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Conharmonically Flat Vaisman-Gray Manifold
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Abstract This paper is devoted to study some geometrical properties of conharmonic curvature tensor of Vaisman-Gray
manifold. In particular, we have found the necessary and sufficient condition that flat conharmonic Vaisman-Gray manifold

is an Einstein manifold.
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1. Introduction

One of the representative work of differential geometry is
an almost Hermitian structure. Gray and Hervalla [1] found
that the action of the unitary group U(n) on the space of all
tensors of type (3,0) decomposed this space into sixteen
classes. The conditions that determined each one of these
classes belongs to the type of almost Hermitian structure
have been identified. These conditions were formulated by
using the method of Kozel's operator [2].

The Russian researcher Kirichenko found an interesting
method to study the different classes of almost Hermitian
manifold. This method depending on the space of the
principal fiber bundle of all complex frames of manifold M
with structure group is the unitary group U(n). This space is
called an adjoined G-structure space, more details about this
space can be found in [3-6].

One of the most important classes of almost Hermitian
structures is denoted by W;®W,, where W; and W,
respectively denoted to the nearly Kahler manifold and local
conformal Kahler manifold.

A harmonic function is a function whose Laplacian
vanishes. Related to this fact, Y. Ishi [7] has studied
conharmonic transformation which is a conformal
transformation that preserves the harmonicity of a certain
function. Agaoka, et al. [8] studied the twisted product
manifold with vanishing conharmonic curvature tensor.
Agaoka, et al. [9] studied the fibred Riemannian space with
flat conharmonic curvature tensor, in particular, they proved
that a conharmonically flat manifold is locally the product
manifold of two spaces of constant curvature tensor with
constant scalar curvatures. Siddiqui and Ahsan [10] gave an
interesting application when they studied the conharmonic
curvature tensor on the four dimensional space-time that
satisfy the Einstein field equations. Abood and Lafta [11]
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studied the conharmonic curvature tensor of nearly Kahler
and almost Kdhler manifolds. The present work devoted to
study the flatness of conharmonic curvature tensor of
Vaisman-Gray manifold by using the methodology of an
adjoined G-structure space.

2. Preliminaries

Suppose that M is 2n-dimensional smooth manifold,
C* (M) is a set of all smooth functions on M, X(M) is the
module of smooth vector fields on M. An almost Hermitian
manifold (AH-manifold) is the set {M,], g =<.,.>}, where
M is a smooth manifold, and J is an almost complex
structure, and g =<.,.> is a Riemannian metric, such
that < JX,JY >=< X,Y >;X,Y € X(M).

Suppose that T;(M) is the complexification of
tangent space T,(M) at the point p€M and
{ei, ...,en,Je1, ..., Je,} is a real adapted basis of
AH -manifold. Then in the module T; (M) there exists a
basis given by {g1, ..., &,, &1, ..., &} which is called adapted
basis, where, ¢, = o(e,) and &, =o(e,) and 0,0 are
two endomorphisms in the module X°(M) which are
defined by o = %(id —V-1 ]C) and 0 = %(id + \/—_1]5),
such that, X°(M) and J¢ are the complexifications of
X(M) and ] respectively. The corresponding frame of this
basis is {p; &1, .., &, €1, -y Eq}- Suppose that the indexes
i,j,k and [ are in the range 1,2,...,2n and the indexes
a,b,c,d and f areintherange 1,2,...,n. And @ = a + n.

The G-structure space is the principal fiber bundle of all
complex frames of manifold M with structure group is the
unitary group U(n). This space is called an adjoined
G-structure space.

In the adjoined G -structure space, the components
matrices of complex structure / and Riemannian metric g
are given by the following:

o _ (V-1I, 0 (0 I,
(J,-)—( 0 _H1n>,(gij)—(,n ;) en

where I, is the identity matrix of order n.
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Definition 2.1 [12] The Riemannian curvature tensor R
of a smooth manifold M is an 4-covariant tensor

R:T,(M) X T,(M) X T,(M) X T,,(M) - R
which is defined by:
R(X,Y,Z,W) = g(R(Z, W)Y, X),

where R (X,Y)Z = ([Vx, Vy] — Vixy1)Z;
X,Y,Z,W € T,(M) and satisfies the following properties:

i) RWX,Y,ZW)=-R(Y,X,Z W),

i) RX,Y,Z,W)=—-R(X,Y,W,Z),

iii) RX,Y,ZW)+R(X,Z,W,Y)+RX,W,Y,Z) =0;

iv) R(X,Y,Z,W)=R(Z,W,X,Y).

Definition 2.2 [13] The Ricci tensor is a tensor of type
(2,0) which is defined as follows:

r; = Rzkjk = 9" Ry
Definition 2.3 [7] The conharmonic tensor of an
AH-manifold is a tensor Tof type (4,0) which is defined as
the form:

1
Tijii = Rijiy — =1 [rugjx — 519 + Tk 9u — T i1l
where 7, R and g are respectively Ricci tensor, Riemannian
curvature tensor and Riemannian metric. Similar to the
properties of Riemannian curvature tensor, the conharmonic
tensor has the following properties:

Tijre = =T = —Tijue = Thuy

Definition 2.4. An AH -manifold is called a
conharmonically flat if the conharmonic tensor vanishes.

Definition 2.5 [14] In the adjoined G-structure space, an
AH-manifold {M,], g =<.,.>}

is called a Vaisman-Gray manifold (VG -manifold) if
Babc — _Bbac , Balz — a[a(sf] ;

is called a locally conformal K & hler manifold
(LCK-manifold) if B¢ = 0 and B% = alas?;

and is called a nearly Kdhler manifold (NK-manifold) if

B¢ = —pbac and B% =0, where B¥* = g]ﬁ;f] ,

B = —g]{{c and a = nlj(SF o J isaLie form; F isa
Kahler form which is defined by F(X,Y) =< JX,Y >, § is
acoderivative and X,Y € X(M) and the bracket [ ] denote to
the antisymmetric operation.

Theorem 2.6 [15] In the adjoined G-structure space, the
components of Riemannian curvature tensor of
V G-manifold are given by the following forms:

1) Raped = 2(Bap[cd] + XaBbjea)s

i) Rapea = 2454

iii) Rapoq = 2(—B®"Byeq + afe 64

i) Rapea = Afe + B*"Bype — BBy,
where, {A}.;} are some functions on adjoined G- structure
space and {Agf} are system of fuctions in the
adjoined G -structure space which are symmetric by the

lower and upper indices which are called components of
holomorphic sectional curvature tensor.

and {a% ,a} are the components of the covariant
differential structure tensor of first and second type and
{ag, ,a%} are the components of the Lee form on adjoint
G-structure space such that:

da, + ayw? = abw, + agy, w”, and

da® — a’wf = alw® + a® w,,
where, {w?, w,} are the components of mixture form, {wj}
are the components of Riema-nnian connection of metric g.

The other components of Riemannian curvature tensor R
can be obtained by the property of symmetry for R.

There are three special classes of almost Hermitian
manifold depending on the components of the Riemannian
curvature tensor. Their conditions are embodied in the
following definition:

Definition 2.7. [16] In the adjoined G-structure space, an
AH-manifold is a manifold of class:

1) Ry ifand onlyif, Ropea = Rabea = Rapea = 0;

2) Rz if and only lf, Rabcd = R&bcd = 0,

3) R3; (RK-manifold) if and only if, Rzp.q = 0.

It easy to see that Ry € R, C R;3.

Theorem 2.8 [15] In the adjoined G-structure space, the
components of Ricci tensor of VG-manifold are given by the
following forms:

1) Tap = 1Tn(aab + Opq + aaab);

2) 1ap = 3B By, — Aft + 112;1(aaab - a"ay)

—%ahh&‘} +(n—2)a%,
and the others are conjugate to the above components.

Definition 2.9 [17] A Riemannian manifold is called an
Einstein manifold, if the Ricci tensor satisfies the equation
r; = Cg;;, where, C is an Einstein constant.

Definition 2.10 [18] An AH -manifold has J-invariant
Ricci tensor, if Jor =r1o].

The following Lemma gives a fact about Ricci tensor in
the adjoined G-structure space.

Lemma 2.11 [16] An AH-manifold has J-invariant Ricci
tensor if and only if, we have ¢ = 1,;, = 0.

Definition 2.12 [3] Define two endomorphisms on

70 (V) as follows:
i) Symmetric mapping Sym: 7°(V) - 12 (V) by:

1
sym(t) (vy, ..., ) = = Xoes, t (Vo)) = Vor))-
ii) Antisymmetric mapping Alt: t2(V) - t2(V) by:
1
Alt(®) vy, o, 1) = ;desr e(a)t(va(l), v vo(r))'

The symbols ( ) and [ ] are usually used to denote the
symmetric and antisymmetric respectively.

3. Main Results

Theorem 3.1. In the adjoined G -structure space, the
components of conharmonic tensor of VG -manifold are
given by the following forms:
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1) Tupea = 2(Bap(ca) + ¥[aBpiea);
1
2) Tapeq = 24pheq + ﬂ(rbd &¢ — 7”bc53 );
b
3) Tchd - 2( Bathhcd + (Z )_ (n 1) (rd c] +rc[ 55]);
54
4) Tapeq = Afe + BBy — BYEB, +(nT1)(7”c b))),

and the others are conjugate to the above components.
Proof:
DPuti=a,j=b, k=c and l =d, we have
1
Tabcd = Rabcd - m (rad Ibc — Tva Yac + ToeYGad — racgbd)

According to the equation (2.1) we deduce that

Tabea = Rabea = 2(Bab [ed] + a[aBb]cd)-
2)Puti=a, j=b, k=c and |l =d, we get

1
Tabed = Rabea — m (Taa9pc — Mwa9ac + Toc9ad — Tac9bd)

= Rapea + 1)( TpaGac — ThcJad)
= ZA bcd + (rbd(s Tbcgd)-

HPuti=a,j=b,k=c andlzd,ltfollowsthat

1
Tabea = Rapea — m(ﬂmgz}c —T549ac + T5c9ad — Yac9ba)

= 2( Bathhcd + a d]) - (rada TEd5g + 7"565(‘11 _rdcdélj)

2(n 1)
= 2(—B*"B, 4 +a d])_z(n 1)(7" b—rbss + 1288 —r28h)
b b
= 2(~B®"Byeq + afs d])——(d s+l s,

YHYPuti=a, j=b, k=c and l=cz,weobtain
1
Tapea = Rapea — m(raagbc —Tpa9ac + ToeGaa — TacIpa)
= Al + BBy, — BByl + 5o (rpade + 7ac0)
= Agd + BBy, — BBy + o (1 68 4 106)
(a od)
&)

Definition 3.2. In the adjoined G-structure space, an almost Hermitian manifold is a manifold of class:

1
= A3l + BBy, — BByf + = 1)(

TRy ifand only if, Typeq = Tapca = Tapea = 0;
TRZ if and only lf, Tabcd = Tﬁbcd = 0,
TR3; (TRK-manifold) if and only if, Tz,.q = 0.
We call TR; a conharmonic paraKdhler manifold.
Theorem 3.3. Let M be a VG-manifold of class TR; with J-invariant Ricci tensor, then M is a manifold of class R; if
and only if, M is a manifold of flat Ricci tensor.
Proof:
To prove M is a manifold of class R;, we must prove that

Rabea = Rabea = Rapea = 0.
Let M be a manifold of class TRy, according to definition 3.2, we have
Tabed = Tabca = Tapea =0
Tapea =0 3.D

According to theorem 3.1, we have
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2(Bap(ca) + ¥[aBpica) = 0

Rabcd e 0 (32)
By using the equation (3.1), we get

Tapea =0
According to theorems 2.6 and 3.1, we deduce

1
Rabea + 2m-1) (Mpa 8¢ —1pc8g) =0

Since, M has J-invariant Ricci tensor, then

Rapea = 0. (3.3)
Also, by the equation (3.1), we deduce

Tapea =0

By using theorems 2.6 and 3.1, we have
1 b b
RdBCd - m(r(i[a(sc] + T'C[ 65]) = 0
Suppose that M is a manifold of flat Ricci tensor, then
Rgpeqa = 0. (3.4)

Hence, according to the equations, (3.2), (3.3) and (3.4), we get

Rabea = Rapea = Rapea = 0.
Conversely, by using the equation (3.1), we have

Tabea = Tabea = Tapea =0
By using theorem 3.1, it follows that

b 1 b b
Z(Bab[cd] + a[aBb]Cd) = Cd + (de6 Tbcé'g) =2 ( Bath hed + a[[ 6d]]) n-1) (T'd 6(:] + T'[ 6 )

Let M be a manifold of class Ry, then, accordlng to theorem 2.6 and definition 2.7, we obtain

(Tpa 6& — Ty 8g) +

(rios? + *520) = o

1 1
2(n—1) (n-1)

Symmetrizing by the indexes (b, c), we get

(1488 — 21y, 88 a L (plaghl 4 bgal) _
2(n—1)(rbd5€ > (e 8d +ch5d))+(n_1)( 0. +1.76, )_0,

Antisymmetrizing by the indexes (b, ¢), we have
s (1088 = 3 (5 08 =189 + 1 0088 — 1) ) + o5 (rde0l) + 1 67)) =
Z(nl T 88 +(—( asbl 4ol 5“]) =0.
oy b 8¢ m(rd b—rbst +108%8 —12685) = 0.
Symmetrizing by the indexes (a, b), we deduce

s a0+ 5o (G 82 +rf6) =5 (rhog + 1 sP) + 5 (r0 67 +728h) =5 (284 +78D) = 0

1
62=0
Z(Tl 1) 57 4~ Thd Oc
de6 =0
Contracting by the indexes (a, d), we have TR3 with J-invariant Ricci tensor, then M is a manifold of
Tha 68 =0 class R3 if and only if, M is a manifold of flat Ricci tensor.
¢ _ Proof:
be =0 Suppose that M is a manifold of class TR3. According to
Since M has J-invariant Ricci tensor, then definition 3.2., we have
T'i]- =0. Tdbcd = 0.

Theorem 3.4. Suppose that M is VG-manifold of class By using the Theorem 3.1, we deduce
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1
Rabea + 5515 a6 —1pe63) =0 (3.5)

Let M be a manifold of class R3, then

1
m(ﬁm‘sg —Th64) = 0.

Symmetrizing by the indexes (b, c), we get
1 1
2= a8 — 5 (e 8347, 63)) = 0.
Antisymmetrizing by the indexes (b, c), we have
1 a 1 a a a a
= (a 67 — 3 ((rbe 64 —7ep 64) + (rep 84 —15c64))) = 0.

2(n—1)
1

mrbd 62 =0.

75408 = 0.

Contracting by the indexes (a, d), it follows that
75 08 = 0.
7pe = 0.

Since M has J-invariant Ricci tensor, then
Tij = 0

Conversely, by using the equation (3.5), we have

Rapea + (rpa 68 —1pc63) =0

1
2(n-1)
Suppose that M is a manifold of flat Ricci tensor, then

Rapea = 0.

Therefore, M is a manifold of class R;.

The following theorem gives the necessary and sufficient
condition in which an VVG-manifold is an Einstein manifold.

Theorem 3.5. Suppose that M is conharmonically flat
VG -manifold with J -invariant Ricci tenor. Then the
necessary and sufficient condition that M an Einstein
manifold, is a2 = kdZ, where k is a constant.

Proof:

Let M be a conharmonically flat VG -manifold.
According to the definition 2.4 and theorem 3.1, we have
[a ob] 1 [a ¢b] [boal) _
o) - o (rdtst 4 s) = 0.
Contracting by the indexes (b, d), it follows that

b 1 b b
2(=B"Byea +afi 8]) — 5 (nl6 + 7 8)T) = 0.

2

2(=B"Byeg + @

—ZBathhcd + Zna? — _(n—l) T'Ca =0.
—B%hB, 4 +nal — ==y r? = 0.
Symmetrizing by the indexes (a, b), we deduce
1 1
— 2 (B*®"Byeq + B Byeq) + naf — oy =0

Antisymmetrizing by the indexes (a, b), it follows that

11
—3G (B"B,eg — BP"Bycy)

1 1
+E(Bbahthd — Bathhcd)) + na? — -1 T'Ca =0.
nad — ﬁrf =0. (3.6)
nad = ——r¢

Conharmonically Flat Vaisman-Gray Manifold

Let M be an Einstein manifold, then

— ¢ a
=D 6.
al = kég.
Conversely, by using the equation (3.6), we have

a —
(n—1)TC =0.

nal

nal —

Since, af = kd¢, we deduce
1

nké‘f = m‘)"ca.
¢ =kn(n — 1)62.
et =C6¢,

where, C represent an Einstein constant.
Since M has J-invariant Ricci tensor. Therefore, M is an
Einstein manifold.

4. Conclusions

The present work is devoted to study the flatness of
conharmonic curvature tensor of Vaisman-Gray manifold.
We found out an interesting application in theoretical
physics. In particular, we found the necessary and sufficient
condition that a conharmonically flat Vaisman-Gray
manifold is an Einstein manifold.
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