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Abstract  In this paper, the weight least absolute deviation adaptive lasso optimal scaling method (WLAD-CATREG 
adaptive lasso) and weight least absolute deviation adaptive elastic net regression with optimal scaling method 
(WLAD-CATREG adoptive elastic net) will introduced, which is combined of weight least absolute deviation regression 
(WLAD-CATREG) and adaptive lasso (A-Lasso) or adaptive elastic net regression (A-Elastic net) with optimal scaling. 
Thus (WLAD-CATREG adoptive elastic net) method aim to automatically select variable, aspire to gropes effect and erase 
the bad effect of leverage points and outliers simultaneously, these aims cannot be achieved by (WLAD-CATREG), adaptive 
lasso regression (A-Lasso), weight robust adaptive lasso regression (WLAD-CATREG adoptive lasso), Weight least 
absolute deviation elastic net regression (WLAD-CATREG elastic net). Simulation study will be running to validated 
superiority of the (WLAD-CATREG adoptive Lasso) and (WLAD-CATREG adoptive elastic net).  

Keywords  A-Lasso, A-Elastic net, WLAD-CATREG, LAD-adoptive lasso, WLAD-CATREG adoptive lasso, 
WLAD-CATREG adoptive elastic net 

 

1. Introduction 
In regression models, if the variables are categorical 

variables, the relation between independent and dependent 
variables will be nonlinear. In this case, we used optimal 
scaling to transforming categorical variables to numeric 
variables, thus regression model becomes linear. This 
transform is done in simultaneous with the estimate 
parameters. The ordinary least squirt (OLS) is common 
method for estimating regression model but it sensitively to 
the outliers. In the case of regression model with optimal 
scaling transformations the effects of outliers can be as yet 
large (Peter (1993)), thus robust regression is suitable 
alternative. The robust regression include several methods 
one of them least absolute deviation (LAD) regression 
method which used to deal with outliers. This method 
developed to deal with leverage point (outlier in independent 
variables) by use weights which effect only on leverage point. 
In this side, weight least absolute deviation (WLAD) 
regression method proposed by (Giloni et al., 2006a, b, 
Olcay 2011). The regression model possibly is suffered from 
variable select problem, thus lasso regression method 
(Tibshirani (1996)) is appropriate because it does shrinkage  
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parameter and variable selection simultaneously. The same 
tuning parameter was used in lasso regression for all 
coefficient, so it suffered an palpable bias and not have the 
oracle properties. (Fan and Li (2001)), therefor adaptive 
lasso regression (A-Lasso) was used to allow several tuning 
parameters for several coefficients ((Zou (2006)), Hansheng 
et al. (2006)). To avoid outlier, adaptive lasso (A-Lasso) 
objective function been modified in to least absolute 
deviation adaptive lasso regression (LAD-adoptive lasso) 
which has oracle properties when we appropriately chosen 
tuning parameter (Hansheng et al. (2006) and Xu and Yin 
(2010)) and to avoid leverage points, (LAD-adoptive lasso) 
combined of weight least absolute deviation regression 
(WLAD) and adaptive lasso regression (A-lasso) (Olcay, 
2011). 

The lasso regression has limitation when p » n, and if there 
is a group of highly correlated covariates, the lasso select one 
variable form the group, therefore (Zou and Hastie (2005)) 
introduce elastic net regression which basically combined 
penalty of ridge and lasso (L1, L2) and has not an oracle 
properties. The elastic net does shrinkage parameter, variable 
selection and aspire to group effect simultaneously. To 
improve the elastic net (Samiran, 2007) combined of the 
adaptive lasso and elastic net and get adaptive elastic net 
which have the oracle property when p » n.  

In this paper, for categorical regression model, we 
introduce new estimators (WLAD- CATREG adoptive 
elastic net) which considered appropriate way to deal with 
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both leverage points and outliers, select variable and groping 
correlated variable simultaneously when p » n. 

2. WLAD-CATREG Adoptive Lasso, 
WLAD-CATREG Adaptive Elastic 
Net 

Consider the categorical regression model (CATREG) 

υr(yi) = �υj�xij�βj

k

j=1

+ εi     , i = 1,2, … , n        (1) 

Where y is the discretized response variable, xi  is the 
discretized predictor variables,  υr  is the function of 
transformation response variable, υj  is the function of 
transform predictor variables, βj  are the regression 
coefficients and ε is independent random error. The form of 
the last transformation based on optical scaling, so in the 
case of numerical scaling level the result of CATREG is the 
same of standardized multiple linear regression (Anita and 
van (2007)).  

The (OLS) is the more commonly used for estimating the 
previous model. But this method is poorly when the model 
have outliers, thus many robust methods introduced. One 
important of the robust method called LpCATREG 
regression methods. Since yi and xij  are standardized 
variables and if we fixed  υr(yi) , υj�xij�  and βl  for all 
predictors l≠j then Lp is written as 

β = argmin ���υr(yi) −�υj�xij�βj

k

j=1

�

p𝑛𝑛

𝑖𝑖=1

� ,   p ≥ 1    (2) 

In the special case, (p=1), we get LAD CATREG or least 
absolute deviations regression with optimal scaling method 

β = argmin ���υr(yi) −�υj�xij�βj

k

j=1

�
𝑛𝑛

𝑖𝑖=1

�            (3) 

The good leverage points, observation in the space of 
independent predictors, not affects significantly the LAD 
method, but bad leverage points, observation in the space of 
independent predictors but existing far from fit line, affects 
of it (Rousseeuw and Leroy (1987)). To deal with bad 
leverage points (Eills and Morgenthaler (1992)) suggested 
weight least absolute deviation (WLAD) regression method. 
An extinction of (WLAD) regression method, we get 
(WLAD-CATREG) regression method 

β = argmin ��wi �υr(yi) −�υj�xij�βj

k

j=1

�
𝑛𝑛

𝑖𝑖=1

�        (4) 

Where 0 < w𝑖𝑖 ≤ 1,w𝑖𝑖   i=1,2,… ,n is the weights which 
will be chosen to breakdown leverage points. Chatterjee and 
Hadi, (1988) suggested weight depended of clean subset 
where 

wi = �min j�hj�

hI
 ,i=1,2,…,n, 

hi = υ(xi)�υ(XC)Tυ(XC)�−1
υ(xi)T      

υ(XC)  is clean subset ,  υ(xi)  is the set of observation 
relative to clean subset. The discreet choice of weight lead to 
(WALD) estimator with fast computationally and high 
breakdown point. (Rousseeuw and Hubert (1997), (Olcay, 
2011).) Used the robust distances (RD) to compute weights 
w𝑖𝑖  which defined as 

                       w𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚 �1,
𝑘𝑘

[𝑅𝑅𝑅𝑅(𝑥𝑥𝑖𝑖)]2� 

= 𝑚𝑚𝑚𝑚𝑚𝑚 �1,
𝑘𝑘

��(𝑥𝑥𝑖𝑖 − 𝜇̂𝜇)𝛴𝛴�−1(𝑥𝑥𝑖𝑖 − 𝜇̂𝜇)𝑇𝑇�
2� (5) 

Where μ� ,Σ�  are location and scatter estimators. Since 
robust distances (RD) identify leverage points increasing, 
(RD) lead to decrease weights wi and thus leverage points 
corresponds to similar weights then it will be down 
weighted. 

(Tibshirani (1996)) introduce lasso regression to combines 
estimate and variable selection. The lasso regression depend 
on minimize least squirt regression with the L1 norm 
condition. An extinction lasso regression, (Anita and van 
(2007)) introduce lasso penalties with (CATREG) 

β = argmin ���υr(yi) −�υj�xij�βj

k

j=1

�

2

 + 𝜆𝜆1 ��βj�
k

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

� (6) 

The lasso regression not have the oracle property, so ((Zou 
(2006)) introduce adaptive lasso (A-Lasso) which have 
oracle property when p » n. The adaptive lasso (A-Lasso) 
with (CATREG) defined as 

β = argmin ���υr(yi) −�υj�xij�βj

k

j=1

�

2n

i=1

+ λ1 �ws j�βj�
k

j=1

�                                   (7) 

Where ws j, ws l  is two weight vector,  ws j , ws l > 0 . In 
order to reach oracle property, ((Zou (2006), Olcay (2011)) 
define the weight vector as w� sj = �β� j�

−γ
, j=1,2,…,k, Where 

𝛾𝛾 is a positive constant and β� j is an elastic net estimater of 
 βj . (Zou and Zhang (2009)) used the other formula for 
weight vector as w� sj = �β�𝑗𝑗 + 1/n�

−𝛾𝛾
, j=1,2,…,k and (Wang 

et al (2007)) choose ws j as  

 w� sj = �log(n)/n�β�𝑗𝑗 ��
−1

 𝑗𝑗 = 1,2, …,k       (8) 

which satisfies √𝑛𝑛 w� sj → 0 for j ≤ k0 and √𝑛𝑛 w� sj → ∞ for 
j > k0 to avoid dividing zeros. 

Since least squirt errors sensitive to outliers, (Hansheng 
and Chenlei. (2006)), introduced least absolute deviation 
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adaptive lasso regression (LAD-adoptive lasso). In this way, 
(Olcay (2011)) introduce weight least absolute deviation 
regression (WLAD) and adaptive lasso regression (A-lasso) 
to avoid leverage point add to the features of (LAD-adoptive 
lasso) which produce robust parameter with oracle property 
and select variables. The (WLAD-adoptive lasso) with 
(CATREG) (New) get as 

 β = argmin ��wi �υr(yi) −�υj�xij�βj

k

j=1

�
n

i=1

+ n�λ1j�βj�
k

j=1

�                                          (9) 

On the other hand, (Zou and Hastie (2005)) introduce 
elastic net regression which add the group effect to the 
features of lasso regression. The elastic net regression 
depend on minimize least squirt regression with the L1, L2 
norm conditions. (Anita and van (2007)) introduce naive 
elastic net penalties with (CATREG) (CATREG naïve 
elastic net). 

β = argmin ���υr(yi) −�υj�xij�βj

k

j=1

�

2

+ λ1 ��βj�
k

j=1

n

i=1

+ λ2 �βj
2

k

j=1

�                                           (10) 

(Samiran, 2007) introduce (Adaptive- elastic net) which 
have oracle property. We get (Adaptive- naive elastic net) 
with (CATREG) as 

β = argmin ���υr(yi) −� υj�xij�βj

k

j=1

�

2

+ λ1 �ws j�βj�
k

j=1

n

i=1

+ λ2 �βj
2

k

j=1

�                                            (11) 

Hong and Zhang (2010) developed the Adaptive naive 
elastic net to weight L1 and L2 penalty, thus we defined the 
adaptive elastic net with (CATREG) (New), in this case as 

β = argmin
1
2
���υr(yi) −�υj�xij�βj

k

j=1

�

2n

i=1

+ nλ1 �ws j�βj�
k

j=1

+
n
2
λ2 �ws jβj

2
k

j=1

� (12) 

The (LAD-CATREG adaptive elastic net (New)) which is 
scaled version of the (WLAD-CATREG naive adaptive 
elastic net (New)) defined as 

β = argmin
1
2
���υr(yi) −�υj�xij�βj

k

j=1

� + nλ1 �ws j�βj�
k

j=1

n

i=1

+
n
2
λ2 �ws jβj

2
k

j=1

�                                   (13) 

When p » n, to avoid leverage point and outliers in the 
elastic net regression, we defined (WLAD-CATREG naive 
adaptive elastic net (New)) as 

β = argmin ��wi �υr(yi) −�υj�xij�βj

k

j=1

�
n

i=1

+ n�λ1j �ws jβj�
k

j=1

+ λ2 �ws jβj
2

k

j=1

�   (14) 

And we defined (WLAD-CATREG naive adaptive elastic 
net (New)) as 

βWLAD − CATREG  naive  adaptive  elastic  net  = 

�1 + 𝛌𝛌𝟐𝟐
(𝐧𝐧)� βWLAD − CATREG  adaptive  elastic  net       (15) 

3. Algorithm  
To simplify (13), let 

υr(yi)∗ = wiυr(yi), υr(𝑦̈𝑦𝑖𝑖) = �υr(yi)∗
0

�, 

υj�x�ij�  = wiυj�xij�, β̈j = �(1 + λ1)βj, 
and define  

�υr(yï), υj�ẍij��, i=1,2,…,n,n+1,…,n+k, j=1,2,…,k. 

where 

�υr(𝑦̈𝑦𝑖𝑖), υj�ẍij�� = �υr(yi)∗, υj�x� ij�� 

= �wiυr(yI), wiυj�xij��,  

i=1,2,…,n, j=1,2,…,k, 

 �υr�ÿn+j�, υj�ẍ(n+j) j�� = �0,𝑛𝑛𝜆𝜆1𝑗𝑗 𝑒𝑒𝑗𝑗 � 

𝑒𝑒𝑗𝑗  is a p-dimension vector with jth term equals one and all 
others equal to zero. We can rewrite (13) as a form of ridge 
as 

β = argmin �� Ẅi ��
υr(yi)∗

0
�

n+k

i=1

−�
1

�(1 + 𝜆𝜆1)
�

υj�x� ij�
wsjλ1

��(1 + λ1)βj

k

j=1

�

+
𝜆𝜆2

(1 + 𝜆𝜆1)�
(1 + 𝜆𝜆1)�wsjβj�

2
k

j=1

� 

β = argmin �� Ẅi �υr(yï) −�υj�ẍij�β̈j

k

j=1

�
n+k

i=1

+ γ𝑠𝑠𝑠𝑠 ��wsj β̈j�
2

k

j=1

� 

Where γss = λ2/(1 + λ1).   

Define Ẍij w
=

Ẍij

wsj
, β̈j w

= wsβ̈j  
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Then  

β = argmin �� Ẅi �υr(yï) −�υj �Ẍij w
� β̈j w

k

j=1

�
n+k

i=1

+ γ𝑠𝑠𝑠𝑠��β̈jw
�

2
k

j=1

�                                    (16) 

Where  Ẅi = 1

�υr (yï )−∑ υj�Ẍij w
�β̈ j w

k
j=1 �

. 

Before computing the WLAD-CATREG adaptive elastic 
net we must choose the weights 𝑤𝑤𝑖𝑖 , ws j  by use (and the 
tuning parameters 𝜆𝜆1, 𝜆𝜆2  can be chosen Cross-validation 
(CV) on a two-dimensional but it would be computationally 
prohibitive (See Li and Jia (2010)). 

So that we fixed λ2  and we used five-fold Absolute 
Cross-validation (ACV) to select tuning parameter 𝜆𝜆1  
which avoided leverage point. The Absolute 
Cross-validation (ACV) defined as  

ACV(𝜆𝜆2) =
1
n
��

yi − y�i

1 − H(𝜆𝜆2)ii
�

n

i=1

 

Where Hii  is hat matrix, H(λ2) = X(XTX + λ2I)TXT . We 
chosen weights 𝑤𝑤𝑖𝑖  by the robust distances (RD) which 
defined as (5). 

We computation the WLAD-CATREG adaptive elastic 
net by development the algorithm: 

Agorithm 1 

1. Input: Design Matrix X. 

2. Find: The robust estimates 𝜇̂𝜇,𝛴𝛴�. 

3. Calculate the initial regression estimator β� j and the weight 

coefficient w� s , w� . 

4. Define ( )  ( ) ( )  ( )ij ij
*

ir ijr i i jy w y , w .x x=   =  

5. Solve the original WLAD-CATREG adaptive lasso 

( ) ( )j

n kk

i r i ij j 1j j
j 1i 1 j 1

β argmin w y x β n λ β
== =

 
 = − +
  

∑∑ ∑  

and the WLAD-CATREG naive adaptive elastic net 

  ( ) ( )w w w

n k kk 2
i r j ij j j

j 1i 1 j 1
1argmin w Xy β γ ββ

+

== =

 
 = − +
  

∑∑ ∑ 


 ss
 

6. Calculate WLAD-CATREG adaptive elastic net 

𝛃𝛃�WLAD − CATREG  adaptive  elastic  net  =  �𝟏𝟏 + 𝛌𝛌𝟐𝟐
(𝐧𝐧)� β�     

Output: 

𝛃𝛃�WLAD − CATREG  adaptive  lasso  

𝛃𝛃�WLAD − CATREG  naive  adaptive  elastic  net , 

𝛃𝛃�WLAD − CATREG  adaptive  elastic  net  

for j=1,2,…,k 

4. The Properties of Estimators 
In this section, we discuss the asymptotic properties of 

the WLAD-CATREG adaptive adaptive elastic net At the 
first, we rooting some convenience and definitions. We 
decompose the  𝛽𝛽 vector as 

𝛽𝛽 = (𝛽𝛽𝑎𝑎𝑇𝑇 ,𝛽𝛽𝑏𝑏𝑇𝑇)𝑇𝑇 = [(β1,β2, … ,β𝐾𝐾0)𝑇𝑇 , (β𝐾𝐾0+1, … ,β𝐾𝐾)𝑇𝑇]𝑇𝑇, 
decompose the predictor variables  xI as 

�υj(xia ), υj(xib )� = ��υj(xi1), υj(xi2), �, �… , �υj(xik 0)�
T

, 

               ��υj�xi(k0+1)�, … , υj(xik )�
𝑇𝑇
� 

Defined 𝑎𝑎𝑛𝑛 = 𝑚𝑚𝑚𝑚𝑚𝑚�λ𝑗𝑗 : 1 ≤ 𝑗𝑗 ≤ 𝑘𝑘0�  and 𝑏𝑏𝑛𝑛 =
𝑚𝑚𝑚𝑚𝑚𝑚�λ𝑗𝑗 : 𝑘𝑘0 < 𝑗𝑗 ≤ 𝑘𝑘� where λ𝑗𝑗  is a function of n. (Wang 
and Leng (2007)). 

Let  β�w = �β�𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇 ,β�𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇 �
𝑇𝑇

 be identical WLAD-CATREG 
adoptive net elastic estimator. Consider the linear regression 
model (1) with independent and assume the following 
conditions: 

A1: The identically error with median zero and 
cumulative distribution function F which is positive and 
continues,   

A2: The covariance of predictor variables xi  exists and 
positive definite 

A3: W is n×n diagonal matrix with known positive value 
(wi ,i=1,2,...,n), max wi =O(1) and max wi

-1 = O(1) 

A4: lim
n→∞

X𝑇𝑇WX
n

= �Qn + γs
(n )

n
I� → Q 

where Q is a positive definite. 
A5: √𝑛𝑛λ1 = 𝑜𝑜(1)  ,√𝑛𝑛λ2 = 𝑜𝑜(1) 

A6: lim
n→∞

γ𝑠𝑠𝑠𝑠
√𝑛𝑛
�∑ �β̈jw

�
2

𝑗𝑗∈𝒜𝒜 = 0 

The assumes (A1, A3, A4) are the same assumes for 
Olcay (2011), the assume (A4) is the (A6) assume for (Zou 
and Zhang (2009)) and the assumes A1, A2 the same assume 
for (Pollard, 1991).  

Lemma (1): For the model (1), if it satisfies Assumptions 
A1: A6, then LAD-CATREG adaptive elastic net  
𝛽̂𝛽𝑇𝑇 = �𝛽̂𝛽𝑎𝑎𝑇𝑇 , 𝛽̂𝛽𝑏𝑏𝑇𝑇�

𝑇𝑇(14) must satisfies the following: 

𝑃𝑃�𝛽̂𝛽𝑏𝑏 = 0� → 1 

√𝑛𝑛�𝛽̂𝛽𝑎𝑎𝑇𝑇 − 𝛽𝛽𝑎𝑎� → 𝑁𝑁�0, Σw0
−1 /4𝑓𝑓2(0)� 

Proof lemma (1): 
Let β̈jw

= β� j w
+

𝜏𝜏𝑗𝑗
√𝑛𝑛

     
Then, we can rewrite (14) as 

𝛹𝛹(𝜏𝜏) = ��yï −� Ẍij w
�β� jw

+
𝜏𝜏𝑗𝑗
√𝑛𝑛

�
k

j=1

�
n+k

i=1

+ γ𝑠𝑠𝑠𝑠���β� jw
+
𝜏𝜏𝑗𝑗
√𝑛𝑛

��
2k

j=1

 

𝜏𝜏𝑗𝑗 = √𝑛𝑛 �β� jw
− β̈j w

� 
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Ψ(0) = ��yï −� Ẍij w
β� jw

k

j=1

� + γss ��β� jw
�

2
k

j=1

n+k

i=1

 

Let  Dn(𝜏𝜏) = Ψ(μ) −Ψ(0) = 

   ��yï −� Ẍij w
�β� j w

+
𝜏𝜏j

√n
�

k

j=1

� −��yï −� Ẍij w
β� j w

k

j=1

�
n+k

i=1

n+k

i=1

+ γss ���β� j w
+
𝜏𝜏j

√n
��

2k

j=1

− γss ��β� j w
�

2
k

j=1

 

= ���yï −� Ẍij w
�β� j w

+
𝜏𝜏j

√n
�

k

j=1

� − �yï −� Ẍij w
β� j w

k

j=1

��
n+k

i=1

+ γss ����β� j w
+
𝜏𝜏j

√n
��

2
− �β� j w

�
2
�

k

j=1

 

≥ � ��yï −� Ẍij w
�β� j w

+
𝜏𝜏j

√n
�

k0

j=1

� − �yï −� Ẍij w
β� j w

k0

j=1

��
n+k0

i=1

 

+nan ���𝜏𝜏j�
2�

k0

j=1

 

≥ 𝑍𝑍𝑛𝑛
(1)(𝜏𝜏) + 𝑍𝑍𝑛𝑛

(2)(𝜏𝜏)                                                         (A1) 
Knight (1998) holds that for 𝑥𝑥 ≠ 0 

|x − y| − |x| = −y[I(x > 0) − I(x < 0)]

+ 2� [I(x ≤ s) − I(x ≤ 0)]ds
Y

0
 

Using this equation, the first item at (A1) 𝑍𝑍𝑛𝑛 (1)(𝜏𝜏) can be 
expressed as 

−𝑛𝑛−
1
2 ��𝜏𝜏𝑗𝑗 Ẍij w

�I(ε̈i > 0) − I�ε̈i i < 0��
𝑘𝑘

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

+ 2��� [I(x ≤ s)
n−

1
2μj Ẍ ij w

0

𝑘𝑘

𝑗𝑗=1

n

i=1
− I(x ≤ 0)]ds                                  (A2) 

Using the central limit theorem, the first item converges in 
distribution to μTH , where μT = (μ1, μ2, … , μk)T  and H 
p-dimensional normal random vector with mean 0 and 
variance matrix 
Σw = cov�Ẍw�. Since λ1 = o�n−1/2�,                 

max wi = O(1)and max wi
-1 = O(1) then 𝛴𝛴𝑤𝑤 = 𝑋𝑋𝑇𝑇W2X. 

Follow from the proofs of lemma1 (Wang et al. (2007)), 
the second item converges to  

𝑓𝑓(0)𝜏𝜏T𝛴𝛴𝑤𝑤𝜏𝜏 = 𝑓𝑓(0)𝜏𝜏T𝑋𝑋𝑇𝑇W2X𝜏𝜏 
𝑍𝑍𝑛𝑛 (1)(𝜏𝜏)

𝑑𝑑
→𝜏𝜏TH + 𝑓𝑓(0)𝜏𝜏T𝑋𝑋𝑇𝑇W2X𝜏𝜏  

Since √𝑛𝑛𝑎𝑎𝑛𝑛 → 0,  the second item at (A1) 𝑍𝑍𝑛𝑛 (2)(𝜏𝜏) 
converges to 0 in probability. 

Then 
Dn (𝜏𝜏)

𝑑𝑑
→μTH0 + 𝑓𝑓(0)𝜏𝜏TX𝑇𝑇W2X𝜏𝜏  

Where H0  p-dimensional normal random vector with 
mean 0 and variance matrix Σw 0. 

Follow from the proofs of lemma1 (Wang et al. (2007)). 

5. The Simulation Study 
In this section, the performance of the WLAD-CATREG 

adaptive elastic net estimates are examined via the 
simulation. We simulate data sets from the true model 
υr(yi) = υ(xi)Tβj + σεI  where 
υ(xi) = [υ(xi1), υ(xi2), … υ(xik )]T . To ensure the situation 
of grouping  variable, the simulated date consist of a 
training set, an independent validation set and an 
independent test set. In this simulate, we use the 50 simulated 
data sets each consisting of (30 training set/30 independent 
validation set /100 independent test set) observations and 
have 30 variables, 10 categorical variables each of them 
containing nine category and 20 numerical variables. The 
numerical variables generate X2i~𝑁𝑁𝑘𝑘(2, 𝐼𝐼 ), 𝑖𝑖 = 1,2, … ,𝑚𝑚 
recalling to the model υr(y2i) = ∑ υj�x2ij�β2j

k
j=1  where 

β1j ≠ β2j  and the categorical variables generate by 
Bernoulli distribution with nine category. The correlation 
between pairs of variables r = corr(XI, Xj) , 𝑖𝑖 ≠ 𝑗𝑗 was taken 
(0.20, 0.60). We have used WLAD-CATREG-l algorithm to 
compute the LAD-adaptive lasso estimator and 
WLAD-CATREG adaptive lasso estimator and 
WLAD-CATREG-EN algorithm to compute the 
LAD-CATREG adaptive elastic net estimator and 
WLAD-CATREG adaptive elastic net estimator. To 
contaminate the data, we generated the contamination rate 
(ë= 20%, 40%). We will choose the place of outliers from 
observations on are works well. And the elastic net 
-CATREG methods select more variables than the lasso 
methods. In adding, the WLAD naïve adoptive elastic 
net-CATREG make improvements to a number of selected 
variables. categorical variable randomly and replacing the 
category on the variables by extreme values (such as 1 or 9) 
and will generate the outliers on numerical variable by 
υ(x1i)~𝑁𝑁𝑘𝑘�0, 0.5|𝑖𝑖−𝑗𝑗 | �, 𝑖𝑖 = 1,2, … ,𝑛𝑛 −𝑚𝑚  where 𝑖𝑖 ≠ 𝑗𝑗 
recalling to the model υr(y1i) = ∑ υj�x1ij�β1j

k
j=1 + σεI. 

To ensure the achievement the normality of error with the 
possibility of the existence of outlier of y, we generate ε 
from t distribution with two degrees of freedoms ε~ t(2) 
and set 𝜎𝜎 = 3. We let 

 
β1=(1,1,1,1,1,1,0,0,0,0,0,0,2,2,2,2,2,2,3,3 

 
,3,3,3,3,1,1,1,1,1,1) 

 
 
and for the weight vector, we assume 𝛾𝛾 = 5 Since elastic 
parameters have two tuning parameters, we used 
2-dimensional cross-validation. For this method, we use 
λ2 = 0.2. 
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Table (1).  ACV(λ2) and number of nun- zero coefficients for the simulation study 

*Estimators 

ACV(𝛌𝛌𝟐𝟐 = 𝟎𝟎.𝟐𝟐) Number of nun- zero coefficients 

𝑟𝑟 = 0.2        𝑟𝑟 = 0.6      𝑟𝑟 = 0.2       𝑟𝑟 = 0.6 

ë=20% ë=40% ë=20% ë=40% ë=20% ë=40% ë=20% ë=40% 

(1) 62.6 60.3 63.6 62.3 --- --- --- --- 

(2) 61.3 60.2 61.5 59.8 --- --- --- --- 

(3) 63.5 61.4 63.5 60.8 12 13 12 11 

(4) 60.6 59.2 59.3 603 12 11 11 11 

(5) 55.2 54.1 53.1 52.5 14 13 12 12 

(6) 51.0 52.3 52.1 53.1 16 15 14 13 

(7) 50.2 48.3 49.2 48.2 15 15 14 14 

(8) 40.5 41.3 38.2 37.2 17 16 14 14 

(9) 41.2 39.2 37.2 36.1 21 20 18 16 

*(1) LAD- CATREG, *(2) WLAD-CATREG, *(3) Lasso-CATREG, *(4) adaptive lasso-CATREG,                    
*(5) WLAD adoptive lasso- CATREG, *(6) naïve elastic net- CATREG, *(7) Adaptive naive elastic net-CATREG,        
*(8) weighted naïve elastic net-CATREG, *(9) WLAD naïve adoptive elastic net-CATREG. 

In Table (1), the WLAD-CATREG method has a poor 
performance especially at high level of correlation and 
lasso-CATREG has working poor at high level of outliers. 
Parallel, the weighted naïve elastic net-CATREG and 
WLAD naïve adoptive elastic net-CATREG method have a 
best performance. In all cases, elastic net methods are more 
improved than lasso methods and the weight was given to 
improve the estimate methods. When the level of correlation 
and the level of outliers are increase, the elastic estimators. 

6. Conclusions 
We presented a new estimator for categorical regression 

model (CATREG) which takes into account effect the 
outliers, leverage point and variable select problem. The 
new criterion, Absolute Cross-validation (ACV) which use 
Cross-validation at robust form, was used for trade-off 
between estimators. The result for simulation study showed 
that, the weighted naïve elastic net-CATREG and the 
WLAD naïve adoptive elastic net-CATREG make 
improvements for the estimate. 
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