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Abstract  In this paper we developed a three parameter distribution known as Type 1 half logistic Gompertz distribution 

which is quite flexible and can have a decreasing, increasing and bathtub-shaped failure rate function depending on its 

parameters making it more effective in modeling survival data and reliability problems. Some comprehensive properties of 

the new distribution, such as closed-form expressions for the density function, cumulative distribution function, hazard rate 

function and an expression for order statistics were provided as well as maximum likelihood estimation of the Type 1 half 

logistic distribution parameters and at the end an application using a real data set was presented.  
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1. Gompertz Distribution 

The Gompertz (G) distribution is a flexible distribution 

which can skew to the right and to the left. This distribution 

is a generalization of the exponential (E) distribution and is 

commonly used in many applied problems, particularly in 

real life data analysis (Johnson, Kotz & Balakrishnan 1995,  

p. 25). The G distribution is considered to be useful in the 

analysis of survival data, in some sciences such as 

gerontology (Brown & Forbes 1974), computer (Ohishi, 

Okamura & Dohi 2009), biology (Economos 1982), and also 

in marketing science (Bemmaor & Glady 2012). The hazard 

rate function (hrf) of G distribution is an increasing function 

and often applied to describe the distribution of adult life 

spans by actuaries and demographers (Willemse & 

Koppelaar 2000). The G distribution with parameters 

𝛼 > 0 𝑎𝑛𝑑 𝛽 > 0 has the cumulative distribution function 

(cdf) given as  

𝐺 𝑥 = 1 − 𝑒
−

𝛼

𝛽
 𝑒𝛽𝑥 −1 

           𝑥 ≥ 0, 𝛼, 𝛽 > 0    (1) 

And the probability density function is given as  

𝑔 𝑥 = 𝛼𝑒𝛽𝑥 𝑒
−

𝛼

𝛽
 𝑒𝛽𝑥 −1 

           𝑥 ≥ 0, 𝛼, 𝛽 > 0    (2) 

A generalization based on the idea of Gupta & Kundu 

(1999) was proposed by El-Gohary & Al-Otaibi (2013). This 

new distribution is known as generalized Gompertz (GG) 

distribution which includes the E, generalized exponential 

(GE), and G distributions (El-Gohary & Al-Otaibi 2013). 
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2. Generalized Half Logistic 
Distribution (GHLD) 

A generalization of the half logistic distribution is 

developed through exponentiation of its cumulative 

distribution function and termed the Type I Generalized Half 

Logistic Distribution (GHLD). We define the cumulative 

distribution function (cdf) of the new type I half-logistic 

(TIHL) family of distributions by 

𝐹 𝑥; 𝜆, 𝜉 =  
2𝜆𝑒−𝜆𝑡

 1+𝑒−𝜆𝑡  
2 𝑑𝑡 =

−𝑙𝑜𝑔  1−𝐺 𝑥,𝜉  

0

1− 1−𝐺 𝑥;𝜉  𝜆

1+ 1−𝐺 𝑥;𝜉  𝜆
    (3) 

Where 𝐺 𝑥, 𝜉   is the baseline cumulative distribution 

function (cdf) depending on a parameter vector 𝜉 and 𝜆 > 0 

is an additional shape parameter. For each baseline 𝐺 we 

can generate the 𝑡𝑦𝑝𝑒 1 ℎ𝑎𝑙𝑓 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 − 𝐺  "𝑇1𝐻𝐿 − 𝐺"  
distribution is a wider class of continuous distributions. 

The corresponding probability density function (pdf) to 

equation (3) is given by 

𝑓 𝑥; 𝜆, 𝜉 =
2𝜆𝑔 𝑥;𝜉  1−𝐺 𝑥;𝜉  𝜆−1

 1+ 1−𝐺 𝑥;𝜉  𝜆  
2            (4) 

Where 𝑔 𝑥, 𝜉  is the baseline probability density function 

(pdf). Equation (4) will be most tractable when 𝐺 𝑥, 𝜉  and 

𝑔 𝑥, 𝜉  have simple expressions. 

3. The Type 1 Half Logistic Gompertz 
Distribution (T1HLGD) 

Putting equation (10 into equation (3) the cumulative 

density function of (TIHLGD) can be obtained as follows: 
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 𝐹 𝑥 =
1− 𝑒

−
𝛼
𝛽
 𝑒𝛽𝑥 −1 

 

𝜆

1+ 𝑒
−
𝛼
𝛽
 𝑒𝛽𝑥 −1 

 

𝜆              (5) 

Equation (5) can be simplified as 

𝐹 𝑥 =
1−𝑒

−
𝜆𝛼
𝛽

 𝑒𝛽𝑥 −1 

1+𝑒
−
𝜆𝛼
𝛽

 𝑒𝛽𝑥 −1 
            (6) 

Using the series expansion, 

𝐹 𝑥 =  𝑏𝑘𝐻𝑘 𝑥 
∞
𝑘=0             (7) 

where,  𝑏𝑘 =   −1 𝑖+𝑘  𝑖𝜆
𝑘
 −   𝑖+1 𝜆

𝑘
  ∞

𝑖=0 . 

And 𝐻𝑎 𝑥 = 𝐺(𝑥)𝑎  denotes the exponentiated-G 

cumulative distribution function with parameter  𝑎 > 0, we 

generate an expression for equation (6) as follows: 

𝐹 𝑥 =  𝑏𝑘  1 − 𝑒
−

𝛼

𝛽
 𝑒𝛽𝑥 −1 

 
𝑎

∞
𝑘=0          (8) 

If we consider the series expansion, 

 1 − 𝑧 𝑚 =   −1 𝑗  𝑚
𝑗
 𝑧𝑗∞

𝑗=0            (9) 

Valid for  𝑧 < 1  and 𝑚 > 0  real and non-integer, 

equation (8) can be expressed as 

𝐹 𝑥 =   𝑏𝑘 −1 𝑗  𝑎
𝑗
 𝑒

−
𝛼

𝛽
 𝑒𝛽𝑥 −1 𝑗∞

𝑗=0
∞
𝑘=0      (10) 

An expression for the probability density function for the 

type 1 half logistic Gompertz distribution can be obtained by 

inserting equation (2) in (4) 

𝑓 𝑥; 𝜆, 𝜉 =
2𝜆𝛼𝑒𝛽𝑥 𝑒

−
𝛼
𝛽
 𝑒𝛽𝑥 −1 

 𝑒
−
𝛼
𝛽
 𝑒𝛽𝑥 −1 

 
𝜆−1

 1 +  𝑒
−
𝛼
𝛽
 𝑒𝛽𝑥 −1 

 
𝜆

 

2  

This can be simplified as 

𝑓 𝑥; 𝜆, 𝛼, 𝛽 =
2𝜆𝛼𝑒𝛽𝑥 𝑒

−
𝜆𝛼
𝛽

 𝑒𝛽𝑥 −1 

 1+𝑒
−
𝜆𝛼
𝛽

 𝑒𝛽𝑥 −1 
 

2           (11) 

The density function of 𝑋 can be expressed as an infinite 

linear combination of 𝑒𝑥𝑝 − 𝐺 densities given as 

𝑓 𝑥 =

𝛼 𝑏𝑘+1(𝑘 + 1)  1 − 𝑒
−

𝛼

𝛽
 𝑒𝛽𝑥 −1 

  
𝑘

𝑒𝛽𝑥 𝑒
−

𝛼

𝛽
 𝑒𝛽𝑥 −1 ∞

𝑘=0  (12) 

If we consider the series expansion in equation (8). 

Valid for  𝑧 < 1  and 𝑚 > 0 real and non-integer, 

equation (12) can be written as, 

𝑓 𝑥 =

𝛼   −1 𝑘 𝑘
𝑙
 𝑏𝑘+1(𝑘 + 1)𝑒

𝛽𝑥−
𝛼

𝛽
 𝑒𝛽𝑥 −1 (𝑙+1)∞

𝑙=0
∞
𝑘=0    (13) 

The graph of the cumulative density function and the 

probability density function of the Type 1 half logistic 

Gompertz distribution (T1HLD) when 𝛼 = 2.8, 𝛽 = 0.5, 
𝜆 = 0.5 is given below 

 

 

 

 

 

The graph above clearly shows the flexibility of the Type 

1 Half logistic Gompertz distribution over the Gompertz 

distribution. 

4. The Asymptotic Properties  

Here we investigate the asymptotic properties of the Type 

1 half logistic Gompertz distribution when the value of x 

tends to 0 

lim
𝑥⟶0

2𝜆𝛼𝑒𝛽𝑥 𝑒
−
𝛼
𝛽
 𝑒𝛽𝑥 −1 

 𝑒
−
𝛼
𝛽
 𝑒𝛽𝑥 −1 

 
𝜆−1

 1 +  𝑒
−
𝛼
𝛽
 𝑒𝛽𝑥 −1 

 
𝜆

 

2  

=
2𝜆𝛼

4
 

=
𝜆𝛼

2
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This implies that as x tends to zero the probability density 

function of T1HLD depends only on the two shape 

parameters 𝜆 𝑎𝑛𝑑 𝛼. 

5. Reliability Function 

Given a random variable 𝑥1, 𝑥2, . . . 𝑥𝑛  the reliability 

function 𝑅 𝑥   is defined as  

𝑅 𝑥 = 1 − 𝐹(𝑥) 

For T1HLGD, its reliability function is given as  

𝑅 𝑥 = 1 −
1 − 𝑒

−
𝜆𝛼
𝛽

 𝑒𝛽𝑥 −1 

1 + 𝑒
−
𝜆𝛼
𝛽

 𝑒𝛽𝑥 −1 
 

This gives 

𝑅 𝑥 =
2𝑒

−
𝜆𝛼
𝛽

 𝑒𝛽𝑥 −1 

 1+𝑒
−
𝜆𝛼
𝛽

 𝑒𝛽𝑥 −1 
 

            (14) 

6. Hazard Rate Function 

The hazard rate can be obtained using, 

ℎ 𝑥 =
𝑓(𝑥)

𝑅(𝑥)
                 (15) 

Substituting equation (11) and (14) in (15), we have 

ℎ 𝑥 =
2𝜆𝛼𝑒𝛽𝑥 𝑒

−
𝜆𝛼
𝛽

 𝑒𝛽𝑥 −1 

 1 + 𝑒
−
𝜆𝛼
𝛽

 𝑒𝛽𝑥 −1 
 

2  ÷
2𝑒

−
𝜆𝛼
𝛽

 𝑒𝛽𝑥 −1 

 1 + 𝑒
−
𝜆𝛼
𝛽

 𝑒𝛽𝑥 −1 
 

 

This gives 

ℎ 𝑥 =
𝜆𝛼𝑒𝛽𝑥 𝑒

−
𝜆𝛼
𝛽

 𝑒𝛽𝑥−1 

 𝑒
−
𝜆𝛼
𝛽

 𝑒𝛽𝑥 −1 
  1 + 𝑒

−
𝜆𝛼
𝛽

 𝑒𝛽𝑥 −1 
 

 

Finally the hazard rate function of T1HLGD is  

 

ℎ 𝑥 =
𝜆𝛼𝑒𝛽𝑥

 1+𝑒
−
𝜆𝛼
𝛽

 𝑒𝛽𝑥 −1 
 

             (16) 

The equation (16) can be called the Type 1 half logistic 

Gompertz model.  

7. Hazard Graph 

The T1HLGM hazard graph drawn below depicts the 

flexibility in the model as its exhibits both the properties of 

the bathtub and the constant shape failure rate. 

 

8. Moment Generating Function 

The moment generating function of a random variable x is 

given as 

𝑀𝑥 𝑡 =  𝑒𝑡𝑥𝑓 𝑥 𝑑𝑥
∞

0
           (17) 

Putting equation (13) in (14), we have 

𝑀𝑥 𝑡 =  𝑒𝑡𝑥𝛼  
 −1 𝑗𝛤(𝑘 + 1)

𝑗! 𝛤(𝑘 − 𝑗 + 1)
𝑏𝑘+1(𝑘 + 1)𝑒

−
𝛼
𝛽
 𝑒𝛽𝑥 −1 (𝑗+1)

𝑒𝛽𝑥

∞

𝑗=0

∞

𝑘=0

𝑑𝑥

∞

0

 

We have, 

𝑀𝑥 𝑡 = 𝛼  
 −1 𝑗𝛤(𝑘 + 1)

𝑗! 𝛤(𝑘 − 𝑗 + 1)
𝑏𝑘+1(𝑘 + 1)  𝑒𝑡𝑥

∞

0

𝑒
−
𝛼
𝛽
 𝑒𝛽𝑥 −1 (𝑗+1)

𝑒𝛽𝑥

∞

𝑘=0

∞

𝑗=0

𝑑𝑥 

𝑠𝑜𝑙𝑣𝑖𝑛𝑔,  𝑒𝑡𝑥

∞

0

𝑒
−
𝛼
𝛽
 𝑒𝛽𝑥 −1 (𝑗+1)

𝑒𝛽𝑥𝑑𝑥 =  𝑒
𝑡𝑥+𝛽𝑥−

𝛼
𝛽
 𝑒𝛽𝑥 −1 (𝑗+1)

∞

0

𝑑𝑥 

=  
𝑒
𝑡𝑥+𝛽𝑥−

𝛼
𝛽
 𝑒𝛽𝑥 −1 (𝑗+1)

𝑡 + 𝛽 −  𝛼𝑒𝛽𝑥   𝑗 + 1 
 

0

∞

 

= 0 −
1

𝑡 + 𝛽 −  𝑗 + 1 𝛼
=

1

 𝑗 + 1 𝛼 − 𝛽 − 𝑡
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Therefore, the moment generating function of T1HLGD is given as 

𝑀𝑥 𝑡 = 𝛼   
 −1 𝑗𝛤 𝑘+1 

𝑗 !𝛤 𝑘−𝑗+1 
𝑏𝑘+1(𝑘 + 1)∞

𝑘=0
∞
𝑗=0

1

  𝑗+1 𝛼−𝛽−𝑡 
                      (18) 

9. The Quartile 

The quartile 𝑥𝑢  of order u for the T1HLD distribution is given by the solution of  

𝑥𝑢 =  
1

𝛽
 1 + 𝑙𝑛  

1−𝑢

1+𝑢
 

𝛽

𝛼𝜆
    

Proof 

Let   𝑢 = 𝐹 𝑥 =
1−𝑒

−
𝜆𝛼
𝛽

 𝑒𝛽𝑥 −1 

1+𝑒
−
𝜆𝛼
𝛽

 𝑒𝛽𝑥 −1 
 

Then, 

𝑢  1 + 𝑒
−
𝜆𝛼
𝛽

 𝑒𝛽𝑥 −1 
 = 1 − 𝑒

−
𝜆𝛼
𝛽

 𝑒𝛽𝑥 −1 
 

Therefore, 

 1 − 𝑢 = 𝑒
−
𝜆𝛼
𝛽

 𝑒𝛽𝑥 −1 
(𝑢 + 1) 

This gives, 

 𝑒𝛽𝑥 − 1 = −
𝛽

𝜆𝛼
𝑙𝑛  

1 − 𝑢

1 + 𝑢
  

Finally this produces the quantile function of order 𝑢 given as,  

𝑥𝑢 =  
1

𝛽
 1 + 𝑙𝑛  

1−𝑢

1+𝑢
 

𝛽

𝛼𝜆
                                            (19) 

Special quartiles may obtained by equation (16), for example when 𝑢 =
1

4
; the upper quartile, 𝑢 =

1

2
; the median, 𝑢 =

3

4
; 

the upper quartiles. 

10. Order Statistics 

The order statistics play an important role in reliability and life testing. Let 𝑋1, . . . , 𝑋𝑛  be a simple random sample from 

T1HLG distribution with pdf as 13 and cdf as 10 respectively. Let 𝑋𝑖;1 ≤, . . . , 𝑋𝑛;𝑛  denote the ith order statistics, say 𝑋𝑖;𝑛  

denote the lifetime of an  𝑛 − 𝑖 − 1 − 𝑜𝑢𝑡 − 𝑜𝑓 − 𝑛 system which consist of 𝑛  independent and identical components. 

The pdf of 𝑋𝑖;𝑛  is given by 

𝑓𝑖;𝑛 𝑥 =
𝑛!

 𝑛−𝑖  𝑖−1 
𝑓 𝑥  𝐹 𝑥  𝑖−1 1 − 𝐹 𝑥  𝑛−𝑖      𝑖 = 1,2, . . . , 𝑛                   (20) 

Since, 0 < 𝐹(𝑥) < 1 for 𝑥 > 0, then by using the binomial series expansion of  1 − 𝐹 𝑥  𝑛−𝑖 , we obtain  

𝑓𝑖;𝑛 𝑥 =
𝑛!

 𝑛−𝑖  𝑖−1 
  𝑛−𝑖

ℎ
  −1 ℎ𝑓(𝑥) 𝐹(𝑥) ℎ+𝑖−1𝑛−𝑖

ℎ=0                           (21) 

Then substituting for 𝑓 𝑥  𝑎𝑛𝑑 𝐹(𝑥) in equation 13 and 10 respectively, we obtain  

𝑓𝑖;𝑛 𝑥 =
𝑛!

 𝑛−𝑖  𝑖−1 
𝛼    −1 ℎ+𝑗+𝑙 𝑛−𝑖

ℎ
  𝑘

𝑙
 𝑏𝑘+1(𝑘 + 1)𝑒

𝛽𝑥−
𝛼

𝛽
 𝑒𝛽𝑥 −1 (𝑙+1)

×∞
𝑙=0    𝑏𝑘  𝑎

𝑗
 ∞

𝑗=0
∞
𝑘=0 𝑒

−
𝛼𝜆

𝛽
 𝑒𝛽𝑥 −1 𝑗

 
ℎ+𝑖−1

  ∞
𝑘=0

𝑛−𝑖
ℎ=0 (22) 

11. Maximum Likelihood Estimation 

The maximum likelihood estimation (MLE) is one of the most widely used estimation method for finding the unknown 

parameters. Let 𝑥1, 𝑥2, . . . , 𝑥𝑛  be an independent random sample from T1HLD. The total log-likelihood is given by 

𝑙𝑛 = 𝑛𝑙𝑜𝑔 2𝜆 +  𝑙𝑜𝑔  𝛼𝑒
𝛽𝑥𝑖−

𝛼

𝛽
 𝑒𝛽𝑥𝑖−1 

 𝑛
𝑖=1 +  𝜆 − 1  𝑙𝑜𝑔  1 − 𝑒

−
𝛼

𝛽
 𝑒𝛽𝑥𝑖−1 

 𝑛
𝑖=1 − 2  𝑙𝑜𝑔  1 + 𝑒

−
𝛼𝜆

𝛽
 𝑒𝛽𝑥𝑖−1 

 𝑛
𝐼=1  (23) 
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If we let, 𝜓 = −
𝛼

𝛽
 𝑒𝛽𝑥 − 1 , therefore, the likelihood function can be expressed as: 

𝑙𝑛 = 𝑛𝑙𝑜𝑔 2𝜆 +  𝑙𝑜𝑔 𝛼𝑒𝛽𝑥𝑖+𝜓  𝑛
𝑖=1 +  𝜆 − 1  𝑙𝑜𝑔 1 − 𝑒𝜓  𝑛

𝑖=1 − 2  𝑙𝑜𝑔  1 +  𝑒𝜓  
𝜆
 𝑛

𝐼=1          (24) 

The score vector ∆𝑙 =
∆𝑙

∆𝜆
,
∆𝑙

∆𝛼
,
∆𝑙

∆𝛽
 has components 

∆𝑙

∆𝜆
=

𝑛

𝜆
+  𝑙𝑜𝑔 1 − 𝑒𝜓  𝑛

𝑖=1 − 2  
 1−𝑒𝜓  

𝜆
 1−𝑒𝜓  

1+ 1−𝑒𝜓  
𝜆

𝑛
𝑖=1                           (25) 

∆𝑙

∆𝛼
=  

 𝑒𝛽𝑥𝑖+𝜓   1−
𝛼

𝛽
 𝑒𝛽𝑥𝑖−1  

 𝛼𝑒𝛽𝑥𝑖+𝜓  

𝑛
𝑖=1 +  1 + 𝜆  

1

𝛽
 𝑒𝛽𝑥𝑖−1 𝑒𝜓

𝑒𝜓
𝑛
𝑖=1 + 2𝜆 

1

𝛽
 𝑒𝛽𝑥𝑖−1 𝑒𝜓𝜆

 1+𝑒𝜓𝜆  
𝑛
𝑛   

∆𝑙

∆𝛽
=  

𝛼 𝑥𝑖−
𝛼

𝛽
 𝑒𝛽𝑥𝑖 𝑥𝑖+

1

𝛽
 +

1

𝛽
  𝑒𝛽𝑥𝑖+𝜓

 𝛼𝑒𝛽𝑥𝑖+𝜓  

𝑛
𝑖=1 +  1 + 𝜆  

𝛼

𝛽
 𝑒𝛽𝑥𝑖 𝑥𝑖−

1

𝛽
 +

1

𝛽
 𝑒𝜓

𝑒𝜓
𝑛
𝑖=1 + 2𝜆 

𝛼

𝛽
 𝑒𝛽𝑥𝑖 𝑥−

1

𝛽
 +

1

𝛽
 𝑒𝜓𝜆

 1+𝑒𝜓𝜆  

𝑛
𝑖             (26) 

12. Application 

To illustrate the new results presented in this paper, we fit the T1HLD distribution to a real data. The first example is an 

uncensored data set from Nichols and Padgett (2006) consisting of 100 observations on breaking stress of carbon fibres    

(in Gba). The data are as follows : 3.7, 2.74, 2.73, 2.5, 3.6, 3.11, 3.27, 2.87, 1.47, 3.11,4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 

1.87, 3.15, 4.9, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53,2.67, 2.93, 3.22, 3.39, 2.81, 4.2, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 

3.15, 2.35, 2.55, 2.59,2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59,3.19,1.57, 0.81, 

5.56, 1.73, 1.59, 2, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69,1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 

2.79, 4.7, 2.03, 1.8, 1.57, 1.08, 2.03, 1.61, 2.12,1.89, 2.88, 2.82, 2.05, 3.65. We shall compare the Type 1 half logistic 

Gompertz model with its sub- model, the Gompertz model. 

Table 1 gives the descriptive statistics of the data and Table 2 lists the MLEs of the model parameters for T1HLG and G 

distributions, the corresponding errors (given in parenthesis) and the statistics 𝑙(𝜃 ) (where 𝑙(𝜃 ) denotes the log-likelihood 

function evaluated as the maximum likelihood estimates), Akaike information criterion (AIC), the Bayesian information 

criterion (BIC), Consistent Akaike information criterion (CAIC) and Hannan-Quinn information criterion (HQIC). Also we 

provide total time on test plot. 

Table 1.  Descriptive Statistics on Breaking stress of Carbon fibres 

𝑀𝑖𝑛 𝑄1 Median 𝑚𝑒𝑎𝑛 𝑄3 𝑀𝑎𝑥 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 Skewness 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑀𝑜𝑑𝑒 

0.390m 1.840 2.700 2.6214 3.220 5.560 0.10494 0.36815 1.02796 2.75 

 

 

TTT PLOT (TOTAL TIME ON TEST PLOT) FOR BREAKING STRESS OF CARBON 
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Table 2.  MLEs for the Breaking Stress of Carbon Data (standard errors in parentheses) 𝐴𝐼𝐶, 𝐵𝐼𝐶, 𝐻𝑄𝐼𝐶, 𝐶𝐴𝐼𝐶 

Model 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠 𝑙(𝜃 ) 𝐴𝐼𝐶 𝐵𝐼𝐶 𝐻𝑄𝐼𝐶 𝐶𝐴𝐼𝐶 

𝑇1𝐻𝐿𝐺 

(𝛼, 𝛽, 𝜆) 

0.017592 

 0.0506  

5.7237 

 3.618  

2.7963 

 2.7963  

 -546.39 -1122.78 -1116.35 -1120.25 -1122.38 

𝐺 

 𝛼, 𝛽  

0.1379 

 0.0271  

0.9240 

 0.0641  

−  −56.227 116.45 121.66 118.56 116.58 

𝐾𝑃 

(𝑎, 𝑏, 𝜃, 𝛽) 

4.69523 

(0.502) 

236.2335 

(149.552) 

0.39 

- 

0.19204 

(0.045) 

-166.751 339.502 347.318 338.084 339.923 

𝑍𝐵𝐿𝐿 

(𝑎, 𝜃, 𝛽) 

1.5501 

(0.104) 

1.90903 

(0.0093) 

3.61259 

0.288 

- -162.913 331.826 339.642 330.408 332.076 

𝐵𝐹 

(𝑎, 𝑏, 𝜃, 𝛽) 

0.42934 

(0.236) 

138.0664 

(113.552) 

34.38484 

(21.52) 

0.72474 

(0.19) 

-142.866 293.733 304.154 291.842 294.154 

 

 

13. Conclusions 

Since the Type 1 half logistic Gompertz distribution 

provide a better fit than its sub-model, in modeling a real life 

data that exhibits a bathtub shape failure rate by having a 

smaller AIC, BIC, HQIC and CAIC it should be considered 

as a better model.  
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