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Abstract  The use of discrete spatial-statistical methods for poverty analyses is important, especially in light of the fact 

that living standards surveys are generally dominated by categorical observations made at several locations. The proximity of 

these observations imposes geographical structure on the data. This study presents ordinal geo-statistical models for 

household poverty analyses that recognize the ordinal nature of poverty severity. For all models, Bayesian inference via 

Markov Chain Monte Carlo (MCMC) was used. Precision of the models, understood in terms of ease of implementation and 

accuracy of estimation, is compared. The objective was to quantify spatial associations, given some household features, and 

produce a map of poverty-severity for Ghana. The Clipped Gaussian Spatial Ordinal Probit (CG-SOP) Model was identified 

as best for describing spatial poverty. Positive correlation with respect to the distribution of extreme poverty was observed. 

We see evidence of this in the map of predictions. Significant variables include household size, education, and residency of 

household head. This approach to poverty analysis is relevant for policy design and the implementation of cost-effective 

programmes to reduce (category and site)-specific poverty, and monitoring changes in both category and geographical trends 

thereof. Analysis was based on the Ghana living standards survey (GLSS) 2012 data.  
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1. Introduction  

If a variable is random, being independent and identically 

distributed (i.i.d.), it can be analyzed using standard 

statistical techniques such as the generalized linear models 

(GLMs). When the variable, however, is distributed in a 

manner that subjects it to systematic spatial variation, where 

observations at proximal locations are more similar than 

observations further apart, the independence assumptions of 

standard statistical methods fail. Parameters cannot easily be 

estimated via simple or straightforward statistical techniques 

such as the GLMs. Methods that allow for spatial 

dependency in the data are instead required for parameter 

estimation.  

When the variable is also categorical, and ordered, 

modelling is further complicated, requiring complex 

inferential techniques to effectively handle the multiple 

categories, and also account for the ordering. 

Premising the discourse on poverty this way is important, 

especially  in light of  the fact that  welfare data are often  
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dominated by categorical observations collected (via living 

standards surveys) at several locations across space, and 

proximity of these observations imposes geographical 

structure on the data. This means that global parameters 

(obtained via independence assumptions of standard 

statistical methods) cannot adequately describe site-specific 

conditions of the variable.  

Previous works to investigate poverty is abundant [1-5], 

but have largely ignored spatial dependence of observations 

and used methods that rely on independence assumptions, 

albeit with varying degrees of sophistication. This is 

problematic because when a regression model incorrectly 

assumes homoscedasticity in the errors of a spatial variable, 

outcome of the analysis can be biased [6].   

The existing literatures [7-9] that have used spatial tools to 

study poverty have also largely ignored the multi-categorical 

and ordinal nature of the variable. Binary models for poverty 

analysis mask the effect of important intermediate 

information during the binary transformation of the variable 

[10], but also excludes the severest form of the variable; 

extreme poverty. This has the potential for incomplete and 

inaccurate description of poverty. The method for poverty 

analysis must be careful to explain why some population 

groups are non-poor, poor, or extremely poor.     
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So, what we do differently is to first discretize poverty into 

a multi-category ordered random variable using the severity 

levels as thresholds, and employ multivariate ordered 

analysis to describe the overall condition of a household as 

either being non-poor, poor, or extremely poor. Ordinal 

models solve the problem of loss of information during 

discretization by appealing to the concept of latent variables 

[11, 12], where a Gaussian random variable is assumed to be 

latent, and assigning values to the ordered categories 

according to a regression function.  

Second, we assume that poverty, like all spatial 

phenomena, is not only a function of covariates, but also of 

unobservable large-scale interaction of geographical and 

agro-climatic forces.  

Thus, we model poverty-severity risk as a 

spatially-varying ordinal phenomenon. Three models were 

proposed: The simple Ordinal Probit (OP) model [11], 

ordinal Spatial Generalized Linear Mixed Model (SGLMM) 

[12-14], and Clipped Gaussian Spatial Ordinal Probit 

(CG-SOP) model [15-17]. All the models were implemented 

in R version 3.1.3 [18], and ArcGIS [19]. 

To solve the inferential problems associated with spatial 

ordered models, we follow [20] to use the Bayesian decision 

paradigm, implemented via Markov Chain Monte Carlo 

(MCMC) sampling techniques.  

Overall, our method can be considered a (category and 

site)-specific report that identifies all segments of the poor 

for easy targeting, thus avoiding the blanket approach that 

prefers the one-fits-it-all solution to the problem of poverty. 

2. Measurement of Poverty  

Poverty has many dimensions, but is generally measured 

in non-monetary or monetary terms [18]. We adopt the 

monetary approach to capture and report information in a 

form which facilitates comparison of our findings with 

similar international research.  

Estimation of monetary poverty requires a choice between 

disposable income and total consumption expenditure as the 

indicator of wealth, the latter being the preferred choice in 

most developing countries [21], and in this study. Moreover, 

to measure monetary poverty, we need to set minimum 

standards of the poverty indicator to separate the various 

categories of the poor. These are called poverty lines [21]. 

The three categories of poverty lines adopted by [21] are 

based on family daily expenditure per adult equivalent. The 

thresholds are set at GHC 3.60 per day- non-poor, between 

GHC3.60 and GHC2.17–poor, and less than GHC2.17- 

extremely poor. 

3. Data Sources and Covariates  

The study used secondary data from the Ghana Living 

Standard Survey (GLSS). Included in the dataset of 16772 

sampled households are details of households (household 

size, age, sex, and educational level of household head), 

socio-economic conditions of household (availability of 

social amenities), and neighbourhood information 

(ecological zone, rural/urban residence, and other 

environmental factors). The dataset of the GLSS collected in 

2012 were not geo-coded. To perform spatial analysis, we 

geo-located each sampled household randomly (assuming a 

uniform distribution) at the district level in order to be 

consistent with existing spatial units.  

4. Ordinal Random Variables and 
Computations 

4.1. The Ordinal Probit (OP) Model   

The traditional OP GLM [12] derives from the 

multinomial distribution, albeit with ranked categories. The 

density function for the multinomial distribution is: 

𝑃𝑟𝑜 𝑃|𝑌 =   𝑝𝑖
𝑦𝑖𝑗𝐽

𝑗=1
𝑛
𝑖=1           (1) 

where 𝑦𝑖  is the vector of 𝑛 × 1  responses, and 𝑝𝑖
𝑦𝑖𝑗  

constitutes the probability of observation 𝑦𝑖  being in 

category 𝑗 . Here, the order of the 𝐽  outcomes is not 

important.  

To derive the proportional odds cumulative OP GLM from 

(1), let the responses 𝑗 = 1, … , 𝐽  be arranged in order of 

magnitude, and 𝛼𝑗  be the corresponding thresholds 

associated with the ordering. Further let 𝑌𝑖
∗ be a Gaussian 

random variable assumed to be latent, and assigning values 

to  𝛼𝑗  according to the regression function: 

𝑦𝑖
∗ = 𝑋𝑖𝛽 + 𝜀𝑖 ,    𝜀𝑖~𝑁 0,1              (2) 

where 𝑋  is 𝑛 × 𝑝  design matrix, and 𝛽  is a 𝑝 × 1 

unknown vector of regression coefficients, and 𝜀  is the 

𝑛 × 1  vector of independently and identically distributed 
 𝑖. 𝑖. 𝑑  measurement errors: 𝜀𝑖~𝑁 0,1 . Though the values 

of  𝑦𝑖
∗ cannot be directly observed, the rule that assigns 𝑦𝑖

∗ 

to 𝛼𝑗  is that if 𝑦𝑖
∗  exceeds a given threshold, then, an 

observation falls in the 𝑗𝑡ℎ  category. This culminates in 

cumulative multiple binary outcomes:  

𝑦𝑖 =  
𝑗,   𝛼𝑗−1 < 𝑦𝑖

∗ ≤ 𝛼𝑗               

0, otherwise ,                    
       (3) 

where 𝑦𝑖  is the vector of 𝑛 × 1  response, 𝛼𝑗 ∈ ℝ , and 

𝛼1 < 𝛼2 … < 𝛼𝐽 . 

Clearly,   𝑌𝑖
∗ , in our application, refers to the Gaussian 

expenditure line, and is asymptotic of the ordinal variable 𝑌𝑖𝑗  

when  𝐽 → ∓∞.  

Our objective is to predict the probability of a household 

falling in the 𝑗𝑡ℎ  category given the observed covariates 

𝑥 =  𝑥1, … , 𝑥𝑛 
𝑇 . This probability is determined by the 

values of the latent variable  𝑌𝑖
∗, and is given by  

𝑝 𝑦𝑖 = 𝑗|𝑥𝑖 = 𝑝  𝛼𝑗−1 < 𝑦𝑖
∗ ≤ 𝛼𝑗          (4) 

Since 𝑌𝑖
∗ is Gaussian, and 𝜀𝑖~𝑁 0,1 , the outcome is a 

probit model, implying that the probability of falling in the 

𝑗𝑡ℎ  category is: 
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𝑝 𝑦𝑖 = 𝑗|𝑥𝑖 = 𝑝  𝛼𝑗−1 − 𝑋𝑖𝛽 < 𝜀𝑖 ≤ 𝛼𝑗 − 𝑋𝑖𝛽  

     = Φ 𝛼𝑗 − 𝑋𝑖𝛽 − Φ 𝛼𝑗−1 − 𝑋𝑖𝛽            (5) 

where Φ .   is the cumulative distribution function (𝑐𝑑𝑓) 

for the normal 𝜀𝑖 . Thus, the likelihood function for the 

parameters is                                      

𝐿 𝛽, 𝛼|𝑦 = 𝑗 = 

∫
Θ
   Φ 𝛼𝑗 − 𝑋𝑖𝛽 − Φ 𝛼𝑗−1 − 𝑋𝑖𝛽  𝑑(𝛽, 𝛼)𝐽

𝑗=1
𝑛
𝑖=1 (6) 

Several normalizations are needed to identify the ordered 

model parameters. For details see [12].  

4.1.1. Bayesian Estimation via MCMC 

Following the Bayesian criteria, we set priors for the 

parameters, and build the posterior as: 

𝑓 𝛽, 𝛼 𝑦𝑖
∗, 𝑦, 𝑥 =

  Φ 𝛼𝑗−𝑋𝑖𝛽 −Φ 𝛼𝑗−1−𝑋𝑖𝛽  𝑛
𝑖=1 𝑝(𝛽,𝛼)

∫Θ   Φ 𝛼𝑗−𝑋𝑖𝛽 −Φ 𝛼𝑗−1−𝑋𝑖𝛽  𝑛
𝑖=1 𝑑(𝛽,𝛼)

  (7) 

where Φ 𝛼𝑗 − 𝑋𝑖𝛽 − Φ 𝛼𝑗−1 − 𝑋𝑖𝛽  is the data 

likelihood, 𝑝(𝛽, 𝛼) is the prior density of model parameters, 

and ∫
Θ
  Φ 𝛼𝑗 − 𝑋𝑖𝛽 − Φ 𝛼𝑗−1 − 𝑋𝑖𝛽  𝑛

𝑖=1 𝑑(𝛽, 𝛼)  is 

the integrated likelihood, with Θ being the parameter space.  

Posterior estimation is done by setting up the Gibbs 

sampler [14], which requires us to derive full conditionals for 

all parameters. We impose, following [12], non-informative 

priors on the regression coefficients. Then  

𝑝 𝛽 𝑦∗, 𝛼, 𝑦, 𝑥 = 𝑝 𝑦∗|𝛽 𝑝 𝛽                (8) 

𝑝 𝑦𝑖
∗|𝛼, 𝛽, 𝑦, 𝑥 = 𝑝 𝑦|𝛼 𝑝 𝑦𝑖

∗                 (9) 

𝑝 𝛼|𝑦∗, 𝑦, 𝛽 = 𝑝 𝑦| 𝛼 𝑝 𝛼                   (10) 

where 𝑦 is the vector of observed ordinal outcomes, whiles 

𝑦∗ is latent, 𝑝 𝑦|𝛼  is an indicator variable, leading to:                                     

𝑝 𝛼|𝑦∗, 𝑦, 𝛽 =   𝟏 𝑦𝑖 = 𝑗 × 𝟏  𝛼𝑗−1 < 𝑦∗ ≤ 𝛼𝑗  

𝐽

𝑗=1

  

       =  
𝟏 𝑦𝑖 = 𝑗 × 𝟏  𝛼𝑗−1 < 𝑦∗ ≤ 𝛼𝑗  +

𝟏 𝑦𝑖 = 𝑗 + 1 × 𝟏  𝛼𝑗 < 𝑦∗ ≤ 𝛼𝑗+1 
  

  = 𝟏 𝛼𝑗
𝑖𝑛𝑓

< 𝛼𝑗 < 𝛼𝑗
𝑠𝑢𝑝

                 (11) 

4.2. Spatial Measurement Framework    

If, for example, ordinal observations are made at 

sites  𝑠 =  𝑠1, … , 𝑠𝑖  under geo-statistical assumptions, then 

the data is defined as   𝑦𝑖𝑗  𝑠 𝑖,𝑗=1

𝑛,𝐽

, where 𝑖 =  1, … , 𝑛  and 

𝑗 = 1, … , 𝐽 respectively are observations and response levels.  

Let 𝑋𝑖  be the vector of associated covariates. Intuitively 

then,  

 𝑦𝑖𝑗  𝑠 = 𝑋𝑖𝛽 +  𝜀𝑖 𝑠                (12) 

spatial regression equations are written, where 𝑋𝑖  are 

𝑛 × 𝑝 -dimensional  covariates, 𝛽  a 𝑝 × 1 − dimensional 
vector of coefficients, and  𝜀𝑖 𝑠  a 𝑛 × 1 

spatially-dependent error. Let 𝑌 =   𝑦11 1, … ,  𝑦𝑖𝑗  𝑠 
𝑡

, 

 𝜀 =   𝜀1 1, … ,  𝜀𝑖 𝑠 
𝑡 , and  𝑋 = (𝑥1, … , 𝑥𝑖𝑝 )𝑡 , then 

equation (12) is written in matrix form as:   

𝑌 = 𝑋𝛽 + 𝜀.                 (13) 

Spatial dependence is imposed by assuming that 

𝑐𝑜𝑣 𝜀𝑖 , 𝜀𝑘 =  Σ𝑖𝑘 , 𝑖, 𝑘 = 1, … , 𝑛, for 𝑖 ≠ 𝑘 where Σ𝑖𝑘  is a 

non-diagonal symmetric and positive definite matrix. 

4.2.1. Spatial Generalized Linear Mixed Model (SGLMM)   

The framework of the ordinal SGLMM is: 

 

𝑦𝑖
∗ = 𝑋𝑖𝛽 + 𝜉𝑖 , 𝜉𝑖 = 𝑢𝑖 + 𝜀𝑖 ,

𝑦𝑖 = 𝑗 𝑖𝑓 𝛼𝑗−1 ≤ 𝑦𝑖
∗ < 𝛼𝑗 ,

𝜀𝑖~𝑁 0, 1 

𝑢𝑖~𝑁𝑝 0, Σ𝑖𝑘  Θ   
 
 

 
 

             (14) 

where 𝑋 is an 𝑛 × 𝑝 design matrix, 𝛽 is a 𝑝 × 1 matrix of 

fixed effects coefficients, and 𝑢𝑖  spatially-dependent errors 

that capture all unobserved errors arising from the influence 

of common features for observations within certain proximal 

distances. The (𝑖, 𝑘)𝑡ℎ  element of the 𝑛 × 𝑛  spatial 

covariance matrix  Σ𝑖𝑗  Θ  is  𝐶𝑜𝑣 𝑢𝑖 , 𝑢𝑘 , parameterized by  

Σ𝑖𝑘  Θ = 𝜍𝑖
2𝜌  𝑖 − 𝑘 ; 𝜙𝑖 ,             (15) 

where 𝜍𝑖
2 represents variability of the spatial process, and 

𝜌  𝑖 − 𝑘 ; 𝜙𝑖 = exp −𝑑𝑖𝑘𝜙𝑖  is a monotonic correlation 

function with a correlation decay parameter  𝜙𝑖  measuring 

the strength of spatial dependence over the Euclidean 

distance 𝑑𝑖𝑘  between locations 𝑖 and 𝑘 [22].  

By maintaining the ordinal probit form, and assuming, 

following [22], that the spatial error term 𝑢𝑖  also represents 

random measurement error in unexplained explanatory 

variables (the nugget), then  

𝑝 𝑦𝑖 = 𝑗|𝑥𝑖 = 𝑝  𝛼𝑗−1 < 𝑦𝑖
∗ ≤ 𝛼𝑗   

= Φ 
𝛼𝑗−𝑋𝑖𝛽−𝑢𝑖

 𝜍𝑖
2𝜌  𝑖−𝑘 ;𝜙𝑖 

 − Φ 
𝛼𝑗−1−𝑋𝑖𝛽−𝑢𝑖

 𝜍𝑖
2𝜌  𝑖−𝑘 ;𝜙𝑖 

           (16) 

Thus, the likelihood function is  

𝑓 𝛽, 𝑢, 𝛼, 𝜍2, 𝜙|𝑦𝑖 = 

 

  𝐼 𝛼𝑗−1<𝑦𝑖
∗≤𝛼𝑗  

Φ∫Θ  
𝛼𝑗−𝑋𝑖𝛽−𝑢 𝑖

 𝜍𝑖
2𝜌  𝑖−𝑘 ;𝜙 𝑖 

 − Φ 
𝛼𝑗−1−𝑋𝑖𝛽−𝑢 𝑖

 𝜍𝑖
2𝜌  𝑖−𝑘 ;𝜙 𝑖 

 𝐽
𝑗=1

𝑛
𝑖=1  

𝑑(𝛽, 𝛼, 𝜍2, 𝜙),             (17) 

where  𝑗𝐼 𝛼𝑗−1<𝑦𝑖
∗≤𝛼𝑗  

𝐽
𝑗=1  is an indicator function equalling 

1 when 𝑦𝑖 = 𝑗 and 0 otherwise. 

4.2.1.1. Bayesian Estimation via MCMC 

Using the Bayesian approach [17], the posterior likelihood 

is: 

𝑓 𝛽, 𝑢, 𝛼, 𝜍2, 𝜙 𝑦 𝑝(𝑦) = 𝑓 𝑦 𝑢, 𝛽, 𝛼 𝑓(𝛽, 𝛼, 𝜍2, 𝜙) 

=  𝑓 𝑦 𝑢, 𝛽, 𝛼 𝑓(𝑦𝑖
∗|𝛽, 𝑢)𝑓 𝑢 𝜍2, 𝜙 𝑓(𝛽, 𝛼, 𝜍2, 𝜙)𝑛

𝑖=1 , 

(18) 

where  𝑓 𝑦 𝑢, 𝛽, 𝛼  is the data vector, 𝑓(𝑦𝑖
∗|𝛽, 𝑢) is latent 

regression function assigning values to observable ordered 

data, 𝑝 𝑢 𝜍2, 𝜙  is distribution of the latent errors 
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incorporated via data augmentation, and 𝑝(𝛽, 𝛼, 𝜍2, 𝜙) are 

prior densities for the model parameters.  

The use of MCMC sampling, especially Gibbs techniques 

[20], requires us to derive full conditionals for all parameters. 

We assume following [22] non-informative priors for the 

regression coefficients and inverse gamma for the spatial 

parameters. Thus, the full conditionals of all parameters have 

the following functional forms:  

𝑓 𝛽 𝑦∗, 𝑦  = 𝑓 𝑦∗|𝛽, 𝑢,  𝜍2, 𝜙 𝑓 𝛽                  (19) 

𝑓 𝑢  𝑦∗, 𝜍2, 𝜙, 𝑦 = 𝑓 𝑦∗|𝛽, 𝑢,  𝜍2, 𝜙 𝑓 𝑢| 𝜍2, 𝜙      (20) 

𝑓  𝜙  𝑢, 𝜍2, 𝑦 =  𝑢| 𝜍2, 𝜙 𝑓 𝜙                       (21) 

𝑓(𝜍2 𝑢, 𝜙, 𝑦 =  𝑢| 𝜍2, 𝜙 𝑓  𝜍2                      (22) 

𝑓 𝛼|𝑦∗, 𝑦, 𝛽 = 𝑓 𝑦|𝑦∗, 𝛼, 𝛽 𝑓 𝛼                     (23) 

𝑓 𝑦∗|𝑢, 𝛽, 𝜍2, 𝜙, 𝑦 = 𝑓 𝑦|𝑦𝑖
∗, 𝛼 𝑓 𝑦∗|𝛽, 𝑢, 𝜍2, 𝜙      (24) 

4.2.2. The CG-SOP Model  

To create a workable geo-statistical framework, we define 

an ordinal random field  𝑌𝑖𝑗  𝑠  by assuming that the 

spatially-dependent errors 𝑢𝑖  are latent, but together with 

some covariates, are assigning values to  𝛼𝑗  according to the 

multivariate regression function:  

𝑈𝑖~𝑁𝑝 𝑋𝑖𝛽, Σ𝑖𝑘  Θ                   (25) 

where variables and parameters are as previously defined. 

The (𝑖, 𝑘)𝑡ℎ  element of Σ𝑖𝑘  Θ  is   𝑐𝑜𝑣 𝑢𝑖 , 𝑢𝑘 , 
parameterized by   Σ𝑖𝑘  Θ = 𝜍𝑖

2𝜌  𝑖 − 𝑘 ; 𝜙𝑖 , where 

parameters are as previously defined.  

The link between 𝑈 and  𝑌𝑖𝑗  𝑠 is seen by assuming that 

for a vector of thresholds   𝛼𝑗 , the ordinal random field, 

 𝑌𝑖𝑗  𝑠 , is obtained by quantizing 𝑈  at levels  𝑗 = 1, … , 𝐽 , 

thus, culminating in multiple binary outcomes:   

 𝑌𝑖 𝑠 =  𝑗𝐼 𝛼𝑗−1<𝑈≤𝛼𝑗  
𝐽
𝑗=1               (26) 

where  𝛼𝑗 ∈ ℝ.    

Our objective is to model the probability of an observation 

 𝑦𝑖 𝑠 =   𝑦1 𝑠 , … ,  𝑦𝑛 𝑠  at site 𝑠  falling at the 𝑗𝑡ℎ  

category. This probability is determined by 𝑈: 

𝑃  𝑦𝑖 𝑠 = 𝑗|𝑥𝑖 = 𝑝  𝛼𝑗−1 < 𝑢𝑖 ≤ 𝛼𝑗           (27) 

Now,  𝑌𝑖𝑗  𝑠 =   𝑦11 1, … ,  𝑦𝑛𝐽  𝑆 
𝑇

 is n-dimensional, 

and determined by the density of 𝑈. Therefore, the likelihood 

of the data is the integral of an n-dimensional multivariate 

normal distribution taking values in the interval 

 𝛼𝑦𝑛𝑗 −1, 𝛼𝑦𝑛𝑗    :    

𝑓 𝑦|𝛽, 𝛼, 𝜙, 𝜍2 = ∫ …
𝛼𝑦1𝑗
𝛼𝑦1𝑗−1

∫  2𝜋 −
𝑛
2  Σ 𝜙  −

𝑛
2  

𝛼𝑦𝑛𝑗  

𝛼𝑦𝑛𝑗 −1
  

×  𝑒𝑥𝑝  −
1

2
 𝑢 − 𝑋𝛽 𝑇Σ 𝜙 −1 𝑢 − 𝑋𝛽  𝑑 𝑢       (28) 

4.2.2.1. Bayesian Estimation via MCMC 

Following the Bayesian methodology [20], the full joint 

posterior distribution for all unknown parameters is 

completely defined by the posterior likelihood:   

𝑓 𝑢, 𝛽, 𝛼𝑗 , 𝜍2, 𝜙 𝑦 =

𝑓 𝑦|𝑢, 𝛽, 𝛼𝑗 , 𝜍2, 𝜙 𝑓 𝑢 𝑢𝑖≠𝑘 , 𝛽, 𝛼𝑗 , 𝜍2, 𝜙 𝑓 𝛽, 𝛼𝑗 , 𝜍2, 𝜙 ,  

(29) 

where 𝑓 𝑦|𝑢, 𝛽, 𝛼𝑗  =  𝐼
 𝛼𝑦𝑖−1<𝑢𝑖≤𝛼𝑦𝑖

 
𝑛
𝑖=1  is an indicator 

variable, and 𝑓 𝛽, 𝛼𝑗 , 𝜍2, 𝜙 , being the joint prior density, 

specifies uncertainty on the respective estimated parameters. 

We complete the specification by imposing non-information 

priors on the regression parameters and inverse gamma on 

the spatial parameters [16, 17]. 

The full conditional posterior distributions of each 

parameter [20] have the following functional forms:  

𝑓 𝛽 𝑦, 𝑢, 𝛼, 𝜍2 , 𝜙 = 𝑓 𝑢 𝛽, 𝜍2, 𝜙 𝑓 𝛽 ,             (30) 

𝑓  𝜙 𝑦, 𝑢, 𝛽, 𝛼 = 𝑓 𝑢|𝛽, 𝛼, 𝜙, 𝜍2 𝑓 𝜙                (31) 

𝑓  𝜍2 𝑦, 𝑢, 𝛽, 𝛼 = 𝑓 𝑢|𝛽, 𝛼, 𝜙, 𝜍2 𝑓 𝜍2              (32) 

𝑓 𝛼|𝑦, 𝛽, 𝜍2, 𝜙 = 𝑓 𝑦|𝑢, 𝛼, 𝛽, 𝜍2, 𝜙 𝑓 𝛼              (33) 

𝑓 𝑢 𝑦, 𝛽, 𝛼, 𝜍2 , 𝜙 = 𝑓 𝑦 𝑢, 𝛼, 𝛽, 𝜙, 𝜍 𝑓 𝑢|𝛽, 𝛼, 𝜍2, 𝜙 . (34) 

At this point, all parameters of interest are sampled 

sequentially via MCMC simulation until the desired number 

of draws is achieved.     

4.3. Posterior Predictions and Mapping 

A key goal of this study is to produce a smooth map of 

household poverty-severity risk in Ghana by predicting the 

outcome at new locations. We achieve this via kriging 

[23-25].  

Define 𝑌∗ to be the map of predictive ordered responses 

corresponding to poverty-severity risk at unsampled 

locations  𝑠∗𝑖 , 𝑖 = 1, … , 𝑛∗. The predictions are derived from 

the conditional probabilities that a new location falls in 

category 𝑗 given the observed data. In ordered modelling, 

these conditional probabilities cannot be obtained via direct 

MCMC simulations; they are obtained by calculating 

𝑃𝑟 𝑦∗𝑖 = 𝑗|𝑦 = 𝑃𝑟  𝛼𝑗−1 < 𝒜∗ ≤ 𝛼𝑗 |𝑦  using MCMC 

integration and data augmentation, where 𝒜∗  is a latent 
variable at new locations, being equal to 𝑦∗ in both OP 

GLM and SGLMM, and 𝑢∗ for the CG-SOP model. 

Following the Bayesian approach, the predictive posterior 

distributions 𝑦∗𝑖  is augmented by 𝒜∗ to give:  

𝑓 𝑦∗𝑖|𝑦 = ∫
Θ
𝑓 𝑦∗𝑖|𝒜∗ 𝑓 𝒜∗ 𝑦, 𝛽, 𝛼 𝑓 𝛽, 𝛼|𝑦 𝑑 𝒜∗𝛽, 𝛼  

(35) 

in the case of the aspatial OP GLM,  

𝑓 𝑦∗𝑖|𝑦 =  𝑓 𝑦∗𝑖 𝒜∗, 𝑢∗ 𝑓 𝒜∗ 𝑦, 𝛽, 𝛼, 𝑢 𝑓 𝑢∗ 𝑢, 𝜍2, 𝜙  

𝑓 𝛽, 𝛼, 𝑢, 𝜍2, 𝜙|𝑦 𝑑(𝒜∗, 𝛽, 𝛼, 𝑢∗, 𝑢, 𝜍2, 𝜙)    (36) 

for the SGLMM, and for the CG-SOP case, we have   

𝑓 𝑦∗𝑖|𝑦 =  𝑓 𝑦∗𝑖 𝑢∗ 𝑓 𝑢∗ 𝑢, 𝛽, 𝛼, 𝜍2, 𝜙  

𝑓 𝛽, 𝛼, 𝑢∗, 𝑢, 𝜍2, 𝜙|𝑦 𝑑(𝛽, 𝛼, 𝑢∗, 𝑢, 𝜍2, 𝜙)       (37) 

4.4. Model Evaluation and Validation Measures  

The posterior predictive densities are the distribution of 

possible future observations arising from the current model. 
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We determine a checking function for both predicted data 

and actual observations to assess predictive model fit. In line 

with this, we proceed by first randomly splitting the dataset 

into two equal parts: one part (8375) as training set and the 

other (8375) as a validation set [26].  

In standard ML analyses, a repertoire of fit measures 

includes 𝑅2  and likelihood-ratio 𝜒2  statistic. In Bayesian 

analyses, predictive model selection is checked within the 

framework of Bayesian decision theory [26, 27, 20], where 

prediction accuracy is based on the Bayesian expected loss 

(BEL). The loss function  𝐿 𝑦∗𝑖 , 𝑦 ∗𝑖 , represented here by the 

additive loss function estimates the loss incurred in 

predicting 𝑦∗𝑖   by  𝑦 ∗𝑖  at location; assigning zero loss to 

correct predictions. For the multi-categorical application, the 

additive loss function in respect of 𝑛∗  new locations is 

expressed as:  

𝐿 𝑦∗𝑖 , 𝑦 ∗𝑖 =
1

𝑛∗
    𝑑𝑗𝑟𝑟≠𝑗

𝐽
𝑗=1 𝐼 𝑦∗𝑖=𝑗 ,   𝑦 ∗𝑖=𝑟  

𝑛∗
𝑖=1    (38) 

where 𝑑𝑗𝑟 ≥ 0 , ∀𝑗, 𝑟 , penalizes the loss incurred for 

mis-predicting category 𝑟  when the true category is 𝑗 . 

If  𝑑𝑗𝑟  is set to 1, equation (38) translates to the well-known 

mis-prediction rate (MPR) (defined as the proportion of 

predictions that are incorrect), and optimal Bayes’ prediction 

is attained by choosing the value for 𝑟 that minimizes (38), 

leading to the expected value of the loss function:      

𝐵𝐸𝐿 =
1

𝑛∗
  𝑃𝑟 𝑦∗𝑖 = 𝑗|𝑦 𝑗≠𝑦 ∗𝑖

𝑛∗
𝑖=1 .           (39) 

Equation (39) corresponds to the value of 𝑗 that reports 

the highest estimated probability.  

In assessing the models, it is important to note the 

difference between the estimated BEL  𝐵𝐸𝐿𝐸𝑠𝑡  (using the 

training data) and validation BEL  𝐵𝐸𝐿𝑉𝑎𝑙   (using the 

validation data) for each model. A comparatively large 

difference shows a model is making incorrect predictions  

[26, 20].  

For the ordered data, it is also possible for the model to 

suffer greater loss for predictions that are farther from the 

truth. Thus, we assign loss coefficients  𝑑𝑗𝑟 = |𝑗 − 𝑟|, and 

get the absolute mis-prediction rate (AMPR) defined as: 

𝐴𝑀𝑃𝑅 =
1

𝑛∗
 |𝑦∗𝑖 − 𝑦 ∗𝑖|

𝑛∗
𝑖=1              (40) 

where 𝑦∗𝑖  is the true value and 𝑦 ∗𝑖  is the prediction. In 

principle, the AMPR accounts for the size of the 

mis-prediction.  

We apply all the fit measures (MPR, AMPR, and BEL) to 

determine the models’ ability to correctly forecast future 

values. 

5. Results  

Before proceeding to perform spatial analysis, we need to 

confirm that the data exhibits significant spatial correlation. 

In this regard, the simple OP GLM was fitted to the data. 

Although spatial correlation in the raw data is of interest, we 

were primarily interested in whether there was correlation in 

model residuals once any correlation explained by the 

explanatory variables has been accounted for by the simple 

OP GLM. Figure 1 shows the classical semi-variogram 

estimator by [24], which is based on the residuals obtained 

after fitting the GLM. 

It is clear from Figure 1 that there is a spatial trend beyond 

what was described by the mean structure alone. The 

semi-variogram shows an increasing trend from the origin, 

indicating lag-dependent variation. Therefore we expect high 

variability in the covariance parameters. 

 

 

Figure 1.  Classical Semi-Variogram  
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Table 1 presents estimation results for posterior means and 

95% Bayesian credible intervals (BCIs) to compare 

performance of the three different OP models. The value 0 in 

the range of the BCI means that the parameter is not 

significant. 

Estimates of the beta coefficients differ significantly 

among the three models. The posterior means for the spatial 

models (SGLMM and CG-SOP) appear smaller than those 

from the aspatial OP GLM. Perhaps, this confirms that some 

of the spatial dependence is explained by the correlation 

functions whereas these functions are absent in the aspatial 

model.  

Differences were also observed between the competing 

spatial models. While the SGLMM estimates 𝜙 to be 0.035, 

the CG-SOP model estimate of 𝜙 is 0.041. These disparities 

are largely due to the differential parameterizations used for 

each model. 

We use the 𝜙 estimate to determine the effective range of 

spatial correlation, commonly defined as the distance beyond 

which the correlation reduces to less than 5% of variance. 

For the exponential correlation function, the effective range 

is 
2.3

𝜙
 for the SGLMM, and 

3

𝜙
 for the CG-SOP model [20]. 

Thus, the estimated effective range for the response surface 

of the SGLMM is 66 kilometers, suggesting lower spatial 

variation compared to the CG-SOP model with an effective 

range of 73 kilometers . Though both models appear to 

exhibit large ranges relative to the maximum inter-site 

distance of 𝑑𝑀𝑎𝑥 = 67 kilometers , the CG-SOP model 

does better at larger lags (see Figures 2 and 3). 

Regarding our application, the estimation results (Table 1) 

show that, for the spatial models, all the risk factors are well 

within the 2.5% and 97.5% percentiles; being significantly 

different from 0. This shows clearly that these models were 

very successful at capturing key features of the observed data, 

thus, providing correct conclusions about the association 

between poverty-severity and the predictor variables. 

The  𝛽1 estimate in all three models shows a positive link 

between household size and poverty severity, showing that 

poverty severity levels tend to increase from non-poor to 

extremely poor for sites with higher household sizes. Age 

was found not statistically significant in the OP GLM. 

Higher education was found to reduce the risk of extreme 

poverty in all three models. Extreme poverty-risk was also 

related to the residency of household head, with urbanites 

being at lower risks of extreme poverty. The impact 

employment has on poverty-risk in this study is typical; 

showing lowest risk for wage employed householders in the 

SGLMM and CG-SOP models. Its effect in the non-spatial 

OP GLM was however mixed. Unemployed was found not to 

be statistically significant in this model. 

 

Table 1.  Comparison of Posterior Estimates using the Different OP Model Specifications  

 Household 

Model Estimate 𝜍2 𝜙 𝛽0 (Inter) 𝛽1 (hhsize) 

OP GLM 
Mean 

95% BCI 
- - 

2.56 

(1.43, 3.74) 

0.16 

(0.11, 0.17) 

SGLMM 
Mean 

95% BCI 

0.61 

(0.23, 2.61) 

0.035 

(0.001, 0.015) 

1.80 

(1.42, 2.37) 

0.14 

(0.09,0.25) 

CG-SOP 
Mean 

95% BCI 

0.92 

(0.21, 3.88) 

0.041 

(0.007, 0.25) 

1.72 

(0.41, 3.05) 

0.11 

(0.03, 0.30) 

   

 Age Education 

Model Estimate 𝛽4 (age) 𝛽5 (Basic Edu) 𝛽6 (sec edu) 𝛽7 (ter edu) 

OP GLM 
Mean 

95% BCI 

0.12 

(-0.13, 0.36) 

-0.65 

(-0.78,-0.50) 

0.22 

(0.01, 1.68) 

0.77 

(0.67, 0.87) 

SGLMM 
Mean 

95% BCI 

0.12 

(0.07 0.40) 

-0.62 

(-0.83, -0.43) 

0.33 

(0.18, 0.42) 

0.61 

(0.53, 0.67) 

CG-SOP 
Mean 

95% BCI 

0.09 

(0.01, 0.36) 

-1.094 

(-1.29, -0.89) 

0.36 

(0.31, 0.43) 

0.46 

(0.06, 3.31) 

 

 Sex Location Employment 

Model Estimate 𝛽2 (Female) 𝛽3 (Urban) 𝛽8 (unemp) 𝛽9 (wage ) 

OP GLM 
Mean 

95% BCI 

-0.02 

(-0.07, -0.01) 

0.79 

(0.67, 3.37) 

-0.14 

(-0.15, 0.19) 

0.27 

(0.13, 0.29) 

SGLMM 
Mean 

95% BCI 

-0.28 

(-0.30, -0.23) 

0.39 

(0.33, 0.42) 

-1.94 

(-2.51, -1.40) 

2.31 

(1.74, 2.85) 

CG-SOP 
Mean 

95% BCI 

-0.15 

(-0.17, -0.04) 

0.30 

(0.23, 0.37) 

-2.01 

(-2.47, -1.60) 

2.25 

(1.79, 2.66) 
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Table 2 summarizes and compares results for predictive 

abilities whiles Table 3 does same for Bayesian expected 

loss (BEL) for each specification.  

Clearly, results of Table 2 identified the CG-SOP as the 

preferred model for prediction. Its predicted values come 

closest to the truth compared to the aspatial cumulative OP 

GLM and the SGLMM. Closely following the CG-SOP in 

predictive performance is the SGLMM. Thus, incorporating 

spatial dependence in the modelling framework improves 

estimation and prediction as evidenced by the performance 

of the two spatial models.  

Table 2.  Validation Test on the Three OP Models using Measures of MPR 
and AMPR  

Model 1 2 3 MPR AMPR 

Truth 6407 1166 802 - - 

OP GLM 3293 4832 250 0.56 0.75 

SGLMM 4702 3332 341 0.41 0.44 

CG-SOP 6598 909 868 0.37 0.40 

For ordered models, values of AMPR provide information 

about how far the mis-predictions are from the true category. 

The OP-GLM is the worst performing in this regard, 

followed by the SGLMM (Table 2). The proportion of 

mis-predictions exceeding one category is 0.75 for the 

OP-GLM, reducing to 0.40 for the SG-SOP model. 

A further comparison of predictive performance of the 

models was made using Bayesian expected loss (BEL). 

Calculations were based on training  𝐵𝐸𝐿𝑇𝑟𝑎𝑖𝑛   and 

validation  𝐵𝐸𝐿𝑉𝑎𝑙   data. A significantly large difference 

between 𝐵𝐸𝐿𝑇𝑟𝑎𝑖𝑛  and 𝐵𝐸𝐿𝑉𝑎𝑙  indicates a model is 

mis-predicting the outcomes [26]. Table 3 presents results of 

the analysis, showing the OP-GLM and SGLMM as culprits 

in this regard. The CG-SOP has the smallest difference 

between 𝐵𝐸𝐿𝑇𝑟𝑎𝑖𝑛  and 𝐵𝐸𝐿𝑉𝑎𝑙 .  

Table 3.  Validation Test on the Three OP Models using Measures of BEL 

 𝒅𝒋𝒓 = 𝟏 

Model 𝑩𝑬𝑳𝑻𝒓𝒂𝒊𝒏 𝑩𝑬𝑳𝑽𝒂𝒍 

OP GLM 0.50 0.66 

SGLMM 0.28 0.47 

CG-SOP 0.34 0.47 

Overall, all the fit statistics suggest that the CG-SOP 

model more accurately estimates the parameters, with a 

better fit to the observed data, and should be preferred.  

Predictions of poverty-severity risk, using the spatial 

models (SGLMM and CG-SOP), were made at unobserved 

locations across all ten regions of Ghana. Each thresholding 

level of the models was represented by a specific colour, thus 

thresholding at three levels produced a three-colour poverty 

severity map shown in Figures 2 and 3 respectively for the 

SGLMM and CG-SOP.  

The predicted map exposes relatively large regional 

differences. The map shows higher concentration of extreme 

poverty in the northern part of the country, extending to the 

transitional belt of the savannah ecological zone, along the 

border with Brong Ahafo Region. Large fluctuations are 

however observed within the Ashanti and Greater Accra 

regions and environs. 

6. Discussion  

Geo-statistical OP models that ordered the population into 

three distinct categories (non-poor, poor, and extremely poor) 

were employed. The models were built to forecast the risk of 

regional household poverty-severity in Ghana.   

Inference compared MCMC simulations from the aspatial 

OP GLM and ordinal SGLMM with the CG-SOP model. The 

large difference in predictive ability between the aspatial and 

the spatial models confirms the limitation of the simple OP 

GLM, and by extension, all aspatial models when dealing 

with spatial correlation in geo-referenced data.  

Bayesian inference via MCMC produced estimates of 

spatial parameters and subsequently, posterior predictive 

probabilities at unobserved sites. It is difficult to see how 

traditional aspatial methods such as the ordinary least 

squares (OLS) would estimate spatial parameters. The OP 

GLM for instance, though easy to formulate and estimate, 

does not sufficiently exploit sample information, thus 

producing biased results. Although the 95% confidence 

intervals (CIs) for the betas of the OP GLM (Table 1) were 

consistently narrower, this was hard to believe. Of course, 

as sample size increases, the CIs correspondingly decrease. 

However, if the increase in sample size results from the 

inclusion of more heterogeneous observations, narrowing of 

the CIs is anomalous. 

The CG-SOP model results, summarized by the 95% 

credible intervals, and associated spatial parameters 𝜍2 

and   𝜙 , show a relatively stronger spatial dependence. 

Results of the ordinal SGLMM are similarly distributed. 

However, the SGLMM overestimates 𝜙 suggesting a lower 

spatial variation than the CG-SOP model, especially at large 

lags (Figures 2 and 3). The results thus suggest that the 

CG-SOP is the preferred model for estimation and 

prediction.  

Regarding our application, higher levels of extreme 

poverty is predicted in most of the northern half of the 

country, extending to the borders with Togo, Cote d'Ivoire, 

and Burkina Faso. This region lies in the dry savannah 

ecological zone with short seasonal rainfalls, rendering 

agricultural lands unproductive for the predominantly 

farming populations in the area. 

Low poverty is predicted in much of the forested south and 

coastal parts of the country. The Greater Accra region is 

predicted with the lowest risk of extreme poverty, as 

expected. The seaports and heavy industrial plants (along 

with the recently discovered crude oil) are found 

predominantly across the middle and coastal belts of the 

country, where both the rich agricultural lands and tropical 

rain forest coincide. Heavy mining of gold, diamond and 

other mineral resources over the last half-century have all 

contributed significantly to the low levels of poverty 

predicted at various locations in the south of the country.  
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However, pockets of poverty observed at different scales 

in the southernmost parts of the country reflect urban and 

peri-urban deprivations. These could be due to disturbances 

linked to short range environmental factors, reiterating the 

fact that even over much smaller distances, local 

disturbances can have a distinct effect on the distribution of 

the poor. 

 

Figure 2.  Poverty-Severity Map of Ghana Using the SGLMM 
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Figure 3.  Poverty-Severity Map of Ghana using the CG-SOP Model 

The spatial disparities of poverty-severity revealed by this 

study conform to expert opinion that in a geographic 

environment, there can be a dominant non-stochastic 

relationship between economic wellbeing and the spatial 

dynamics of a country [28, 29].  

Application of the modelling techniques to the 

socio-econometric problem considered here is novel, and 

demonstrates our contribution to the wider scope of 

spatial-statistical methods. We model multi-categorical 

socio-econometric data in a spatial measurement framework 

that recognizes the ordinal nature of the variable. In our 

application, we depart from the auto regressive (AR) 

approach by directly embedding the ordinal variable within 

the distributional framework of a latent spatial GRF, and this 

marks a significant innovation.  

7. Conclusions and Recommendations  

An integral objective of this study was to improve 

prediction, especially when the data is collected over large 

geographical areas. The results suggest that the CG-SOP 

model is well suited to this objective.  

The study has identified positive correlation with respect 

to the distribution of poverty. Individuals in specific 
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locations tend to uniformly experience specific categories of 

poverty regardless of their personal circumstances, thus, 

providing an empirical spatial character of poverty in Ghana. 

We see a pictorial evidence of this in the predictive maps 

(Figures 1 and 2).  

Poverty eradication efforts should be directed towards 

areas with high posterior ranks. For example, extreme 

poverty incidence in the Upper West and some areas at the 

border between the Northern and Brong Ahafo regions, 

extending eastwards, may be of concern. Conversely, 

stakeholders may wish to preserve areas with low incidence 

of extreme poverty. 

8. Future Work 

While we are satisfied with the CG-SOP model per our 

stated objectives, it needs to be noted that our model did not 

account for non-stationarity in the underlying spatial process. 

We assumed a stationary spatial process, meaning that 

spatial correlation between locations of the same distance 

remains the same throughout the region [30]. 

Non-stationarity allows both the data and covariates to vary 

spatially. Addressing non-stationarity further improves both 

model fit and prediction.  
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