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Abstract  Bivariate censored data occur in follow-up studies of events that can result in two different outcomes. Many 
studies have explored methods for inference about the marginal recurrence times of these outcomes. However, very few have 
focused on the dependence structures between their occurrences or recurrence times especially when these outcomes are 
censored as evidence in the current study. This theoretical and empirical study used simulated data to monitor and validate the 
survival analysis model for measuring association between recurrence times of bivariate censored outcomes. Bivariate 
outcomes would naturally fall into one of four possibilities: only the first, only the second, none or both conditions occurring 
with different and distinct likelihoods. Using predetermined correlation coefficients, n=100000 bivariate standardized 
binormal data were simulated. The simulated data were then subjected to different censoring chances while contributions of 
the likelihoods of the four possibilities were examined and Maximum Likelihood Estimate (MLE) of the association 
parameter determined. For the data simulated at 50% censoring, MLE of the association parameter tended to zero as the 
predetermined correlation coefficients fell from +1.0 to -1.0. However, at 0% censoring, the MLE were approximates of the 
predetermined correlation coefficients. The developed model was robust as the model responded adequately to the dynamics 
of the predetermined correlation and censoring conditions. The model would be appropriate in studying associations between 
two censored survival times.  
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1. Introduction 
Bivariate censored data arise in the study of a 

phenomenon with two possible outcomes in which the time 
before occurrence or recurrence of the event of interest may 
be the same or differ in the two outcomes [1]. Literature is 
replete on studies involving such phenomenon. Amongst are 
the diabetic retinopathy study [2], the Australian twins study 
[3], the Danish twin register [4] and a ventilation tube study 
for otitis media patients [5]. Sometimes, it is of interest to 
determine the possible associations between the times of 
occurrence of these events especially if both were subjected 
to censoring. Although, previous studies in bivariate survival 
analysis have focused mainly on methods for inference about 
the marginal survival times, very few have investigated 
dependence structures between bivariate outcomes [6-10]. 
Our objective is to validate a model for determining the 
dependence structure of the timing of the bivariate outcomes 
of  interest with the view of providing  insight into whether  
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occurrence of one of the outcomes depends on the other or 
not. 

In some biomedical applications of survival analysis 
techniques, researchers are often interested in the 
dependence relationship between the lifetimes of two 
variables in an individual. For example, the analysis of data 
on lifetimes of twins has been used by geneticists as a tool 
for assessing genetic effect on mortality [11]. Also, in the 
studies of HIV/AIDS, the dependence between the time from 
HIV infection to full blown AIDS and the time from full 
blown AIDS to death may reveal useful information about 
the evolution of the disease process. 

The study of associations among bivariate and 
multivariate outcomes becomes a necessity in scientific 
research because dependence between two random variables 
is completely described by their bivariate distribution. The 
well-known standard methods could be used to make 
inferences when a bivariate distribution has a simple form 
but constraints usually surface when the form is a bit 
complex. However, based on some standardized 
assumptions, one may alternatively create bivariate 
distributions thereby restricting the use of the standard 
methods [12-16]. These limitations occur very often when 
working with bivariate discrete distributions and in most 
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cases they allow only for positive dependence or must have 
marginal distributions of a given form [17]. 

Researches in multivariate survival analysis had largely 
concentrated on non-parametric estimation of the survival 
functions [8, 9, 18]. Deviation from the multivariate survival 
analysis is the estimation of bivariate survival function 
which has information about the dependence structure. 
However, there have been constraints on this bivariate 
analysis because the dependence structure is hard to 
visualize due to the discreteness nature of the developed 
method of estimating the survival functions till date [16]. 

The study on the estimation of Kendal’s τ under censoring 
showed that censoring is a common phenomenon in analysis 
of lifetime data and it is essential that estimates of τ be 
available for bivariate censored data [19]. However, few 
results for this fundamental problem have appeared in 
literature. Several estimators of τ under censoring have been 
proposed [12, 13, 20, 21], but none of the estimators is 
consistent when the true value of τ is not equal to zero, that is, 
when the marginal(s) are dependent [14]. The bias of these 
estimators increases as the degree of dependence increases. 
They had expressed τ as an integral of the bivariate survival 
function. Adopting the ideas presented in an early study, [22], 
a natural way to estimate τ is to plug a suitable bivariate 
survival estimator into the integral form that defines τ [19]. 

Interval censoring was used in a previous study that 
assessed the association between bivariate current status data 
[23] rather than right censoring used in our study. Wang and 
colleague proposed a method for measuring correlations in 
the presence of interval censored data. The Wang et al 
approach was adopted in the study of characterization of the 
correlation between ages at entry into Breast and Pubic Hair 
development among teenagers [24]. Interval censoring 
occurs in a survival data situation when its univariate setting 
is considered and one is interested in a fatigue time variable 
T which is never observed, but can only be determined to lie 
below or above a random monitoring or censoring time C; 
where C and T are assumed to be independent [25]. The use 
of conditional Kendall’s τ for estimating association among 
bivariate interval censored data has been proposed in a recent 
study [14]. Similarly, Lakhal et al developed an IPCW 
estimator for Kendall’s τ under bivariate censoring [13].  

Until now, copula models are main methods used in 
estimating association between bivariate censored data [26] 
but there has been criticism against the method. Arkady et al 
observed  that the approach is elegant and may be effective, 
but added that the methods sometimes prove to be 
insufficient depending on the type of association between the 
paired observations [27]. The source of this insufficiency, 
apparently, is the problem of dimensionality, where a 
two-variate survival function  was used in order 
to model the behavior of three-variate joint first-life and 
last-survivor functions. The over reliance of copula models 

on Bayesian techniques by using prior distributions at the 
second stage in copula models makes the method difficult to 
use. Hence, the development of the parametric modelling of 
association between bivariate censored outcomes by 
Fagbamigbe et al [28]. The parametric model was a simpler 
model than the copula models and it relied less on Bayesian 
techniques. The study developed an alternative model for 
determining existence and measuring association between 
bivariate censored outcomes. The study illustrated the 
application of the model using censored outcomes of 
recurrences of kidney infections among people with kidney 
failure in North England. The authors of the study found that 
positive and significant associations existed between 
recurrence times in kidney infection and was optimized at 
+0.2868 [28]. 

The present study is primarily aimed at monitoring the 
procedures of the model ℓ =  log L = ∑ 𝒍𝒍𝒍𝒍𝒍𝒍 𝑳𝑳𝒋𝒋𝒏𝒏

𝒋𝒋=𝟏𝟏    which 
was earlier developed to determine the possible associations 
between bivariate outcome using data generated via 
statistical simulations and to highlight dimensions that were 
not addressed in our previous study. Unlike the previous 
study that applied a real lifetime data to the method the 
current study used simulated that under certain conditions. 
Our major focus was validation of the procedures of the 
model using a set of predetermined correlation coefficients at 
0% censoring (when all events are presumed to be observed) 
and 50% censoring (when all events have equal chances of 
being served or not).  

2. Methods 
2.1. The Model 

Literature suggested that in bivariate survival analysis, 
two outcomes (observations) occur in any follow up study [6, 
23, 28]. A particular case or individual followed over time 
may have neither of the two events of interest, (a good 
outcome), one or the other, or both (a bad outcome). The 
likelihoods corresponding to the four different categories are 
expressed individually as H1(x, y) which involves a situation 
when the two outcomes, say X and Y are both observed 
during the follow up. However, the survival (observational) 
time of the two outcomes may not be the same. Let H2(x,y) 
denote the likelihood of the situation where the first lifetime 
is observed (X) and second lifetime (Y) is censored at C2, 
while H3(x,y) denote the likelihood of the situation where the 
first lifetime (X) is censored at C1and second lifetime (Y) is 
observed. H4(x,y) denotes the fourth possible situation 
whereby neither of the events of interest took place but the 
survival time was rather censored, so let H4(x, y) denote the 
likelihood of the situation where the two lifetimes X and Y 
are censored at C1 and C2 respectively. The censoring time 
C1 and C2 may or may not be the same. 

Such that 
 

                    (1) 
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where, 

C1= the censoring time for the first outcome 
C2= the censoring time for the second outcome 
FX (c1) is the normal cumulative distribution function of X 

at c1 
Fy (c2) is the normal cumulative distribution function of Y 

at c2 
FX|Y=y(c1) is the marginal distribution function of X at c1 

given Y 
FY|X=x(c2) is the marginal distribution function of Y at c2 

given X 
FX,Y(c1,c2;ρ) is the bivariate cumulative distribution 

function of X and Y at c1
 and c2

 respectively with correlation 
ρ. 

We then used normal multivariate distribution estimators 
(pnorm, dnorm, pnorm, pmvnorm and dmvnorm) in 
R-statistical software to integrate and determine the 
necessary functions following the principle for likelihood 
estimation. The choice of normalization at this stage is due to 
its robustness and it has been used earlier in similar process 
[15, 24]. 

Adapted from reports of Betensky et al [15], Christensen 
et al [24] used maximum likelihood approach to estimate the 
correlation between ages at occurrence of two distinct 
observed events, with modifications to accommodate the 
interval censored nature of the available data. Betensky et al 
had applied multiple implementation technique on the 
estimated bivariate distribution so as to replace the set of 
undefined bivariate failure times [15]. We adapted the 
methodology as well but with modifications to suit right 
censored data. Considering a pair of event times, defined as 
X for the first event and Y for the second, they have a joint 
probability density distribution . The 
corresponding cumulative distribution function of the paired 
variables, . If X  and Y 
follow a bivariate normal distribution,  takes the 
form in equation 5. 

 

   (5) 

whereas  could be expressed as 

     (6) 

The resulting likelihood for the four possible scenarios is 

L𝑗𝑗 = 𝐻𝐻1
𝛿𝛿1𝛿𝛿2𝐻𝐻2

𝛿𝛿1(1−𝛿𝛿2)𝐻𝐻3
(1−𝛿𝛿1)𝛿𝛿2𝐻𝐻4

(1−𝛿𝛿1)(1−𝛿𝛿2)     (7) 

where 

𝛿𝛿𝑖𝑖 = {=0  𝑖𝑖𝑖𝑖  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  𝑖𝑖𝑖𝑖  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
=1 𝑖𝑖𝑖𝑖  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  𝑖𝑖𝑖𝑖  𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜   for i= 1,2,……n      (8) 

n is number of observations 
Then, the logarithm of L𝑗𝑗  gives 

𝑙𝑙𝑙𝑙𝑙𝑙 L𝑗𝑗 = 𝛿𝛿1𝛿𝛿2𝑙𝑙𝑙𝑙𝑙𝑙𝐻𝐻1 + 𝛿𝛿1(1 − 𝛿𝛿2)𝑙𝑙𝑙𝑙𝑙𝑙𝐻𝐻2 +
 (1 − 𝛿𝛿1)𝛿𝛿2𝑙𝑙𝑙𝑙𝑙𝑙𝐻𝐻3 + (1 − 𝛿𝛿1)(1 − 𝛿𝛿2)𝑙𝑙𝑙𝑙𝑙𝑙𝐻𝐻4  
for j=1,............,n                             (9) 

where n is number of observations 
Then, the overall likelihood model to be maximized is thus  

ℓ =  log L = ∑ 𝒍𝒍𝒍𝒍𝒍𝒍 𝑳𝑳𝒋𝒋𝒏𝒏
𝒋𝒋=𝟏𝟏            (10) 

Previous studies [14, 15, 19, 29] have used similar 
procedures. Further documentation can be found in an earlier 
study [28].  

2.2. Simulation Study 

We carried out a simulation study so as to assess the 
performance of the suggested estimator in a finite sample. 
Using R statistical software, we simulated sets of n=100,000 
standardized binormal random variables -(x, y) ~ mvn(0, 1; 0, 
1) as a proxy for normalized failure times with a set of 
predetermined correlation coefficients (ρ) from -1.0 to +1.0 
where mvn is a package in the statistical software for 
simulating multivariate random variable with a specified 
mean (in this case “0”) and standard deviation (in this case 
“1”). A recent study has explored several methods of 
normalizing a censored bivariate data [16]. Each simulated 
data were in turn assigned to two different censoring 
conditions. Under the first condition, each bivariate 
simulated data was randomly assigned censoring index with 
equal chances (50%) so that each has either index “1” or “0” 
for “observed” or “censored” observations respectively. 
However, under the second condition (0% censoring 
chances), none of the data in the two marginals of the 
simulated data were censored, that is they were all assigned 
“0” censoring index. Under this condition, we assumed that 
all events were observed.  

We then applied the simulated data with their respective 
censoring index to the model ℓ =  log L = ∑ 𝒍𝒍𝒍𝒍𝒍𝒍 𝑳𝑳𝒋𝒋𝒏𝒏

𝒋𝒋=𝟏𝟏  in 
equations 10 to obtain the Maximum Likelihood Estimation 
(MLE) of association parameter for each of the simulated 
bivariate data under the two conditions been considered. To 
ensure the reliability and validity of the simulated failure 
time data, we computed its theoretical correlation coefficient 
using Pearson’s product moment correlation methods. 
Hessian matrix was used in computing the standard error of 
the maximum likelihood estimations. The idea of simulation 
is very intuitive and has been used in literature and also in a 
recent study to estimate conditional Kendall’s tau for 
bivariate interval censored data. The study considered two 
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different censoring levels: high right and moderate right 
censoring rates and set τ = 0.0; 0.3; 0.5; 0.7 where, τ = 0 
implies the pairs of events are not dependent [14].  

3. Results 
At 50% censoring, the bivariate data simulated using 

predetermined correlation coefficient of 1.00, has maximum 

likelihood of 1051.185 and maximized correlation estimate 
of 0.999. At predetermined correlation coefficients of 0.5, 
0.0, -0.5 and -1.00; the maximum likelihood and the estimate 
of the association were (2230.212 and 0.711), (2442.966 and 
0.544), (2528.321 and 0.493) and (2643.947 and 0.393) 
respectively. The standard errors of the estimated ρ were 
lower at the tails of the predefined correlation coefficients 
than around the zero. 

Table 1.  Estimated association parameters of bivariate simulated data under different predetermined correlation coefficient at 50% censoring 

Simulation Likelihood of Estimated ρ Standard Error 
95% CI of ρ 

ρ ρ at 50% Censoring (Se) of ρ 
+1.00 1051.185 0.999 0.001 0.998-1.000 
+0.90 1842.248 0.915 0.013 0.890-0.939 
+0.80 2042.695 0.859 0.018 0.823-0.895 
+0.75 2051.601 0.833 0.021 0.791-0.875 
+0.70 2102.807 0.787 0.025 0.739-0.836 
+0.60 2190.787 0.728 0.030 0.670-0.786 
+0.50 2230.212 0.711 0.031 0.651-0.771 
+0.40 2286.953 0.681 0.031 0.620-0.742 
+0.30 2303.721 0.665 0.033 0.600-0.730 
+0.25 2357.027 0.664 0.032 0.601-0.726 
+0.20 2339.695 0.630 0.035 0.562-0.698 
+0.10 2342.918 0.653 0.032 0.590-0.717 
0.00 2442.966 0.544 0.014 0.516-0.573 
-0.10 2348.513 0.577 0.038 0.502-0.651 
-0.20 2543.847 0.486 0.040 0.408-0.564 
-0.25 2584.637 0.486 0.041 0.406-0.566 
-0.30 2551.681 0.484 0.040 0.405-0.562 
-0.40 2512.693 0.456 0.041 0.376-0.535 
-0.50 2528.321 0.493 0.041 0.414-0.573 
-0.60 2538.477 0.468 0.040 0.389-0.547 
-0.70 2627.036 0.448 0.041 0.369-0.528 
-0.75 2607.078 0.451 0.040 0.372-0.530 
-0.80 2606.332 0.417 0.042 0.334-0.500 
-0.90 2559.172 0.400 0.043 0.316-0.484 
-1.00 2643.947 0.393 0.009 0.376-0.411 

 

Figure 1.  The maximum likelihood estimates of the association parameters of bivariate simulated data at predetermined correlation coefficient at 0% and 
50% censoring 
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Table 2.  Estimated association parameters of bivariate simulated data under different predetermined correlation coefficient at 0% censoring 

Simulation Likelihood of Estimated ρ Standard Error 95% CI of ρ 
ρ ρ at 0% Censoring se(ρ)  

+1.00 -2347,113 1,000 0,001 0,998-1,000 
+0.90 2002,629 0,900 0,009 0,883-0,917 
+0.80 2327,666 0,797 0,018 0,763-0,832 
+0.75 2407,804 0,755 0,021 0,713-0,797 
+0.70 2556,406 0,693 0,026 0,642-0,744 
+0.60 2581,646 0,597 0,035 0,529-0,665 
+0.50 2683,353 0,516 0,040 0,437-0,595 
+0.40 2709,906 0,393 0,050 0,294-0,492 
+0.30 2855,411 0,257 0,054 0,152-0,363 
+0.25 2860,015 0,226 0,055 0,117-0,335 
+0.20 2829,732 0,166 0,059 0,050-0,282 
+0.10 2825,826 0,078 0,062 -0,043-0,199 
0.00 2836,526 -0,007 0,061 -0,126-0,112 
-0.10 2792,753 -0,119 0,063 -0,243-0,005 
-0.20 2863,845 -0,208 0,056 -0,317-0,099 
-0.25 2858,524 -0,255 0,054 -0,362-0,148 
-0.30 2781,511 -0,315 0,053 -0,420-0,211 
-0.40 2773,285 -0,398 0,048 -0,491-0,304 
-0.50 2670,088 -0,505 0,042 -0,587-0,423 
-0.60 2591,212 -0,624 0,032 -0,687-0,562 
-0.70 2521,712 -0,684 0,027 -0,738-0,631 
-0.75 2392,502 -0,752 0,022 -0,794-0,709 
-0.80 2339,609 -0,796 0,018 -0,831-0,762 
-0.90 1996,704 -0,903 0,008 -0,920-0,886 
-1.00 -2378,517 -1,000 0,009 -1,000-0,983 

 

With 0% censoring, the simulated bivariate censored data 
had a maximum likelihood of -2347.113 which produced an 
estimate (ρ) of 0.999 for the association parameter. At 
predetermined correlation coefficients of 0.5, 0.0, -0.5 and 
1.00, the maximum likelihoods and the estimated association 
parameters were (2683.353 and 0.516), (2836.526 and 
-0.007), (2591.212 -0.505) and (2670.088 and -0.999) 
respectively as shown in Table 2 and Figure 1. 

4. Discussion  

Using simulated bivariate censored data at sets of 
predetermined correlation coefficients, we monitored the 
process and validated the model earlier developed [28]. We 
found that the model responded to the dictates of the inherent 
censoring structures and the nature of dependency between 
the paired set of failure times. Under 50% censoring, the 
maximum likelihood estimates of the association parameter 
tended towards zero as the predetermined correlation 
coefficients fell from +1.00 to -1.00 but at 0% censoring the 
estimates were approximate of the respective simulation 
correlation coefficients. In an earlier study where the model 
was applied, the authors found that association existed 
between recurrence times of infections of kidney among 

human subjects in North East England and the association 
was maximized at 0.2676 [28]. 

In an attempt to check the procedure of the model and also 
to validate the model, the present study used the simulation 
approach to obtain standardized bivariate censored data 
under a set of predetermined correlation coefficients and 
various censoring conditions. We found an interesting trend 
about the estimated correlation coefficient of the simulated 
bivariate censored data at 50% censoring; as the 
predetermined correlation coefficients fell from +1.00 
through 0.00 to -1.00, the maximum likelihood estimates of 
the association parameter of the bivariate censored data 
tended to zero but did not go below zero. 

The model produced different outcomes under the two 
censoring conditions. In the situation where all simulated 
data were presumed to be observed (0% censoring), the 
maximum likelihood estimates were approximate of the 
predetermined correlation coefficients. These finding 
suggested that the model worked well beside been robust. In 
the absence of censoring, one would expect the same (or at 
least an approximate) correlation coefficient between the 
paired data irrespective of the method used in estimating the 
association parameter. So, the fact that the model returned an 
approximate estimate as the simulation predetermined 
correlation coefficient indicated a good performance of the 
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model. 
It was also observed during the check of the procedure that 

positive maximum likelihood estimates were returned even 
when the predetermined correlation coefficients were 
negative (-0.1 to -1.0) in the case of 50% censoring. One 
possibility for this is that each variable were subjected to  
50% censoring- that is each variable were given equal 
chances of been censored. Although 50% censoring is a valid 
censoring chance, this might be different in a real life 
scenario. This could have been influenced by the random 
assignment of the censoring chances. The maximum 
likelihood estimates could have been negative if the 
proportion of the censored data were quite higher than the 
proportion of observed data used for the check of the model 
procedure. 

The observed positive maximum likelihood estimates at 
50% censoring could also be attributed to the fact that a pair 
of bivariate data is mostly obtained from a single individual 
or related individuals, which suggest a form of dependency. 
For example, a study of association between the periods of 
time when newly born twins will live before been infected 
with a particular disease requires a follow-up study of twins 
who are naturally related. So there is high chance of 
dependency between the paired observation times. 
Furthermore, previous studies in similar settings produced 
similar results. In a study of characterization of the 
correlation between ages at entry into Breast and Pubic Hair 
development [24] using interval censoring approach for 
measuring correlations in the presence of interval censored 
data [23], ascertained that the likelihood was maximized at 
correlation (ρ) = 0.503 to 0.506. 

We observed that the MLE of the correlation between 
bivariate survival times could have been under or 
overestimated as the censoring proportion increased. This is 
quite plausible, theoretically accuracy of MLE decreases as 
censoring proportion gets larger [30, 31]. This may not be the 
case if proportion of participants censored was lower than 
the 50% used in this study. One way to avoid such bias is to 
have large sample size with a relatively long follow-up time.  

5. Conclusions 
The model developed previously by in Fagbamigbe et al 

[28] gave a satisfactory result under the two different 
censoring conditions. The model will work in an assessment 
of associations in occurrence or recurrence of diseases in 
both clinical and public health sciences as well as other fields 
of study where the occurrence of bivariate censored 
outcomes is imminent. The procedures of the model can also 
be applied to bivariate current status data. This is achievable 
by censoring the data, transforming the survival time and 
running the model using the syntax in the appendix. Using 
the method demonstrated in this study, research is on-going 
on its application to measurement of association between 
recurrence times of mania and depression among people 
undergoing psychiatric treatment of bipolar disorder. In 

similar vein, this method can be employed in a wide range of 
field including medicine, biology, epidemiology, economics 
and demography specifically in the study of mortality by age. 
For example, it can be used in studying association between 
times it take twins to get married or develop a particular 
disease or characteristics of interest.  

ACKNOWLEDGEMENTS 
The authors acknowledge the efforts and supports enjoyed 

from the Department of Epidemiology and Medical Statistics, 
University of Ibadan, Nigeria. 

Appendix 
R code for integration of the likelihood and optimization of the 
require(MASS) 
require(mvtnorm) 
# function for likelihood 
like=function(rho)  
{ 
sum=0 
for (i in 1:length(m1)) 
{ 
if(censx[i]==1 & censy[i]==1) 
{ 
sigma=matrix(c(1,rho,rho,1),2,2) 
mean=c(0,0) 
u=c(m1[i],q[i]) 
h = dmvnorm(u,mean,sigma 
} 
else if(censx[i]==1 & censy[i]==0) 
 
{ 
mean=rho*q[i] 
sd=(1-rho^2)^0.5 
h = dnorm(m1[i]) *(1-pnorm(q[i],mean,sd))  
} 
else if(censx[i]==0 & censy[i]==1) 
{ 
mean=rho*m1[i] 
sd=(1-rho^2)^0.5 
h = dnorm(q[i]) *(1-pnorm(m1[i],mean,sd)) 
} 
else if(censx[i]==0 & censy[i]==0) 
{ 
a=pnorm(q[i]) 
b=pnorm(m1[i]) 
mean=c(0,0) 
upper=c(m1[i],q[i]) 
lower=c(-Inf,-Inf) 
corr=matrix(c(1,rho,rho,1),2,2) 
c=pmvnorm(lower,upper,mean,corr) 
h=1-a-b+c 
} 
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else cat("Error in censor data\n") 
119 
loglike = censx[i]*censy[i]*log(h) 
+ censx[i]*(1-censy[i])*log(h) 
+ (1-censx[i])*censy[i]*log(h) 
+ (1-censx[i])*(1-censy[i])*log(h)  
sum=sum +loglike 
} 
return(-sum) } 
opt1=optimize(like,c(-1,1)) 
opt2=optim(0.0,like, method="BFGS",hessian = 
TRUE)...................(J) 
#opt=optim(0.0,like, method="L-BFGS-B",lower=-1,upper=1,hessian 
= TRUE) 
se=sqrt(1/hessian) #computing standard error se 
opt2$par - 1.96*se #lower confidence interval for rho at 0.05 
opt2$par + 1.96*se #upper confidence interval for rho at 0.05 
 
R code for simulation of survival data and random assignment of censoring 
Note: The code shown below is for simulation and censoring when the 
predetermined correlation coefficient is 1.0. 
library(MASS) 
require(mvtnorm) 
s1=matrix(c(1,1,1,1),2,2) 
c=mvrnorm(100000,mu=c(0,0), s1) x1=c[,1] x2=c[,2] censx=rep(1, 
length(x1)) #m1=rep(1,length(x1)) #for (i in 1:length(x1)) 
#m1[i]=min(x1[i],x2[i]) 
for (i in 1:length(x1)) 
{ if(x1[i]<x2[i]) 
censx[i]=1 
else 
censx[i]=0 
} s2=matrix(c(1,1,1,1),2,2) d=mvrnorm(100000,mu=c(0,0), s2) 
y1=d[,1] 
y2=d[,2] 
censy=rep(1, length(x1)) 
for (i in 1:length(x1)) 
{ if(y1[i]<y2[i]) 
censy[i]=1 
else 
censy[i]=0 
} m1=x1 
q=x2 
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