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Abstract  This paper is an attempt to observe the extent of effect on the power of analysis of variance test to violations of 
assumptions i.e. normality assumption of the error of multiple linear regression model. The error of the model is considered as 
g-and-k distribution because of the fact that it has shown a considerable ability to fit to data and facility to use in simulation 
studies. The strength of ANOVA is evaluated by observing the power function of F-test for different combination of g 
(skewness) and k (kurtosis) parameter. From the simulation results it is observed that the performance of ANOVA is seen to 
be immensely affected in presence of excess kurtosis and for small samples (say, n<100). Skewness parameter has not much 
effect on the power of the test under non-normal situation. The effect of sample size on the existing test for multiple 
regression models is also observed here in this paper under various non normal situations. 
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1. Introduction 
Classical statistical procedures are designed in such a way 

that they can produce best result when underlying 
assumptions on the data’s population distributions are true. 
But in practice, we often have to deal with the situation when 
actual situations depart from the ideal situation described by 
such assumptions, and it has been proved that the 
performance of many statistical techniques suffers badly 
when the real situation departs from ideal situation. The 
performance of ANOVA test also suffers badly when the 
validity of normality assumption does not hold. Generally 
the extent of deviation from normality is an important factor 
that supervises the strength (weakness) of the ANOVA 
procedure. The main concern of this study is to observe the 
performance of conventional ANOVA test under various 
nonnormal situations for multiple linear regression models. 
Simultaneous measure of the skewness and kurtosis 
parameter has been considered as the measure of extent of 
non-normality. The skewness parameter measure the degree 
of distortion or deviation from normality and the kurtosis 
measures the peakedness or thickness of the tail of the 
distribution. In this manuscript, the simplest possible 
multiple linear regression model i.e. three variable multiple 
regression  model with  one dependen t variable  and two  
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explanatory variable is considered and the extent of effect of 
deviation from normality is measured by considering the 
model error from g-and-k distribution.  

A number of studies on robustness and tests of normality 
shows many contributions from the most outstanding 
theorists and practitioners of statistics. The effect of 
non-normality on the power of analysis of variance test has 
been studied by Srivastava (1959) by investigating the 
non-central distribution of the variance ratio. Box and 
Watson (1962) demonstrated the overriding influence which 
the numerical values of regression variables have in deciding 
sensitivity to non-normality and also showed the essential 
nature of this dependency. Tiku (1971) calculated the values 
of the power of the F test employed in analysis of variance 
under non-normal situations and compared with normal- 
theory values of the power. Kanji (1976) discussed about 
simulation methods for calculating power values in the case 
of non-normal errors. He used Erlangian and contaminated 
normal distribution as an example of non-normal error 
distribution. MacGillivray and Balanda (1988) studied on 
skewness and kurtosis, and considered the concept of 
anti-skewness to use it as a tool to discuss the idea of kurtosis 
in asymmetric univariate distributions. Mukhter and Shubhas 
(1996) investigated the robustness to nonnormality of the 
null distribution of the standard F-tests for regression 
coefficients in linear regression models. Assuming the errors 
to be nonnormal with finite moments, the null distribution of 
the F-statistic is derived. Khan and Rayner (2001) made an 
attempt to study the effects of the strong assumptions 
required for ANOVA and also investigated the effects of the 
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departure from the normality of error on the power function 
by using g-and-k distribution. Khan and Rayner (2003) 
investigated the effect of deviation from the normal 
distribution assumption by considering the power of two 
many –sample location test procedure: ANOVA (parametric) 
and Kruskal-Walis (non-parametric). Rasch and Gulard 
(2004) presented some results of a systematic research of 
robustness of statistical procedures against non-normality. 
Serlin and Harwell (2004) observed some more powerful 
tests of predictor subsets in regression analysis under 
non-normality. A Monte Carlo study of tests of predictor 
subsets in multiple regression analysis indicates that various 
nonparametric tests show greater power than the F test for 
skewed and heavy-tailed data. These nonparametric tests can 
be computed with available software. (PsycINFO Database 
Record (c) 2012 APA, all rights reserved) 

Yanagihara (2007) presented the conditions for robustness 
to non-normality on three test statistics for a general 
multivariate linear hypothesis, which were proposed under 
the normal assumption in a generalized multivariate analysis 
of variance (GMANOVA). Mortaza et al. (2007) provided a 
study on partial F-test for multiple linear regression models. 
They showed a power comparisons between the partial F 
tests and new test to assess when the new tests are more or 
less powerful than the partial F tests. 

Schmider et al (2010) provided empirical evidence to the 
robustness of the analysis of variance (ANOVA) concerning 
violation of the normality assumption is presented by means 
of Monte Carlo methods. Khan and Hossain (2010) 
suggested a numerical likelihood ratio test for testing the 
location equality of several populations under quantile 
function distribution approach. Lantz B. (2012) investigated 
the relationship between population non-normality and 
sample non-normality with respect to the performance of the 
ANOVA, Brown-Forsythe test, Welch test, and 
Kruskal-Wallis test when used with different distributions, 
sample sizes, and effect sizes. The overall conclusion is that 
the Kruskal-Wallis test is considerably less sensitive to the 
degree of sample normality when populations are distinctly 
non-normal and should therefore be the primary tool used to 
compare locations when it is known that populations are not 
at least approximately normal. Jahan and khan (2012) 
demonstrated the extent of effect of non-normality on power 
of the t-test for simple linear regression model using g- and- 
k distribution. 

It is clear that a wide range of studies have been made on 
the non-normality of the model error but so far no studies has 
been conducted to see what extent of deviations from 
normality causes what extent of effect on the  size and 
power of ANOVA-test for multiple linear regression model. 
This paper contains a power curve study to examine the 
extent of effect on size and power of ANOVA test for 
multiple linear regression models with two explanatory 
variables on a wide variety of normal and non-normal 
situation and for different sample sizes. The power of 
ANOVA test for multiple linear regression models is 
measured numerically and shown graphically. 

2. Multiple Linear Regression Model 
The Three -Variable Model  

The multiple linear regression models with two 
explanatory variables can be written as follows:  

iiii XXY εβββ +++= 22110 ;   ni ,....,2,1=   (2.1) 

Where, Y  is the dependent variable, 1X  and 2X  are 
explanatory variables, ε  is the stochastic disturbance term, 
and 𝑖𝑖 is the 𝑖𝑖th observation. 0β  is the intercept term, it 

gives the mean or average effect on Y  of all the variable 
excluded from the model, although its mechanical 
interpretation is the average value of Y  when 1X  and 

2X  are set equal to zero. The coefficients 1β  and 2β  

are called partial regression coefficients. 1β  measures the 

change in the mean value of Y , )(YE , per unit change in

1X , holding the value of 2X  constant. Likewise, 2β  

measures the change in the mean value of Y  per unit 
change in 2X , holding the value of 1X  constant. The 

coefficients 1β  and 2β  are called partial regression 

coefficients. 1β  
measures the change in the mean value of 

Y , )(YE , per unit change in 1X , holding the value of 

2X  constant.  

3. The g-and-k Distribution 
The g-and-k distribution (MacGilivray and Canon) can be 

defined in terms of its quantile function as: 

21( \ , , , ) (1 )(1 ) ,
1

u

u

gz
k

X u ugz
eQ u A B g k A Bz c z
e

−

−
−

= + + +
+

(3.1) 
Where, A  and B >0 are the location and scale 

parameters respectively, g measures skewness in the 

distribution, 2
1−>k  measures kurtosis (in general sense 

of peakness/tailedness) in the distribution and )(
1

uuz
−

= ϕ  
is the u th quantile of a standard normal variate, and c is a 
constant chosen to help produce proper distributions. It can 
be clearly observed that for 0== kg , the quantile 
function in (3.1) is just the quantile function of a standard 
normal variate. 

The sign of the skewness parameter indicates the direction 
of skewness; 0<g  indicates the distribution is skewed  
to the left, and 0>g  indicates skewness to the right. 
Increasing/decreasing the unsigned value of increases/ 
decreases the skewness in the indicated direction. When 

0=g  the distribution is symmetric. 
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The kurtosis parameter k , for the g-and-k distribution, 
behaves similarly. 

Increasing k increases the level of kurtosis and vice versa. 
The value 0=k  corresponds to no extra kurtosis added to 
the standard normal base distribution. However, this 
distribution can represent less kurtosis than the normal 
distribution, as 2

1−>k  can negative values. If curves 

with more kurtosis required then base distribution with less 
kurtosis than standardized normal distribution can be used. 
For these distributions c  is the value of overall 
(MacGilivray). For an arbitrary distribution, theoretically the 
overall asymmetry can be as large as one, so it would appear 

that for 1<c , data or distribution could occur with 
skewness that cannot be matched by these distributions. 
However for 0≠g , the larger the value chosen for c , the 
more restrictions on k  are required to produce a completely 
proper distribution. Real data seldom produce overall 
asymmetry values greater than 0.8 (MacGilivray and Canon). 
The value of c  is taken as 0.83 throughout this paper. To 
examine extent of the effect of different level of 
non-normality on the test of multiple linear regression 
models, it is considered that the random error belongs to the 
g -and- k  distribution. 

 

 

Figure 1.  Density curves of g-and-k distribution for different combination of g and k 
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4. The Analysis of Variance Approach 
for Testing the overall Significance of 
an observed Multiple Regression: The 
F -test  

Analysis of variance (ANOVA) is a popular and widely 
used technique in the field of statistics. Besides being the 
appropriate procedure for testing the equality of several 

means, the ANOVA has a much wider applications. The 
objective of the ANOVA procedure lie mainly in estimating 
and testing hypotheses about the treatment effect parameters. 
The usual 𝑡𝑡 test cannot be used to test the joint hypothesis 
that the true partial slope coefficients are zero 
simultaneously. However this joint hypothesis can be tested 
by the analysis of variance technique which can be 
demonstrated as follows: 

Table 1.  ANOVA table for the Three-variable regression 

Sources of variation (S.V) Degrees of Freedom (D.F) Sum of Square Mean Sum of Square 

Due to regression (ESS) 2 1 1 2 2
ˆ ˆ

i i i iY X Y Xβ β+∑ ∑  1 1 2 2
ˆ ˆ

2
i i i iY X Y Xβ β+∑ ∑

 

Due to residual (RSS) 3n −  2
îε∑  

2ˆ

3
i

n
ε

−
∑

 

Total 1n −  ∑
2

iY   

 

Now under the assumption of normal distribution for iε  

and for the null hypothesis 

0 1 2: 0H β β= =  

1 :H  At least one iβ  
is not equal to zero; 𝑖𝑖 = 1,2. 

Then the test statistic  

                
/
/

ESS dfF
RSS df

=                   (4.1) 

is distributed as the F distribution with 2 and 3−n  df. 
Therefore, the F  value of (4.1) provides a test of null 
hypothesis that the true slope coefficients are simultaneously 
zero. The null hypothesis 0H  can be rejected if the F  

value computed from (4.1) exceeds the critical F  value 
from the F  table at α  percent level of significance, 
otherwise 0H  cannot be rejected. 

5. Simulation Study 
In this paper, multiple linear regression models with two 

explanatory variables is considered. As it is known that the 
error term iε  of multiple linear regression models are 

normally distributed but here in this paper, the random error 
term iε  is assumed to follow the g- and -k distribution. The 

extent of non-normality on the size and power of ANOVA 
test is observed by varying the skewness and the kurtosis 
parameter of the g - and -𝑘𝑘 distribution. Using the g–and-k 
distribution allows us to quantify how much the data depart 
from normality in terms of the values chosen for the g 

(skewness) and k(kurtosis) parameters. For g = k = 0, the 
quantile function for g -and- 𝑘𝑘  distribution is just the 
quantile function of a normal variate. 

To observe the power of the tests, expression for the 
power curve is required. However, in practice, to obtain 
analytic expressions for these power functions is impractical. 
Instead, a simulation is conducted to estimate these power 
function for various combinations of the g and k parameter 
values for the error distribution from the g -and- 𝑘𝑘 
distribution. While simulating for the test, A is taken to be the 
location which is the median in case of g -and- 𝑘𝑘 
distribution but for non-normal situations the mean of the 
distribution moves away from A which actually is the median 
of the distribution. This departure varies as the values g and  
k of vary. The values of g and k are taken as ∈g  -2:2 and 
∈k  -.5, 0, .5, and 1. At first, the effect of non-normality on 

the size of the F test is observed. For simulating the size of F 
- test the explanatory variables 1x  and 2x  are generated 
from uniform distribution and the random error ε  from 
g-and-k distribution with location and scale parameters A=0 
and B=1, respectively. Using statistical software R data are 
generated for sample size 20, 30 and 100, and the following 
hypothesis is tested.  

0 1 2: 0H β β= = . 

Against the alternative 1 :H  At least one iβ  is not 

equal to zero; 𝑖𝑖 = 1,2. 
To determine the size of the test, data are generated under 

the null hypothesis and the test is repeated 5,000 times. The 
total number of times the hypothesis is rejected is divided  
by 5,000; tests are carried out using 2.5 percent level of 
significance.  
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To compute the power of the F test, the explanatory 
variables 1x  and 2x  are considered from uniform 
distribution and the random error ε  from g-and-k 
distribution with location parameter A = 0 and scale 
parameter B = 1. The value of c is considered as 0.83. 

To simulate power, the following hypothesis is tested 

0 1 2: 0H β β= = . 

Against the alternative 1 :H  At least one iβ  is not 
equal to zero; 𝑖𝑖 = 1,2. 

Data are generated using ∈1β (-2,-1.5,-1,-.5,0,.5,1,1.5,2) 

and 2β ∈(-2,-1.5,-1,-.5,0,.5,1,1.5,2) and the test procedures 

are repeated 5000 times for each pair of 1 2( , )β β ∈
(-2,-2),(-2,-1.5), ……………(2,1.5),(2,2). Firstly the 
number of rejections of the test out of the 5000 times is 
determined for each pair of 1 2( , )β β  in the mentioned set 
and the total number of rejections are divided by 5000, with 
the level of significance α  = 0.025.  

6. Size of F-test  
First, the effect of non-normality on the size of the  F test 

is considered. For simulating the size of F - test the 
explanatory variables 1x  and 2x  is generated from the 
uniform distribution and the random error ε from g-and-k 
distribution with location and scale parameters A = 0 and B 
=1, respectively. Data are generated for sample size 20, 30 
and 100 using statistical software R and the following 
hypothesis is tested:     

0 1 2: 0H β β= = . 

Against the alternative 1 :H  At least one iβ  is not 
equal to zero; 𝑖𝑖 = 1,2. 

Table 2.  Size of ANOVA for different combinations of (g, k) with varying 
sample sizes 

g k 
Sample size 

20 
Sample size 

30 
Sample size 

100 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.5 
1.0 
1.5 
2.0 
0.5 
1.0 

0.0 
0.3 
0.5 
0.8 
1.0 
-0.2 
-0.3 
-0.5 
0.0 
0.0 
0.0 
0.0 
0.5 
1.0 

0.025 
0.023 
0.021 
0.019 

0.0186 
0.0238 
0.0258 
0.0256 

0.02 
0.026 

0.0204 
0.022 

0.0222 
0.015 

0.024 
0.0228 
0.0184 
0.0208 
0.017 

0.0268 
0.0262 
0.0322 
0.0216 
0.0214 
0.0212 
0.0186 
0.0194 
0.0162 

0.026 
0.0238 
0.0246 
0.0234 
0.023 

0.0238 
0.0261 
0.032 

0.0238 
0.0294 
0.0242 
0.0242 
0.022 
0.02 

To determine the size of the test, data are generated under 
the null hypothesis and repeat the test 5,000 times and divide 
the total number of times the hypothesis is rejected by 5,000; 
tests are carried out using 2.5 percent level of significance. 
The size of ANOVA for different combinations of (g, k) are 
presented in Table 2. 

In table 2, some simulation results are presented to see the 
effect of different level of non-normality on the size of F-test. 
F-test is size robust under normal situation, but under 
non-normal situation there is a little effect on the size of the 
test. For sample size 20 and 30, it is seen that skewness 
parameter has a very little effect and the kurtosis parameter 
has moderate effect on the size of F-test. For sample size 100, 
even in the case of non-normal situation, F -test is almost 
size robust. 

7. Power of F-test 
To compute the power of the F test, firstly the explanatory 

variables 1x  and 2x  are generated from the uniform 
distribution and the random error ε  is considered from 
g-and-k distribution with location parameter A = 0 and scale 
parameter B =1. The value of c is taken to be 0.83 throughout 
the paper. To simulate power, the following hypothesis is 
considered 

0 1 2: 0H β β= = . 

1 :H  At least one iβ  is not equal to zero; 𝑖𝑖 = 1, 2. 
To see how the power differs as the values of g and k 

change, the power for specified values of g and k is plotted to 
get the power curve for ANOVA test with sample sizes n= 20, 
30 and 100. To get smooth power curve, many points for 
different combinations of g and k are used. For each 
combination we get power. The process is repeated where for 
each point 5,000 simulations are run. 

Figure (2) through (7) shows the power curves for 
different combination of (g,k) for sample size n = 20, 30 and 
100.    

8. Discussion of Results 
From the figure (2) to figure (7) it is seen that the powers 

of the test is badly affected by the sample size and kurtosis 
parameter. The simulation results can be summarized in the 
following ways: 

i)  In figure 2, the skewness parameter is considered to 
be fixed at g=0 but the kurtosis parameter is varied 
from k=0 to k=1. It is apparent that as the kurtosis 
parameter increases in positive direction power of the 
test is vastly decreased than that of normal data. The 
effect of sample size on the power of the test is also 
observed in this paper. It is found that the rate of 
decreasing power in presence of excess kurtosis for 
small sample (n=20, 30) is higher than that of larger 
sample size say n=100. 
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ii)  In figure 3, the kurtosis parameter is fixed at k=0 but 
the skewness parameter is varied from g=0 to g=2. It 
is examined that power of the test has not much effect 
when the skewness parameter is varied in positive 
direction. As the sample size increases power of the 
test seems to almost robust although the skewness 
parameter is increased. 

iii) In figure 4 and 5, the combination of (g=0, k=0), (g=1, 
k=0), (g=0, k=1), (g=1, k=1) for sample size 20 and 
30 is considered and it is noticed that varying the 
kurtosis parameter in positive direction has more 
effect in decreasing the power than that of varying the 
skewness parameter.  

iv)  In figure 6 and 7, the effect of increasing the kurtosis 
parameter in negative direction is observed. The 
combination of (g=0, k=0), (g=0, k=-.3), (g=0, k=-.5) 
for sample size 20 and 30 is shown. At first glance it 
may seems that varying the kurtosis parameter in 
negative direction gives better power but if a close 
attention is given at the size of the test it is clearly 
seen that the size of the test is increased.   

v)  From figure 2 to 7, it is apparent that the power of 
ANOVA test is decreased more for small sample size 
(n=20, 30) than that of large sample size (n=100) 
under non-normal situation. 
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Figure 2.  Power curve of ANOVA for fixed value of g and varying Kurtosis parameter for (a) sample size n=20, (b) sample size n=30, (c) sample size 
n=100 
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Figure 3.  Power curve of ANOVA for fixed value of kurtosis and varying skewness parameter for (a) sample size n=20, (b) sample size n=30, (c) sample 
size n=100 
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Figure 4.  Power curves of ANOVA for a) g=0, k=0, b) g=1,k=0, c)g=0,k=1, d) g=1, k=1 for sample size 20 
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Figure 5.  Power curves of ANOVA for a) g=0, k=0, b) g=1,k=0, c)g=0,k=1, d) g=1, k=1 for sample size 30 
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Figure 6.  Power curves of ANOVA for a) g=0, k=0,b) g=0, k=-0.3, c) g=0, k=-0.5 for sample size 20 
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Figure 7.  Power curves of ANOVA for a) g=0, k=0, b) g=0, k=-0.3, c) g=0, k=-0.5 for sample size 30 

 

9. A Real Life Example (Wolf River 
Pollution data) 

In real life applications, sometimes it may happen that the 
data do not follow the normal distribution. The examiner 
needs to identify the amount of deviation from normality and 
take necessary action to minimize the nonstandard 
conditions. Khan and Hossain (2010) examined the wolf 
River Pollution data to investigate how the ANOVA and 
Kruskal Wallis test perform. Their focus was on 
hexachlorobenzene (HCB) concentration data (in nanograms 
per liter) that came out with some features of non-normality. 
The ANOVA test was carried out for testing the equality of 
average HCB concentration for different depth although the 
assumptions were not fully satisfied. The ANOVA test did 
not provide any strong evidence for the hypothesis that the 
average HCB concentration for different depths are different, 
producing a p-value of 0.65. The Kruskal Wallis test 
produces almost similar p-value of 0.064 like ANOVA. 
Khan and Hossain (2010) also fitted the data with g-and-k 
distribution to test whether the data lack normality. MLE was 
used to estimate the distribution parameters A,B,g, and k to 
identify the amount of deviation from normality in terms of 
skewness and kurtosis. The estimated value of ˆ 0.4201g = −  

and 0668.0ˆ =k  presented the data to be slightly suffered 
from asymmetry and light tailedness. 

10. Conclusions 
From the above discussion, the following concluding 

remarks can be made: 
i)  As the kurtosis parameter increases in positive 

direction Power of ANOVA test for multiple linear 
regression model decreases immensely than that of 
the normal data. 

ii)  The skewness parameter seems to have not much 
effect on the power of ANOVA under non normal 
situation. 

iii)  Kurtosis Parameter has more effect in decreasing 
power of ANOVA test than that of the skewness 
parameter under non normal situation. 

iv)  Small sample sizes have more effect in reducing 
power than that of large sample sizes under 
non-normal situation. 

v)  Negative kurtosis gives better power and increases 
the size of the test.    
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