseline 

model to generate individual level transition matrix and the 
observed frequency distribution of moves. The expected 
frequencies were obtained using Polya-Aeppli distribution. 

The comparison of the observed frequencies in column 1 
of Table 2 with the expected values given in columns 2 and 3 
of the same table, shows that Polya-Aeppli distribution fits 
the observed frequencies much better than the negative 
binomial distribution which was proposed by Spilerman 
(1972). The value of 𝜒2  is 1.80 as against tabular value of 
14.067 which shows that the approximation by Polya-Aeppli 
distribution is acceptable. 

In this work, we generalized the Mover-Stayer model by 
assuming individuals move in accordance with a Poisson 
process, and that the Negative Binomial density provides a 
reasonable approximation to the distribution of mobility 
rates in the population. Moreover, the combination of 
Poisson distribution and negative binomial density which 
resulted in the Polya-Aeppli distribution, a bimodal 
distribution, can conveniently accommodate excess zeroes 
which was not possible in Spilerman’s (1972) extension 
model. Therefore, the weaknesses of the Spilerman’s 
extension identified by Fang (2013), Rodriguez (2013) and 
He et.al (2014), have been addressed by the obtained 
Polya-Aeppli distribution. It has also been established that 
Polya –Aeppli can be used in mover-stayer model. 
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