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Abstract  In this paper we use elementary concepts of linear algebra to show that a nilpotent matrix is similar to a Jordan 

matrix. 

Keywords  Jordan decomposition, Nilpotent matrices 

 

1. Introduction 

The Jordan decomposition theorem for nilpotent matrices 

is treated in simple way. While the result is known, the 

interest of our proofs lies in their simplicity. Note that the 

usual proofs are mostly based on module theory and/or 

quotient spaces.  

Definition 1 A nilpotent Jordan block of size n, denoted 

J
n

i

, is a square matrix of the form:  

𝐽𝑛 =

 

 
 

0 1 0 … 0
0 0 1 ⋱ 0
⋮ ⋱ 1 0
⋮ ⋱ 1
0 … … 0 0 

 
 

 

Definition 2 A nilpotent Jordan matrix is a block diagonal 

matrix of the form:  

𝐽 =

 

 

𝐽𝑛1
0 … 0

0 𝐽𝑛2
⋱ 0

⋮ ⋱ ⋱ 0
0 … 0 𝐽𝑛𝑟 

  

where each J
n

i

 is a nilpotent Jordan block. 

Theorem 1 Let E be a vector space over a field K, of finite 

dimension n, and f a linear operator on E, nilpotent of index 

p. There exists some basis B, in which the matrix 

representing f in B is a Jordan matrix.  

Theorem 1 can be expressed in matrix form as follows:  

Theorem 2 Every nilpotent nn matrix N of index p is 

similar to an nn Jordan matrix J in which the size of the 

largest Jordan block is kk, where k is the rank of N.  

A. Galperin and Z. Waksman [1] used elementary 

concepts to show that "-Jordan matrix" is similar to Jordan  
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matrix. Gohberg and Goldberg [2] gave an algorithm that 

builds Jordan form of an operator A on an n-dimensional 

space if the Jordan form restricted to an n1 dimensional 

invariant subspace is known. In what follows, we give two 

proofs of theorem 2. The first by using elementary operations 

on matrices, and the second by using a decomposition of E 

into direct sums of subspaces. 

2. Method 1 - Elementary Operations 

We shall prove theorem 2 by induction. The following two 

lemmas are first proved:  

Lemma 1 There exists a matrix A representing f having 

the following form: 

 
𝐽𝑝 ⋮ 𝐵
… … …
0 ⋮ 𝐶

  

Proof 1 As f is nilpotent of index p, there exists 𝑥 𝜖 𝐸 

such that 𝑓𝑝−1 𝑥 ≠ 0. The family {𝑥, 𝑓 𝑥 , … , 𝑓𝑝−1 𝑥 } 

is then linearly independent (and therefore 𝑝 ≤ 𝑛). Suppose 

the contrary, then there exist constants 

𝜆0 ,  𝜆1 , … ,  𝜆𝑝−1 𝜖 𝐾 not all zero such that  

 𝜆𝑖

𝑝−1

𝑖=0

𝑓𝑖 𝑥 = 0 

Now let 

𝑖0 =  min{𝑖 𝜖  0, 1, 2, … , 𝑝 − 1 ;  𝜆𝑘  ≠ 0} 

therefore  

 𝜆𝑖

𝑝−1

𝑖=𝑖0

𝑓𝑖 𝑥 = 0 

and 

𝑓𝑝−𝑖0−1  𝜆𝑖

𝑝−1

𝑖=0

𝑓𝑖 𝑥 = 0 
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i.e. 𝜆𝑖0𝑓
𝑝−1 𝑥 = 0  and 𝜆𝑖0 = 0 , which is a 

contradiction  

By the incomplete basis theorem, there exist vectors 

𝑒1, 𝑒2 , … 𝑒𝑛−𝑝  𝑖𝑛 𝐸 such that the family 

𝜏 = {𝑥, 𝑓 𝑥 , … , 𝑓𝑝−1 𝑥 , 𝑒1, 𝑒2 , … 𝑒𝑛−𝑝} 

spans E. The matrix 𝐴′ = 𝑀𝜏(𝑓) representing f in that basis 

has the needed property. 

The lemma 2 below is the key to prove our theorem. We 

shall prove (again in two ways!) that the bloc matrix B found 

in lemma 1 is in fact the zero matrix.  

Lemma 2 There exists a matrix representing f having the 

form:  

 
𝐽𝑝 ⋮ 0
… … …
0 ⋮ 𝐶

  

 
Proof 2 method 1: The first proof is based on elementary 

matrix calculations. For this let the triangular matrix 𝑇𝑋  

defined as follows:  

𝑇𝑋 =  

𝐼𝑝 ⋮ 𝑋
… … …
0 ⋮ 𝐼𝑛−𝑝

  

We can easily check that  

𝑇𝑋
−1 =  

𝐼𝑝 ⋮ −𝑋
… … …
0 ⋮ 𝐼𝑛−𝑝

  

Define the matrix A' by 𝐴′ = 𝑇𝑋𝐴𝑇𝑋
−1, clearly: 

𝐴′ =  

𝐽𝑝 −𝐽𝑝𝑋 + 𝐵 + 𝑋𝐶

0 𝐼𝑛−𝑝

  

Let X
i
 and B

i
 be the i-th rows of X and B respectively, 

then  

−𝐽𝑝𝑋 + 𝐵 + 𝑋𝐶 =

 

 
 

−𝑋2 + 𝐵1 + 𝑋1𝐶
−𝑋3 + 𝐵2 + 𝑋2𝐶

⋮
−𝑋𝑝 + 𝐵𝑝−1 + 𝑋𝑝−1𝐶

𝐵𝑝 + 𝑋𝑝𝐶  

 
 

 

Now choose 𝑋1 = 0, and for 1i  p1, 𝑋𝑖+1 =  𝐵𝑖 +
 𝑋𝑖𝐶  , we obtain a matrix A' , similar to A , of the form  

𝐴′ =  

𝐽𝑝 ⋮ 0

0 ⋮ 𝐿
… … …
0 ⋮ 𝐶

  , 𝑤𝑖𝑡ℎ 𝐿 = ℳ1× 𝑛−𝑝 (ℝ) 

A simple calculation yields:   k {1,2,…,p}   

(𝐴′)𝑘 =

 

 
 (𝐽𝑝)𝑘  (𝐽𝑝)𝑘−1−𝑖  

0
0
⋮
𝐿

 𝐶𝑖
𝑘−1

𝑖=0

… …
0 𝐶𝑘  

 
 

  

As (𝐴′)𝑝 = 0, then  

 (𝐽𝑝)𝑝−1−𝑖  

0
0
⋮
𝐿

 𝐶𝑖

𝑝−1

𝑖=0

=  (𝐽𝑝)𝑝−1−𝑖  

0
0
⋮
𝐿𝐶𝑖

 

𝑝−1

𝑖=0

 

                            =  

𝐿
𝐿𝐶
⋮

𝐿𝐶𝑝−1

 = 0 

Therefore L=0, and hence  

𝐴′ =  
𝐽𝑝 ⋮ 0
… … …
0 ⋮ 𝐶

      

method 2: Let x  E such that the family 

{𝑥, 𝑓 𝑥 , … , 𝑓𝑝−1 𝑥 } is linearly independent. Complete the 

basis of E by vectors 𝑒𝑝 , . . . , 𝑒𝑛 ∈ 𝐸 

i.e. the family  

{ 𝑥, 𝑓 𝑥 , … , 𝑓𝑝−1 𝑥  , 𝑒𝑝 , . . . , 𝑒𝑛  } 

is basis of E. Let x be in E, then  

𝑥 =    𝜆𝑖

𝑝−1

𝑖=0

𝑓𝑖 𝑥 + 𝜆𝑖

𝑛

𝑖=𝑝

𝑒𝑖  

And define the linear operator: 

𝑙 ∶ 𝐸 → 𝐾 , by 𝑙  𝑥 = 𝜆𝑝−1 

We now state and prove the following three properties 

about the linear form l:  

• property 1: The family {𝑙, 𝑙 ∘ 𝑓, … , 𝑙 ∘ 𝑓𝑝−1} is linearly 

independent in  𝐸∗ = 𝐿(𝐸, 𝐾), the dual of E 

Suppose the contrary, then there exist scalars 

𝜆0 ,  𝜆1 , … ,  𝜆𝑝−1 𝜖 𝐾, not all zeros, with   

 𝜆𝑖𝑙 ∘ 𝑓
𝑖 = 0

𝑝−1

𝑖=0

 

Denote 

𝑞 = max{𝑖 ∈  0,1, … , 𝑝 − 1 ; 𝜆𝑖 ≠ 0} 

then  

 𝜆𝑖 𝑙 ∘ 𝑓
𝑖 = 0

𝑞

𝑖=0

 

and 

 𝜆𝑖(𝑙 ∘ 𝑓
𝑖) ∘ 𝑓𝑝−𝑞−1(𝑥) = 0

𝑞

𝑖=0

 

implies that 𝜆𝑞 = 0, which contradicts our hypothesis 

Denote now 

𝐹 = 𝑣𝑒𝑐𝑡(𝑥, 𝑓 𝑥 , … , 𝑓𝑝−1 𝑥 ) 

𝐻 = 𝑣𝑒𝑐𝑡(𝑙, 𝑙 ∘ 𝑓, … , 𝑙 ∘ 𝑓𝑝−1) 

and let G be the set of all 𝑦 ∈ 𝐸, such that 

𝑙 ∘ 𝑓𝑖 𝑦 = 0, ∀𝑖 ∈ {0, 1, … , 𝑝 − 1} 
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• property 2: The subspace G of E is stable by f 

-  for all K and all 𝑦1, 𝑦2 ∈ 𝐺 , and ∀𝑖 ∈
 0, 1, … , 𝑝 − 1 ; we have 𝑙 ∘ 𝑓𝑖 𝜆𝑦1 + 𝑦2 = 𝜆𝑙 ∘
𝑓𝑖 𝑦1 + 𝑙 ∘ 𝑓𝑖 𝑦2 = 0 , then 𝜆𝑦1 + 𝑦2 ∈ 𝐺 . G is 

therefore a subspace of E 

-  If 𝑦 ∈ 𝐺 , then ∀𝑖 ∈ {0, 1, … , 𝑝 − 1: 𝑙 ∘ 𝑓𝑖 𝑓 𝑦  =

𝑙 ∘ 𝑓𝑖+1 𝑦 = 0 , and 𝑙 ∘ 𝑓𝑝−1 𝑓 𝑦  = 𝑙 𝑓𝑝 𝑦  =

𝑙 0 = 0. Therefore, 𝑓 𝑦 ∈ 𝐺. 

And finally,  

• property 3: 𝐸 = 𝐹 ⊕𝐺 

-  If ∈  𝐺 ∩ 𝐹 ∖ {0} , then there exist 

𝜆0 ,  𝜆1 , … ,  𝜆𝑝−1 𝜖 𝐾 , not all zeros, such that 

 𝑦 =  𝜆𝑖𝑓
𝑝−1
𝑖=0  ; by letting 

𝑞 = 𝑚𝑎𝑥{𝑖 ∈  0,1, … , 𝑝 − 1 ; 𝜆𝑖 ≠ 0} 

then 𝑦 =  𝜆𝑖𝑓
𝑖(𝑥)

𝑞
𝑖=0 , and 0 = 𝑙 ∘ 𝑓𝑝−1−𝑞 𝑦 = 𝜆𝑞 , 

which contradicts the hypothesis 

-  Let 𝜓𝑝+1 , … , 𝜓𝑛 ∈ 𝐸
∗ such that  

𝜉∗ = {𝑙, 𝑙 ∘ 𝑓, … , 𝑙 ∘ 𝑓𝑝−1, … , 𝜓𝑝+1 , … , 𝜓𝑛} 

is a basis of 𝐸∗, and let 𝜉 = {𝜖𝑝+1 , … , 𝜖𝑛} be a basis 

of E whose dual basis is 𝜉∗. 
  ∀ 𝑖 ∈  0,1, … , 𝑝 − 1 , and ∀ 𝑘 ∈  𝑝 + 1,… , 𝑛 ; 

𝑙 ∘ 𝑓𝑖(𝜖𝑘)=0, thus 𝜖𝑘 ∈ 𝐺 

-  If 𝑧 =  𝜆𝑗 𝜖𝑗 ∈ 𝐺
𝑛
𝑗=1 , then ∀ 𝑖 ∈  0,1, … , 𝑝 − 1 ;  

0=𝑙 ∘ 𝑓𝑖( 𝜆𝑗 𝜖𝑗
𝑛
𝑗=1 )= 𝜆𝑗 𝑙 ∘ 𝑓

𝑖(𝜖𝑗
𝑛
𝑗=1 )= 𝜆𝑖 = 0 , 

hence  

𝑧 =  𝜆𝑗 𝜖𝑗

𝑛

𝑗=𝑝+1

 

Thus  

𝐺 = 𝑣𝑒𝑐𝑡(𝜖𝑝+1 , … , 𝜖𝑛) 

hence 𝑑𝑖𝑚 𝐺 = 𝑛 −p, and Consequently 𝐸 = 𝐹 ⊕ 𝐺 

Is it now simple to see that the matrix representing f in the 

basis  

 𝑓𝑝−1 𝑥 , … , 𝑓 𝑥 , 𝑥, 𝜖𝑝+1 , … , 𝜖𝑛  

of 𝐸 is of the form:  

 
𝐽𝑝 ⋮ 0
… … …
0 ⋮ 𝐶

  

The first proof of our theorem can now be completed. For 

n=1 and n=2, the result is obvious; Assume the result holds 

up to n1. 

By lemma 2, there exists an invertible matrix 𝑄 such that  

𝑄−1𝐶𝑄 =  
𝐽𝑝 ⋮ 0
… … …
0 ⋮ 𝐶

  

By the induction hypothesis, the exists an invertible 

matrix P such that  

𝑃−1𝐶𝑃 =

 

 

𝐽𝑛2
0 … 0

0 𝐽𝑛3
⋱ 0

⋮ ⋱ ⋱ 0
0 … 0 𝐽𝑛𝑟 

  

Let n1=p, and  

𝑅 = 𝑄 
𝐼𝑝 ⋮ 0
… … …
0 ⋮ 𝑃

  

then 

𝑅−1𝑁𝑅 =

 

 

𝐽𝑛1
0 … 0

0 𝐽𝑛2
⋱ 0

⋮ ⋱ ⋱ 0
0 … 0 𝐽𝑛𝑟 

  

this completes the proof. 

3. Method 2 - Decomposition of E into 
Direct Sums 

The second proof was suggested by Rached Mneimné [4] 

during my visit to the department of Mathematics at 

Université Diderot in April 2015. The following theorem is 

on the decomposition of E into direct.  

Theorem 3 Let E be a vector space over a field K, of finite 

dimension n, and f is a linear operator on E, nilpotent of 

index p. There exists 𝑠 ∈  ℕ∗  and subspaces 

𝐸1, 𝐸2, … , 𝐸𝑠  𝑜𝑓 𝐸 such that:  

a)  𝐸 = 𝐸1 ⊕𝐸2 ⊕…⊕𝐸𝑠 
b)  ∀ 𝑖 ∈  1, 2, … , 𝑠 , 𝐸𝑖  is stable by f 

c)  the operator 𝑓𝑖 , restriction of 𝑓  over 𝐸𝑖  , is nilpotent 

of index 𝑟𝑖 = 𝑑𝑖𝑚(𝐸𝑖) 

Proof 3 The proof is by induction. It is obviously true for 

𝑛 = 0 and 𝑛 = 1. Now suppose that the result holds up to 

𝑛 − 1. 

As f is nilpotent, then 𝑑𝑖𝑚 𝐼𝑚 𝑓  ≤ 𝑛 − 1, and then by 

the induction hypothesis, there exists 𝑟 ∈  ℕ∗ and subspaces 

𝐹1, 𝐹2, … , 𝐹𝑟 ∈ 𝑖𝑚(𝑓) , such that: 

a)  𝐼𝑚 𝑓 = 𝐹1 ⊕𝐹2 ⊕…⊕𝐹𝑟  
b)  ∀ 𝑖 ∈  1, 2, … , 𝑟 , 𝐹𝑖  is stable by f 

c)  the operator 𝑓𝑖  , restriction of 𝑓  over 𝐹𝑖  , is 

nilpotent of index 𝑛𝑖 = 𝑑𝑖𝑚(𝐹𝑖) 

As f
i
 is nilpotent of order 𝑛𝑖  , then by lemma 1, there 

exists 𝑦𝑖 ∈ 𝐹𝑖  such that  

𝐹𝑖 = 𝑣𝑒𝑐𝑡{𝑦𝑖 , 𝑓 𝑦𝑖 , … , 𝑓𝑛𝑖−1(𝑦𝑖)} 

Moreover 𝑦𝑖 ∈ 𝐹𝑖 ⊆ 𝐼𝑚(𝑓) , then there exists 𝑥𝑖 ∈ 𝐸 

such that 𝑦𝑖 ∈ 𝑓(𝑥𝑖). Denote  

𝐺𝑖 = 𝑣𝑒𝑐𝑡{𝑥𝑖 , 𝑓 𝑥𝑖 , … , 𝑓𝑛𝑖(𝑥𝑖)} 

and 𝐺 = 𝐺1 + 𝐺2 +⋯+ 𝐺𝑟  

Six properties for the subspaces 𝐺1, 𝐺2, … , 𝐺𝑟  are stated and 

proved:  

1. 𝑓 𝐺𝑖 = 𝐹𝑖  

In fact, if  𝑧 =  𝜆𝑗  𝑓𝑗(𝑥𝑖)
𝑛𝑖
𝑗=0 ∈ 𝐺𝑖 ; then 𝑓(𝑧) =

 𝜆𝑗  𝑓𝑗 𝑦
𝑖
 ∈ 𝐹𝑖

𝑛𝑖−1
𝑗=0  and ∀ 𝑡 =  𝛼𝑘 𝑓𝑘 𝑦𝑖 ) ∈ 𝐹𝑖

𝑛𝑖
𝑘=0 ; 

𝑡 = 𝑓( 𝛼𝑘  𝑓𝑘 𝑥𝑖 ) ∈ 𝑓(𝐺𝑖)
𝑛𝑖
𝑘=0 . Thus 𝑓 𝐺𝑖 = 𝐹𝑖  
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2.  𝑥𝑖 , 𝑓 𝑥𝑖 , … , 𝑓𝑛𝑖 𝑥𝑖   is a basis of 𝐺𝑖  

If   𝛼𝑘  𝑓𝑘 𝑥𝑖 = 0
𝑛𝑖
𝑘=0  , then 𝑓( 𝛼𝑘  𝑓𝑘 𝑥𝑖 ) =

𝑛𝑖
𝑘=0

𝑓(0)=0 i.e. 𝑘=0𝑛𝑖−1𝛼𝑘 𝑓𝑘𝑦𝑖=0, and as the family {𝑦𝑖, 
𝑓 𝑦𝑖 , … , 𝑓𝑛𝑖−1(𝑦𝑖)}  is linearly independent, then 𝛼0 =
𝛼1 = ⋯ = 𝛼𝑛𝑖−1 = 0  and 𝛼𝑛𝑖𝑓

𝑛𝑖 𝑥𝑖 = 0 , and 𝛼𝑛𝑖 = 0 , 

Therefore 𝛼0 = 𝛼1 = ⋯ = 𝛼𝑛𝑖 = 0. 

3. 𝐺𝑖 ∩ ker 𝑓 = 𝑣𝑒𝑐𝑡{𝑓𝑛𝑖(𝑥𝑖)} 

𝑓(𝑓𝑛𝑖(𝑥𝑖)) = 𝑓𝑛𝑖(𝑦𝑖 = 0) , then 𝑓𝑛𝑖 𝑥𝑖 ∈ ker 𝑓 ,  and 

𝐺𝑖 ∩ ker 𝑓 ⊆ 𝑣𝑒𝑐𝑡{𝑓𝑛𝑖(𝑥𝑖)} 

if 𝑧 =  𝛼𝑘  𝑓𝑘 𝑥𝑖 ∈ 𝐺𝑖 ∩ ker(𝑓)
𝑛𝑖
𝑘=0 , then 0 =

𝑓(𝑧) =  𝛼𝑘  𝑓𝑘 𝑦
𝑖
 

𝑛𝑖−1
𝑘=0 , and 𝛼0 = 𝛼1 = ⋯ = 𝛼𝑛𝑖−1 = 0. 

Therefore 𝑧 = 𝜆𝑛𝑖𝑓
𝑛𝑖 𝑥𝑖 ∈ 𝑣𝑒𝑐𝑡{𝑓

𝑛𝑖(𝑥𝑖)} 

4. 𝐺 ∩ ker 𝑓 = 𝑣𝑒𝑐𝑡{𝑓𝑛1 𝑥1 , … , 𝑓𝑛𝑖(𝑥𝑖)} 

Let  𝑧 = 𝑧1 +⋯+ 𝑧𝑟 ∈ 𝐺 ∩ ker 𝑓  with 𝑧𝑖 ∈ 𝐺𝑖  (1 ≤
𝑖 ≤ 𝑟), then 0 = 𝑓(𝑧) = 𝑓(𝑧1) + ⋯+ 𝑓(𝑧𝑟). 

As 𝐼𝑚 𝑓 = 𝐹1 ⊕𝐹2 ⊕…⊕𝐹𝑟  and 𝑓(𝑧𝑖) ∈ 𝐹𝑖 , then 

𝑓(𝑧1) = ⋯ = 𝑓(𝑧𝑟) = 0 . By the previous property, there 

exists 𝜆𝑖 ∈ 𝐾  such that 𝑧𝑖 = 𝜆𝑖𝑓
𝑛𝑖(𝑥𝑖) , and 𝑧 =

 𝜆𝑖𝑓
𝑛𝑖 𝑥𝑖 ∈ 𝑣𝑒𝑐𝑡{𝑓

𝑛1 𝑥1 , … , 𝑓𝑛𝑖(𝑥𝑖)}𝑟
𝑖=1 . Therefore  

𝐺 ∩ ker 𝑓 = 𝑣𝑒𝑐𝑡{𝑓𝑛1 𝑥1 , … , 𝑓𝑛𝑖(𝑥𝑖)} 

5. 𝐺 = 𝐺1 ⊕𝐺2 ⊕…⊕𝐺𝑟  

If 𝑧1 +⋯+ 𝑧𝑟 = 0 with 𝑧𝑖 ∈ 𝐺𝑖 , then by the previous 

property ∀ 𝑖 ∈  1, 2, … , 𝑟  there exists 𝜆𝑖 ∈ 𝐾  such that 

𝑧𝑖 = 𝜆𝑖𝑓
𝑛𝑖 𝑥𝑖 = 𝜆𝑖𝑓

𝑛𝑖−1 𝑦𝑖 ∈ 𝐹𝑖 . As the subspaces 𝐹𝑖  are 

in direct sum, then 𝜆𝑖 = 0 and 𝑧𝑖 = 0, therefore 𝐺 = 𝐺1 ⊕
𝐺2 ⊕…⊕𝐺𝑟  

6. dim 𝐺 = dim 𝐼𝑚 𝑓  + 𝑟  

dim 𝐺 = dim 𝐺1 + ⋯+ dim(𝐺𝑟)   

               =  𝑛1 + 1 +⋯+ (𝑛𝑟 + 1)   

= dim 𝐹 +⋯+ dim(𝐹𝑟) 

= dim(𝐹1 ⊕𝐹2 ⊕…⊕𝐹𝑟) + 𝑟 

= dim 𝐼𝑚 𝑓  + 𝑟 

The proof of theorem 3 can now be completed as follows: 

Let now H be a complement of 𝐺 ∩ 𝑘𝑒𝑟 𝑓  in 𝑘𝑒𝑟 𝑓 , then:  

𝐺 ∩ 𝐻 = (𝐺 ∩ ker 𝑓 ) ∩ 𝐻, cause 𝐻 ∩ ker 𝑓 = {0} (1) 

Thus, 𝐺 and 𝐻 are in direct sum, and:  

dim 𝐸 = dim 𝐼𝑚(𝑓) + dim(ker(𝑓)) 

= dim 𝐼𝑚(𝑓) + dim G ∩ ker(f) +  dim(𝐻) 

= dim 𝐼𝑚(𝑓) + 𝑟 + dim(𝐻) 

= dim 𝐺 + dim(𝐻) 

Therefore,  

𝐸 = 𝐺 ⊕𝐻 

= 𝐺1 ⊕𝐺2 ⊕…⊕𝐺𝑟 + 𝐻 

And  

𝐻 = 𝑣𝑒𝑐𝑡(𝜖1, … , 𝜖𝑘) 

with {𝜖1, … , 𝜖𝑘} is a basis of H. 

The second proof of theorem can be obtained. We can now 

check that the matrix representing 𝑓 in the basis is: 

 

 

𝐽𝑛1
0 … 0

0 𝐽𝑛2
⋱ 0

⋮ ⋱ ⋱ 0
0 … 0 𝐽𝑛𝑟 
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