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Abstract  A magic square is a square array of numbers where the rows, columns, diagonals and co-diagonals add up to the 
same number. Several studies on computational aspects of magic squares are being carried out recently revealing patterns, 
some of which have led to analytic insights, theorems or combinatorial results. Magic squares can be used for solving certain 
complicated and complex problems connected with the algebra and combinatorial geometry of polyhedra, polytopes. While 
magic squares are recreational on one hand they can be treated somewhat more seriously in higher mathematics on the other 
hand. This paper discuss about a well-known class of magic squares; the strongly magic square. The strongly magic square is 
a magic square with a stronger property that the sum of the entries of the sub-squares taken without any gaps between the 
rows or columns is also the magic constant. In this paper a generic definition for Strongly Magic Squares is given. The main 
objective of the paper is to define a function on strongly magic squares which can be established as a group homomorphism 
and isomorphism. The transition of a set of strongly magic squares to an abelian group can be seen in the paper. The paper 
deals with the formation of a vector space for the set of all strongly magic squares and particular types of strongly magic 
squares. The paper also sheds light on linear transformation on Strongly Magic Squares. The kernel of the mapping is also 
obtained. 
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1. Introduction 
Magic squares generally fall into the realm of 

recreational mathematics (Pasles, 2008), (Pickover, 2002) 
however a few times in the past century and more recently, 
they have become the interest of more-serious 
mathematicians. Magic squares have spelt fascination to 
mankind throughout history and all across the globe. A 
normal magic square is a square array of consecutive 
numbers from 1…n^2 where the rows, columns, diagonals 
and co-diagonals add up to the same number. The constant 
sum is called magic constant or magic number. Along with 
the conditions of normal magic squares, strongly magic 
square of order 4 have a stronger property that the sum of 
the entries of the sub-squares taken without any gaps 
between the rows or columns is also the magic constant. 
The study on numerical properties of strongly magic 
squares of order 4 have been carried out by astrologer 
turned mathematician Padmakumar (Padmakumar, 1995). 
Another study carried out by Stanley [8] on magic Squares 
using the tools of Commutative Algebra which makes use 
of  graded rings to  define a hilbert series  (Qimh Richey  
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Xantcha, 2012). The homomorphic and isomorphic 
properties on semi magic squares has also studied recently 
(Sreeranjini, 2014). In this paper some advanced 
mathematical properties of the strongly magic squares are 
discussed. 

2. Mathematical Preliminaries 
2.1. Magic Square 

A magic square of order n over a field 𝑅𝑅  where 𝑅𝑅  
denotes the set of all real numbers is an nth order matrix [𝑎𝑎𝑖𝑖𝑖𝑖 ] 
with entries in 𝑅𝑅  such that adhere to this paper in 
appearance as closely as possible.  

�𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

 =   𝜌𝜌           𝑓𝑓𝑓𝑓𝑓𝑓   𝑖𝑖 = 1,2, … . . 𝑛𝑛            (1) 

�𝑎𝑎𝑗𝑗𝑗𝑗

𝑛𝑛

𝑗𝑗=1

 =   𝜌𝜌           𝑓𝑓𝑓𝑓𝑓𝑓   𝑖𝑖 = 1,2, … . . 𝑛𝑛             (2) 

�𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 𝜌𝜌  ,   �𝑎𝑎𝑖𝑖,𝑛𝑛−𝑖𝑖+1

𝑛𝑛

𝑖𝑖=1

=  𝜌𝜌                         (3) 

Equation (1) represents the row sum, equation (2) 
represents the column sum, equation (3) represents the 
diagonal and co-diagonal sum and symbol  𝜌𝜌 represents the 
magic constant (Small, 1988). 
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2.2. Magic Constant 
The constant 𝜌𝜌 in the above definition is known as the 

magic constant or magic number. The magic constant of the 
magic square A is denoted as  𝜌𝜌(𝐴𝐴). In the example given 
below the magic constant of A is 15 and B is 34. 
 

A = 

8 1 6 

3 5 7 

4 9 2 

 

B = 

9 16 5 4 

7 2 11 14 

12 13 8 1 

6 3 10 15 

2.3. Strongly Magic Square (SMS): Generic Definition 
A strongly magic square over a field 𝑅𝑅 is a matrix [𝑎𝑎𝑖𝑖𝑖𝑖 ] of 

order 𝑛𝑛2 × 𝑛𝑛2 with entries in 𝑅𝑅 such that 

�𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛2

𝑗𝑗=1

 =  𝜌𝜌 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2, … . . 𝑛𝑛2                    (4) 

�𝑎𝑎𝑗𝑗𝑗𝑗

𝑛𝑛2

𝑗𝑗=1

 =  𝜌𝜌 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2, … . . 𝑛𝑛2                     (5) 

�𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛2

𝑖𝑖=1

= 𝜌𝜌 ,�𝑎𝑎𝑖𝑖,𝑛𝑛2−𝑖𝑖+1

𝑛𝑛2

𝑖𝑖=1

=  𝜌𝜌                          (6) 

��𝑎𝑎𝑖𝑖+𝑘𝑘,𝑗𝑗+𝑙𝑙

𝑛𝑛−1

𝑘𝑘=0

𝑛𝑛−1

𝑙𝑙=0

= 𝜌𝜌 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖, 𝑗𝑗 = 1,2, … . . 𝑛𝑛2    (7) 

where the subscripts are congruent modulo  𝑛𝑛2. 
Equation (4) represents the row sum, equation (5) 

represents the column sum, equation (6) represents the 
diagonal & co-diagonal sum, equation (7) represents the 
𝑛𝑛 × 𝑛𝑛  sub-square sum with no gaps in between the elements 
of rows or columns and is denoted as 𝑀𝑀0𝐶𝐶

(𝑛𝑛) 𝑜𝑜𝑜𝑜 𝑀𝑀0𝑅𝑅
(𝑛𝑛) and 

𝜌𝜌 is the magic constant. 
Note: The nth  order sub-square sum with k column gaps 

or k row gaps is generally denoted as 𝑀𝑀𝑘𝑘𝑘𝑘
(𝑛𝑛) or  𝑀𝑀𝑘𝑘𝑘𝑘

(𝑛𝑛)  
respectively. 

2.4. Group Homomorphism 

A mapping φ  from a group < 𝐺𝐺, ∗ > into a group 

< G′ ,
'∗ > is a homomorphism of G into G′  if  

( ) ( ) ( )'a b a bϕ ϕ ϕ∗ = ∗  for all ba, ∈ G [9] 

2.5. Group Isomorphism 

A one to one onto homomorphism φ  from a group 

< 𝐺𝐺, ∗ >  into a group < G′ ,
'∗ >  is defined as 

isomorphism (Fraleigh, 2003). 

2.6. A One to One and onto Mapping 

A function φ : X → Y is one to one if ( ) ( )1 2x xϕ ϕ=  

only when 21 xx = . The function φ  is onto of Y if the 

range of φ  is Y. 

2.7. Kernel of a Homomorphism 

If φ  is a homomorphism of a group 𝐺𝐺 into 𝐺𝐺′, then 

the kernel of φ  is denoted as 𝑘𝑘𝑘𝑘𝑘𝑘 φ  and is defined as 

𝑘𝑘𝑘𝑘𝑘𝑘 φ = { g ∈ G;  φ (𝑔𝑔) = 𝑒𝑒′ , where 𝑒𝑒′  is the identity of 
𝐺𝐺′. 

2.8. Linear Transformation 
Let 𝑈𝑈 and 𝑉𝑉 be two vector spaces over the same field 𝐹𝐹. 

Then a mapping 𝑓𝑓: 𝑈𝑈 → 𝑉𝑉 is called linear transformation of 
𝑈𝑈 into 𝑉𝑉 if  
𝑓𝑓(𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇) =  𝜆𝜆𝜆𝜆(𝑎𝑎) +  𝜇𝜇𝜇𝜇(𝑏𝑏) ∀ λ, μ ∈  F and a, b ∈ U  

(Kenneth Hoffmann, 1971). 

2.9. Other Notations 
1.  𝑅𝑅 denotes the set of all real numbers. 
2.  𝑆𝑆 denote the set of all strongly magic squares of order 

𝑛𝑛2 × 𝑛𝑛2 
3.  𝑆𝑆𝑎𝑎   denote the set of all strongly magic squares of 

order 𝑛𝑛2 × 𝑛𝑛2 
denote the set of all strongly magic squares of the form 
�𝑎𝑎𝑖𝑖𝑖𝑖 �𝑛𝑛2×𝑛𝑛2  such that 𝑎𝑎𝑖𝑖𝑖𝑖 =  𝑎𝑎 for every         
𝑖𝑖, 𝑗𝑗 = 1,2, …𝑛𝑛2 . Here A is denoted as [𝑎𝑎], i.e. If 
𝐴𝐴 ∈  𝑆𝑆𝑎𝑎  then 𝜌𝜌(𝐴𝐴) =  𝑛𝑛2𝑎𝑎 

4.  𝑆𝑆0  denote the set of all strongly magic squares of order 
𝑛𝑛2 × 𝑛𝑛2  with magic constant 0, i.e. If 𝐴𝐴 ∈  𝑆𝑆0  then 
𝜌𝜌(𝐴𝐴) =  0. 

3. Propositions and Theorems 
Proposition 3.1 

If 𝐴𝐴  and 𝐵𝐵  are two Strongly magic squares of order 
𝑛𝑛2 × 𝑛𝑛2  with 𝜌𝜌(𝐴𝐴) = 𝑎𝑎  and 𝜌𝜌(𝐵𝐵) =  𝑏𝑏 , then 𝐶𝐶 =
(𝜆𝜆 + 𝜇𝜇 )(𝐴𝐴 + 𝐵𝐵) is also a Strongly magic square with magic 
constant (𝜆𝜆 + 𝜇𝜇 )�𝜌𝜌(𝐴𝐴) +  𝜌𝜌(𝐵𝐵)� ; for every 𝜆𝜆, 𝜇𝜇 𝜖𝜖 𝑅𝑅. 
Proof: 

Let  𝐴𝐴 =  �𝑎𝑎𝑖𝑖𝑖𝑖 �𝑛𝑛2×𝑛𝑛2   and 𝐵𝐵 =  �𝑏𝑏𝑖𝑖𝑖𝑖 �𝑛𝑛2×𝑛𝑛2  

Then 𝐶𝐶 =  (𝜆𝜆 + 𝜇𝜇 )(𝐴𝐴 + 𝐵𝐵) 
 =  �(𝜆𝜆 + 𝜇𝜇 )(𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑖𝑖 )� 

Sum of the ith row elements of  
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𝐶𝐶 =  �𝑐𝑐𝑖𝑖𝑖𝑖  

𝑛𝑛2

𝑗𝑗=1

  

 =  (𝜆𝜆 +  𝜇𝜇)���𝑎𝑎𝑖𝑖𝑖𝑖 �
𝑛𝑛2

𝑗𝑗=1

 + ��𝑏𝑏𝑖𝑖𝑖𝑖 �
𝑛𝑛2

𝑗𝑗=1

� 

 =  (𝜆𝜆 + 𝜇𝜇 )(𝑎𝑎 + 𝑏𝑏)  
 =  (𝜆𝜆 + 𝜇𝜇 )(𝜌𝜌 (𝐴𝐴) +  𝜌𝜌 (𝐵𝐵)) 

A similar computation holds for column sum, diagonals 
sum and sum of the 𝑛𝑛 × 𝑛𝑛  sub squares.  

From the above propositions the following results can be 
obtained by putting suitable values for 𝜆𝜆, and 𝜇𝜇. 
Results: 

If for every 𝜆𝜆, 𝜇𝜇 𝜖𝜖 𝑅𝑅 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴 , 𝐵𝐵 ∈  𝑆𝑆 , 
1.1)  𝜆𝜆 (𝐴𝐴 + 𝐵𝐵) ∈  𝑆𝑆 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝜌𝜌 (𝜆𝜆 (𝐴𝐴 + 𝐵𝐵)) = 𝜆𝜆 (𝜌𝜌(𝐴𝐴) +

 𝜌𝜌(𝐵𝐵)) 
1.2)  (𝐴𝐴 + 𝐵𝐵) ∈  𝑆𝑆 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝜌𝜌 (𝐴𝐴 + 𝐵𝐵) = 𝜌𝜌(𝐴𝐴) +  𝜌𝜌(𝐵𝐵) 
1.3)  𝜆𝜆𝜆𝜆 ∈  𝑆𝑆with 𝜌𝜌 (𝜆𝜆𝜆𝜆) = 𝜆𝜆 𝜌𝜌(𝐴𝐴) 
1.4)  𝜆𝜆 𝐴𝐴 +  𝜇𝜇𝜇𝜇 ∈  𝑆𝑆with 𝜌𝜌 (𝜆𝜆 𝐴𝐴 +  𝜇𝜇 𝐵𝐵) = 𝜆𝜆 𝜌𝜌(𝐴𝐴) +

𝜇𝜇 𝜌𝜌( 𝐵𝐵) 
1.5)   – A ∈  S with – A ∈  S 

Theorem 3.2 
 <  𝑆𝑆, +> forms an abelian group. 

Proof: 
I.  Closure property: if 𝐴𝐴, 𝐵𝐵 ∈  𝑆𝑆 ,  then  𝐴𝐴 + 𝐵𝐵 ∈  𝑆𝑆. 

(from above result 1.2) 
II.  Associativity: if 𝐴𝐴, 𝐵𝐵 , 𝐶𝐶 ∈  𝑆𝑆 , then            

𝐴𝐴 + (𝐵𝐵 + 𝐶𝐶) = (𝐴𝐴 + 𝐵𝐵 ) + 𝐶𝐶 ∈  𝑆𝑆 (Since matrix 
addition is associative.) 

III.  Existence of Identity: There exists 0 matrix in 𝑆𝑆 so 
that 𝐴𝐴 + 0 = 0 + 𝐴𝐴 = 𝐴𝐴 ,  where 0 acts as the 
identity element. 

IV.  Existence of additive inverse: For every 𝐴𝐴 ∈  𝑆𝑆 , 
there exists −𝐴𝐴 ∈  𝑆𝑆  so that 𝐴𝐴 + (−𝐴𝐴) = 0  
where 0 ∈  𝑆𝑆 (from result 1.5). 

V.  Commutativity: If 𝐴𝐴, 𝐵𝐵 ∈  𝑆𝑆 , then           
𝐴𝐴 + 𝐵𝐵 = 𝐵𝐵 + 𝐴𝐴 ∈  𝑆𝑆 (Since matrix addition is 
commutative.) 

This completes the proof. 
Proposition 3.3 
𝑆𝑆𝑎𝑎   forms a subgroup of the abelian group 𝑆𝑆. 

Proof: 
It is clear that 𝑆𝑆𝑎𝑎  ⊂  𝑆𝑆. 
For 𝐴𝐴, 𝐵𝐵 ∈  𝑆𝑆𝑎𝑎 ; 𝐴𝐴 =  [𝑎𝑎]  and 𝐵𝐵 =  [𝑏𝑏],  then clearly  

𝐴𝐴 − 𝐵𝐵 =  [𝑎𝑎 − 𝑏𝑏]  ∈  𝑆𝑆𝑎𝑎  
Thus 𝑆𝑆𝑎𝑎   forms a subgroup of the abelian group  𝑆𝑆. 

Proposition 3.4 
𝑆𝑆0   forms a subgroup of the abelian group 𝑆𝑆. 
 

Proof: 
It is clear that 𝑆𝑆𝑎𝑎  ⊂  𝑆𝑆 . 
Take 𝐴𝐴 , 𝐵𝐵 ∈  𝑆𝑆0  , 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝜌𝜌(𝐴𝐴) =  0 =  𝜌𝜌(𝐵𝐵) 
Now 𝜌𝜌(𝐴𝐴 − 𝐵𝐵) =  𝜌𝜌(𝐴𝐴) − 𝜌𝜌(𝐵𝐵)   = 0 
Therefore 𝐴𝐴 − 𝐵𝐵 ∈  𝑆𝑆0 .  
Thus 𝑆𝑆0  forms a subgroup of the abelian group  𝑆𝑆. 

(Mallayya, Neeradha, 2016). 
Proposition 3.5 

For all  𝐴𝐴, 𝐵𝐵 ∈  𝑆𝑆, 𝜆𝜆, 𝜇𝜇 ∈ 𝑅𝑅; 
i. 𝜆𝜆(A + B)  =  𝜆𝜆A + 𝜆𝜆B 
ii.  (𝜆𝜆 +  𝜇𝜇). 𝐴𝐴 =  𝜆𝜆. 𝐴𝐴 + 𝜇𝜇. 𝐴𝐴 
iii. (𝜆𝜆𝜆𝜆). 𝐴𝐴 =  𝜆𝜆. (𝜇𝜇. 𝐴𝐴) 
iv. 1. 𝐴𝐴 = 𝐴𝐴  

Proof: 
Since 𝐴𝐴 , 𝐵𝐵 ∈  𝑆𝑆; 𝐴𝐴 =  �𝑎𝑎𝑖𝑖𝑖𝑖 �𝑛𝑛2×𝑛𝑛2  𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵 =  �𝑏𝑏𝑖𝑖𝑖𝑖 �𝑛𝑛2×𝑛𝑛2   

I. 𝐴𝐴 + 𝐵𝐵 =  �𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑖𝑖 � 
𝜆𝜆(A + B) =  𝜆𝜆�𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑖𝑖 � 

= �𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 +  𝜆𝜆𝑏𝑏𝑖𝑖𝑖𝑖 � 
=  �𝜆𝜆𝑎𝑎𝑖𝑖𝑖𝑖 � + �𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 � 
=  𝜆𝜆 �𝑎𝑎𝑖𝑖𝑖𝑖 � +  𝜆𝜆 �𝑏𝑏𝑖𝑖𝑖𝑖 � 
=  𝜆𝜆 . 𝐴𝐴 +  𝜆𝜆. 𝐵𝐵 

II. (𝜆𝜆 +  𝜇𝜇). 𝐴𝐴 =  ( 𝜆𝜆 +  𝜇𝜇). �𝑎𝑎𝑖𝑖𝑖𝑖 � 
 =  �(𝜆𝜆 +  𝜇𝜇)𝑎𝑎𝑖𝑖𝑖𝑖 � 
= �𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 +  𝜇𝜇𝑎𝑎𝑖𝑖𝑖𝑖 � 
=  �𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 � + �𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖 � 
=  𝜆𝜆. �𝑎𝑎𝑖𝑖𝑖𝑖 � +  𝜇𝜇. �𝑎𝑎𝑖𝑖𝑖𝑖 �  
=  𝜆𝜆. 𝐴𝐴 +  𝜇𝜇. 𝐴𝐴 

III. (𝜆𝜆𝜆𝜆). 𝐴𝐴 =  (𝜆𝜆𝜆𝜆) . �𝑎𝑎𝑖𝑖𝑖𝑖 �  
=  �𝜆𝜆𝜆𝜆 (𝑎𝑎𝑖𝑖𝑖𝑖 )� 
= 𝜆𝜆 �𝜇𝜇 𝑎𝑎𝑖𝑖𝑖𝑖 �  
=  𝜆𝜆. (𝜇𝜇. 𝐴𝐴) 

IV. 1. 𝐴𝐴 =  1. �𝑎𝑎𝑖𝑖𝑖𝑖 �  =  �1. 𝑎𝑎𝑖𝑖𝑖𝑖 � = �𝑎𝑎𝑖𝑖𝑖𝑖 �  =  𝐴𝐴  
Theorem 3.6 

<  𝑆𝑆 , +, . >  forms a vector space over the field of real 
numbers. 
Proof: 

It is an immediate consequence of Theorem 3.2 and 
Proposition 3.5 
Theorem 3.7 

<  𝑆𝑆𝑎𝑎  , +, . >  forms a vector space over the field of real 
numbers.  
Proof: 

Since 𝑆𝑆𝑎𝑎  ⊂  𝑆𝑆; and 𝑆𝑆 is a vector space over the field of 
real numbers 𝑅𝑅 with respect to the addition of matrices as 
addition of vectors and multiplication of a matrix by a scalar 
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as scalar multiplication, it is enough to show that 𝑆𝑆𝑎𝑎  is a 
subspace of 𝑆𝑆. 

This can be verified by the fact; for every 𝜆𝜆 , 𝜇𝜇 𝜖𝜖 𝑅𝑅,  and 
𝐴𝐴, 𝐵𝐵 ∈  𝑆𝑆𝑎𝑎  ;  𝜆𝜆𝜆𝜆 + 𝜇𝜇 𝐵𝐵 ∈  𝑆𝑆𝑎𝑎  

Since 𝐴𝐴, 𝐵𝐵 ∈  𝑆𝑆𝑎𝑎 , 𝐴𝐴 =  [𝑎𝑎] 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵 = [𝑏𝑏] 
𝜆𝜆𝜆𝜆 + 𝜇𝜇 𝐵𝐵 =  𝜆𝜆[𝑎𝑎] +  𝜇𝜇 [𝑏𝑏] 

 =  [𝜆𝜆𝜆𝜆] + [𝜇𝜇𝜇𝜇] 
 =  [𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇 ]  ∈  𝑆𝑆𝑎𝑎  

Theorem 3.8 
<  𝑆𝑆0  , +, . >  forms a vector space over the field of real 

numbers.  
Proof: 

Proceeding as in Proposition 3.7 it is enough to show that 
for every  𝜆𝜆 , 𝜇𝜇 𝜖𝜖 𝑅𝑅, 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴, 𝐵𝐵 ∈  𝑆𝑆0 ;  𝜆𝜆𝜆𝜆 + 𝜇𝜇 𝐵𝐵 ∈  𝑆𝑆0  
Since 𝐴𝐴, 𝐵𝐵 ∈  𝑆𝑆0 ;  𝜌𝜌 (𝐴𝐴) =  0 𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌 (𝐵𝐵) =  0 
Now 𝜌𝜌 (𝜆𝜆𝜆𝜆 + 𝜇𝜇 𝐵𝐵) =  𝜆𝜆 𝜌𝜌 (𝐴𝐴) +  𝜇𝜇 𝜌𝜌 (𝐵𝐵)  (From result 

1.4) 
=  𝜆𝜆. 0 +  𝜇𝜇. 0 = 0 

Thus 𝜆𝜆𝜆𝜆 + 𝜇𝜇 𝐵𝐵 ∈  𝑆𝑆0  (Neeradha. C. K, V. Madhukar. 
Mallayya, 2016). 
Proposition 3.9 

The mapping φ : 𝑆𝑆 → 𝑅𝑅  defined by φ (𝐴𝐴) =  𝜌𝜌(𝐴𝐴) , 
∀ 𝐴𝐴 ∈  𝑆𝑆  is a group homomorphism. 
Proof: 

Let 𝐴𝐴 , 𝐵𝐵 ∈  𝑆𝑆, then  

φ (𝐴𝐴 + 𝐵𝐵) =  𝜌𝜌(𝐴𝐴 + 𝐵𝐵) =  𝜌𝜌(𝐴𝐴) + 𝜌𝜌(𝐵𝐵) (By Result 1.2) 

 = φ (𝐴𝐴) + φ (𝐵𝐵) (Neeradha, Mallayya, 2016) 

Proposition 3.10 

The mapping φ : 𝑆𝑆 → 𝑅𝑅 defined by φ (𝐴𝐴) =  𝜌𝜌(𝐴𝐴) , 
∀ 𝐴𝐴 ∈  𝑆𝑆 is a linear transformation 
Proof: 

Let 𝐴𝐴, 𝐵𝐵 ∈  𝑆𝑆 

φ (𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇) = 𝜌𝜌(𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇) =  𝜆𝜆 𝜌𝜌(𝐴𝐴) + 𝜇𝜇 𝜌𝜌(𝐵𝐵)  
(By Result 1.4 and Theorem 3.6)  

 = 𝜆𝜆 φ (𝐴𝐴) +  𝜇𝜇 φ (𝐵𝐵) 

Proposition 3.11 

The mapping φ : 𝑆𝑆𝑎𝑎 → 𝑅𝑅  defined by φ (𝐴𝐴) =  𝜌𝜌(𝐴𝐴) , 
∀ 𝐴𝐴 ∈  𝑆𝑆𝑎𝑎   is a linear transformation. 

Proof: 

Let 𝐴𝐴, 𝐵𝐵 ∈  𝑆𝑆𝑎𝑎 ,  then 𝐴𝐴 = [𝑎𝑎] , 𝐵𝐵 = [𝑏𝑏]  such that 
𝜌𝜌(𝐴𝐴) =  𝑛𝑛2𝑎𝑎 and 𝜌𝜌(𝐵𝐵) =  𝑛𝑛2𝑏𝑏 

From Result 1.4 and Theorem 3.7 

φ (𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇) = 𝜌𝜌(𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇) =  𝜆𝜆 𝜌𝜌(𝐴𝐴) + 𝜇𝜇 𝜌𝜌(𝐵𝐵) 

 = 𝜆𝜆 φ (𝐴𝐴) +  𝜇𝜇 φ (𝐵𝐵)  

Hence 𝑆𝑆𝑎𝑎   is a linear transformation. 
Proposition 3.12 

The mapping φ  : 𝑆𝑆0 → 𝑅𝑅  defined by φ (𝐴𝐴) =  𝜌𝜌(𝐴𝐴) , 
∀ 𝐴𝐴 ∈  𝑆𝑆0 linear transformation. 

Proof: 

Let 𝐴𝐴, 𝐵𝐵 ∈  𝑆𝑆0, then 𝜌𝜌(𝐴𝐴) =  0 and 𝜌𝜌(𝐵𝐵) =  0 

φ (𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇) = 𝜌𝜌(𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇) =  𝜆𝜆 𝜌𝜌(𝐴𝐴) + 𝜇𝜇 𝜌𝜌(𝐵𝐵)  
(By Result 1.4 and Theorem 3.8) 

 = 𝜆𝜆 φ (𝐴𝐴) +  𝜇𝜇 φ (𝐵𝐵)  

Hence 𝑆𝑆0  is a linear transformation. 
Proposition 3.13 

The kernel of the mapping φ : 𝑆𝑆 → 𝑅𝑅  defined by      

φ (𝐴𝐴) =  𝜌𝜌(𝐴𝐴) ,  ∀ 𝐴𝐴 =  �𝑎𝑎𝑖𝑖𝑖𝑖 �∀ 𝑖𝑖, 𝑗𝑗 = 1,2 …𝑛𝑛2 ∈  𝑆𝑆 is Ker 

φ =  𝐴𝐴′ =  �𝐴𝐴 − 𝜌𝜌
𝑛𝑛2 𝑈𝑈�  where 𝜌𝜌(𝐴𝐴) = 𝜌𝜌 and 𝑈𝑈 =  �𝑢𝑢𝑖𝑖𝑖𝑖 �  

such that   𝑢𝑢𝑖𝑖𝑖𝑖 = 1 ∀ 𝑖𝑖, 𝑗𝑗 = 1,2 …𝑛𝑛2  

Proof: 

Let 𝐴𝐴′ =  �𝐴𝐴 − 𝜌𝜌
𝑛𝑛2 𝑈𝑈� = �𝑎𝑎𝑖𝑖𝑖𝑖 −

𝜌𝜌
𝑛𝑛2 𝑢𝑢𝑖𝑖𝑖𝑖 � 

Ker φ =  �𝐴𝐴′  ∈ 𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 φ  (𝐴𝐴′) = 0� 
 = {𝐴𝐴′  ∈ 𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝜌𝜌 (𝐴𝐴′) = 0�  

Now  

𝜌𝜌 (𝐴𝐴′) =  �𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛2

𝑗𝑗=1

−  𝜌𝜌 = 0 

Therefore 𝐴𝐴′ =  �𝐴𝐴 − 𝜌𝜌
𝑛𝑛2 𝑈𝑈�  ⊂  Ker φ  

Now let 𝐵𝐵 =  �𝑏𝑏𝑖𝑖𝑖𝑖 � ∀ 𝑖𝑖, 𝑗𝑗 = 1,2 …𝑛𝑛2  ∈ Ker φ , then 
𝜌𝜌(𝐵𝐵) = 0 

Clearly 𝐵𝐵 =  �𝑏𝑏𝑖𝑖𝑖𝑖 � = �𝑏𝑏𝑖𝑖𝑖𝑖 −
0
𝑛𝑛2 𝑢𝑢𝑖𝑖𝑖𝑖 �  ⊂  𝐴𝐴′   

Therefore Ker φ =  𝐴𝐴′ =  �𝐴𝐴 − 𝜌𝜌
𝑛𝑛2 𝑈𝑈�. 

Theorem 3.14 

The mapping φ : 𝑆𝑆𝑎𝑎 → 𝑅𝑅  defined by φ (𝐴𝐴) =  𝜌𝜌(𝐴𝐴) , 
∀ 𝐴𝐴 ∈  𝑆𝑆𝑎𝑎   is a vector space isomorphism. 

Proof: 

Let 𝐴𝐴, 𝐵𝐵 ∈  𝑆𝑆𝑎𝑎  ; 𝐴𝐴 = [𝑎𝑎] , 𝐵𝐵 = [𝑏𝑏] then 𝜌𝜌(𝐴𝐴) =  𝑛𝑛2𝑎𝑎 and 
𝜌𝜌(𝐵𝐵) =  𝑛𝑛2𝑏𝑏 

To show that φ  is 1-1 

 φ (𝐴𝐴) = φ (𝐵𝐵) 

 ⇒ 𝜌𝜌(𝐴𝐴) = 𝜌𝜌(𝐵𝐵) 

⇒𝑛𝑛2𝑎𝑎 = 𝑛𝑛2𝑏𝑏 

 ⇒ 𝑎𝑎 = 𝑏𝑏 

To show that φ  is onto 
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For every𝑎𝑎 ∈ 𝑅𝑅, there exists 𝐴𝐴 =  � 𝑎𝑎
𝑛𝑛2�  ∈ 𝑆𝑆𝑎𝑎   such that 

𝜌𝜌(𝐴𝐴) = 𝑎𝑎. 
Since 𝑆𝑆𝑎𝑎  forms a vector space (from Theorem 3.7) and 

from the above shown results, the mapping  
φ  : 𝑆𝑆𝑎𝑎 → R defined by φ (A) =  𝜌𝜌(𝐴𝐴),  ∀ A ∈  𝑆𝑆𝑎𝑎   is a 

vector space isomorphism. 

4. Conclusions 
The study of strongly magic squares is an emerging 

innovative area in which mathematical analysis can be done. 
Here some advanced properties regarding strongly magic 
squares namely Abelian group structure, vector spaces, 
group homomorphism, group isomorphism, vector space 
isomorphism, linear transformation, kernel of transformation 
are described. Physical application of magic squares is still a 
new topic that needs to be explored more. Ollerenshaw and 
BrÈe (Ollerenshaw, 1999) have a patent for using 
most-perfect magic squares for cryptography, and Besslich 
(Besslich, 1983), (Besslich, Ph. W, 1983) has proposed using 
pan diagonal magic squares as dither matrices for image 
processing. Further studies are being carried out by the 
authors on the scope for further research and the application 
of Strongly Magic Squares on Diophantine equations, 
Moment of inertia, Electric Quadrapoles, Data hiding 
Schemes etc. 
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