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Abstract In this paper we use elementary concepts of linear algebra to show that a nilpotent matrix is similar to a Jordan

matrix.
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1. Introduction

The Jordan decomposition theorem for nilpotent matrices
is treated in simple way. While the result is known, the
interest of our proofs lies in their simplicity. Note that the
usual proofs are mostly based on module theory and/or
guotient spaces.

Definition 1 A nilpotent Jordan block of size n, denoted

Jn , Is a square matrix of the form:
i

0 1 0 0
0o 0 1 -~ O
h=1: -~ 1 0
: 1
0O .. .. 0 O

Definition 2 A nilpotent Jordan matrix is a block diagonal
matrix of the form:

Jaoy 0 . O
[0 L, = 0
=l W - o

0 . 0 J,

where each Jn is a nilpotent Jordan block.
i

Theorem 1 Let E be a vector space over a field K, of finite
dimension n, and f a linear operator on E, nilpotent of index
p. There exists some basis B, in which the matrix
representing f in B is a Jordan matrix.

Theorem 1 can be expressed in matrix form as follows:

Theorem 2 Every nilpotent nxn matrix N of index p is
similar to an nxn Jordan matrix J in which the size of the
largest Jordan block is kxk, where k is the rank of N.

A. Galperin and Z. Waksman [1] used elementary
concepts to show that "A-Jordan matrix" is similar to Jordan

* Corresponding author:

mohamed.kobeissi@ul.edu.lb (Mohamed Kobeissi)

Published online at http://journal.sapub.org/ajms

Copyright © 2016 Scientific & Academic Publishing. All Rights Reserved

matrix. Gohberg and Goldberg [2] gave an algorithm that
builds Jordan form of an operator A on an n-dimensional
space if the Jordan form restricted to an n—1 dimensional
invariant subspace is known. In what follows, we give two
proofs of theorem 2. The first by using elementary operations
on matrices, and the second by using a decomposition of E
into direct sums of subspaces.

2. Method 1 - Elementary Operations

We shall prove theorem 2 by induction. The following two
lemmas are first proved:
Lemma 1 There exists a matrix A representing f having

(jp H (:)
0

Proof 1 As f is nilpotent of index p, there exists x € E
such that f7~1(x) # 0. The family {x, f(x), ..., fF (%)}
is then linearly independent (and therefore p < n). Suppose

the contrary, then there exist constants
Ao, A1, s Ap_q € K notall zero such that
p—1
D ari@=0
i=0
Now let

ip = min{i€{0,1,2,...,p — 1} 4, # 0}
therefore

and
p—1

Y Aifi @) =0
i=0
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ie. A, fP'(x)=0 and A,,=0 , which is a
contradiction

By the incomplete basis theorem, there exist vectors
ey, ez, ... e,_, in E such that the family

T={x,f(X), ... P (x), e, 5, .. en—p}

spans E. The matrix A = M, (f) representing fin that basis
has the needed property.

The lemma 2 below is the key to prove our theorem. We
shall prove (again in two ways!) that the bloc matrix B found
in lemma 1 is in fact the zero matrix.

Lemma 2 There exists a matrix representing f having the

form:
i)

Proof 2 method 1: The first proof is based on elementary
matrix calculations. For this let the triangular matrix Ty
defined as follows:

I, i X
Ty =1
0 i I,

We can easily check that

I, i —X
0 ¢ L,

Define the matrix A" by A= Ty ATy Y, clearly:
J, —J,X+B+XC
A =
0 L,
Let Xi and Bi be the i-th rows of X and B respectively,
then
—X, + By + X, C
—X; + B, + X,C
—/,X+B+XC= ( :
\—X,, +B,_1 + Xp_lc/
B, + X,C
Now choose X; =0, and for 1 <i <p-1, X;;,1 = B; +
X;C , we obtain a matrix A", similar to A, of the form

T 0
[0 ¢ L . _
A = ,WlthL _Mlx(n—p)(R)
0o ¢ C
A simple calculation yields: V' k € {1,2,...,p}
k-1 0
—1-i[ 0
e Up)k ZUp)k 1-i ; Ct
(4)" = i=0 :
L
0 ck

As (A)P = 0, then

p-1 0 p-1 0
Yo O)et=Y g
i=0 L i=0 LC
L
LC;"1
Therefore L=0, and hence
' p : 0
0o : C
method 2: Let x e E such that the family

{x, f(x), ..., fP"1(x)} is linearly independent. Complete the
basis of E by vectors e,,...,e, € E
i.e. the family

(X [P ey

is basis of E. Let x be in E, then

x = pz_f/lifi(x) +iliei
i=0 i=p

And define the linear operator:
L:E > K ,by l(x) =2,
We now state and prove the following three properties
about the linear form I:

« property 1: The family {I,lo f,...,Llo fP~1} is linearly
independent in E* = L(E, K), the dual of E

Suppose the contrary, then there exist

ven }

scalars

Aoy Ay eens /lp_l € K, not all zeros, with
p—1
D atefi=o
i=0

Denote
q =max{i €{0,1,..,p—1}; A; # 0}

then
q
Zlil ofi=0
i=0

and

q
D adefyefrei =o
i=0

implies that 4, = 0, which contradicts our hypothesis
Denote now

F = vect(x, f(x), ..., fP71(x))
H =vect(Llof,..,lofP1)
and let G be the set of all y € E, such that
lofi(y)=0,Vi€{0,1,..,p—1}
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* property 2: The subspace G of E is stable by f
- for all 2eK and all y;,y,€G, and Vie€
{0,1,..,p—1}; we have lofi(Ady; +y,) =Alo

fin) +1ofi(y,) =0, then Ay; +y, €G. G is
therefore a subspace of E

- If yeG, then Vie{0,1,..,.p—1: Lo fi(f(y)) =
Lof*1(y) =0, and Lo fP7(f(») = L(fP(M) =
1(0) = 0. Therefore, f(y) € G.

And finally,

sproperty3: E=F®G

- If e{GnF}\{0} , then there  exist
Aoy Ay ey Ap_1 €K, not all zeros, such that
y = P20 A:f ; by letting

q =max{i €{0,1,...,p — 1}; 4, # 0}
then y = X7 (A4 f'(x), and 0 = Lo fP~179(y) = 4,
which contradicts the hypothesis

- Let Y41, ..., P, € E” such that

E={lLlof,.. LofPL ., Ypr1s e}
is a basis of E, and let & = {€,41, ..., €,} be a basis
of E whose dual basis is &*.
vie{01,..,p—1}, and Vke{p+1,..,n};
l Ofi(ek)=0, thus €, € G

- Ifz= Z}‘zllljej €G,thenvie{01,..,p—1};
0=Lo fi(X] 1 46)=X]-1 Al fi(g)=2 =0,
hence

Thus

G = vect(€py1, ) €n)

hence dim(G) = n —p, and Consequently E =F ® G
Is it now simple to see that the matrix representing f in the
basis

(P10, e fOO, X, €41 s s €0)

(j H >
0 . C

The first proof of our theorem can now be completed. For
n=1 and n=2, the result is obvious; Assume the result holds
up to n-1.

By lemma 2, there exists an invertible matrix Q such that

i+ o
Q'CQ = . ..
0 : C

By the induction hypothesis, the exists an invertible
matrix P such that

Jo, 0 . 0
-1 _ ]ng 0
P~'cp = P

0 w 0 J,
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Let n;=p, and

I, ¢ 0

R=Q|.. .. ..

0 : P

then

Joy 0 .. 0
ring=| 0 T 0
: ~ w0
0 .. 0 J,

this completes the proof.

3. Method 2 - Decomposition of E into
Direct Sums

The second proof was suggested by Rached Mneimné&[4]
during my visit to the department of Mathematics at
UniversitéDiderot in April 2015. The following theorem is
on the decomposition of E into direct.

Theorem 3 Let E be a vector space over a field K, of finite
dimension n, and f is a linear operator on E, nilpotent of
index p. There exists s€ N* and subspaces
E, E5, ..., Eg of E such that:

a.) E =E1@E2 @@Es

b) vie{1,2,.., s}, E; isstable by f

c) the operator f;, restriction of f over E; ,is nilpotent

of index r; = dim(E;)

Proof 3 The proof is by induction. It is obviously true for
n =0 and n = 1. Now suppose that the result holds up to
n—1.

As f is nilpotent, then dim(Im(f)) <n — 1, and then by
the induction hypothesis, there exists r € N* and subspaces
Fi,F,, ..., E. € im(f) , such that:

b) vie{1,2,.., r}, F; isstable by f

c) the operator f; , restriction of f over F; ,is

nilpotent of index n; = dim(F;)

As fi is nilpotent of order n; , then by lemma 1, there

exists y; € F; such that

F, = vect{y, f(¥;), ... f1 1 (v}
Moreover y; € F; € Im(f), then there exists x; € E
such that y; € f(x;). Denote

G; = vect{x;, f(x;), .., fM(x;)}
and G :Gl +Gz+"‘+Gr

Six properties for the subspaces G, G, ..., G, are stated and
proved:

1 f(G) =F

In fact, if z= Z}ioﬂj fl(x) €G, ; then f(2)=
S A F(y)EF, and VE=3i ar frO)) EF ;
t = f(Xrlo @ f4(x) € f(G). Thus £(G)) = F;
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2. {x;, f(x;), ..., fMi(x;)} is a basis of G;

It Yeloar ff() =0, then f(XpL,a f*(x)) =
A0)=0 i.e. #=0n/—1ax f£y/=0, and as the family {37
F), ..., ff~(y)} is linearly independent, then a, =
ap=-=a,1=0and a,f"(x)=0, and a, =0,
Therefore oy = ay = -+ = a,, = 0.

3. G; nker(f) = vect{f™(x;)}

fUMi(x)) = fri(yi = 0), then f"i(x;) € ker(f), and
G; nker(f) < vect{f™ (x;)}

if z= ’,;‘1;0 ay f¥(x) € G,nker(f) , then 0=
f@ =25 ar f(v,). and @ = a; =
Therefore z = 4, f™i(x;) € vect{f™i(x;)}
4. G nker(f) = vect{f™ (x1), ..., fi(x;)}

Let z=2z +--+2z. €GNnker(f) with z,€G, (1<
i<r),then 0=f(2) =f(z)+ -+ f(z).

As Im(f)=FL®F,®..@F and f(z) €F,, then
f(z1) == f(z,) =0. By the previous property, there
exists A; € K such that z =A;f"(x;) , and z=

T Aif™i(x) € vect{f"(x1), ..., f™i(x;)}. Therefore
G Nker(f) = vect{f™1 (x1), .., f" (x)}

5. G=Gl@G2@@Gr

If z; +--4+ 2z, =0 with z; € G;, then by the previous
property Vi € {1,2,..., r} there exists 1; € K such that
z; = A f"i(x;) = 4,41 (y;) € F;. As the subspaces F; are
in direct sum, then 4; = 0 and z; = 0, therefore G = G; @
G, ®..®G,

6. dim(G) = dim(lm(f)) +r
dim(G) = dim(G,) + -+ + dim(G,)
=(m+D++{n+1)
= dim(F) + - + dim(E,)
=dim(FF®F, ® . ®FE)+r
= dim(lm(f)) +r

The proof of theorem 3 can now be completed as follows:
Let now H be a complement of G N ker(f) in ker(f), then:

GNH=(Gnker(f)) nH,cause H N ker(f) = {0} (1)

Thus, G and H are in direct sum, and:

dim(E) = dim(Im(f)) + dim(ker(f))

ces = ani_l = 0.
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= dim(Im(f)) + dim(G n ker(f)) + dim(H)
= dim(Im(f)) + r + dim(H)
= dim(G) + dim(H)
Therefore,
E=G®H
=6,96G6®.0G6 +H
And

H = vect(eq, ..., €;)

with {e4, ..., €, } is a basis of H.
The second proof of theorem can be obtained. We can now
check that the matrix representing f in the basis is:

(50 1)
\6 " 611/
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