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Abstract  The Birch and Swinnerton-Dyer Conjecture is a well known mathematics problem in the area of Elliptic Curve. 
One of the crowning moments is the paper by Andrew Wiles which is difficult to understand let alone to appreciate the 
conjecture. This paper surveys the background of the conjecture treating the ranks of the elliptic curves over the field of 
rational numbers. Then we present major results like the theorems of Mordell and Mazur leading us to the current state of the 
conjecture. 
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1. Introduction
L. J. Mordell began his famous paper with the words 

“Mathematicians have been familiar with very few questions 
for so long a period with so little accomplished in the way of 
general results, as that of finding the rational points on 
elliptic curves" [1]. Elliptic curves have a lot of applications, 
this because it possible to take two Points on the curve and 
generate a third point. In fact, we will show that by defining 
an addition operation and introducing an extra point called 
the point of infinity, the points on an elliptic curve form an 
additive abelian group [12]. There are still a number of 
significant open questions specific to the theory of elliptic 
curves themselves, such as the conjecture of Birch and 
Swinnerton-Dyer which would give a much more precise 
description of the beautiful arithmetic that exists for points 
on elliptic curves [14]. 

2. The Algebra and Geometry of Elliptic
Curves

Elliptic curves are functions defined by equation of the 
form 

 𝑦𝑦2 = 𝑓𝑓(𝑥𝑥)    (1) 
𝑓𝑓(𝑥𝑥) has no multiple roots. The cubic equation 

𝑦𝑦2 = 𝑥𝑥3 − 3𝑥𝑥 + 2 
does not define an elliptic curve, because 

𝑥𝑥3 − 3𝑥𝑥 + 2 = (𝑥𝑥 − 1)2(𝑥𝑥 + 2) 
has 1 as a multiple root. Similarly 
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𝑦𝑦2 = 𝑥𝑥3 
is not an elliptic curve, but 

𝑦𝑦2 = 𝑥𝑥3 + 1 
is an elliptic curve. 

The general form of an elliptic curve is given below 
 𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵    (2) 

Where 𝑥𝑥,𝑦𝑦,𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵 belong to a specified field such as 
 ℝ,ℂ, 𝑜𝑜𝑜𝑜 ℚ. 

General we use 𝐸𝐸 to represent an elliptic curve. 
If we wish to consider points in a field 𝐾𝐾 we write  𝐸𝐸(𝐾𝐾), 

which is defined as below. 
𝐸𝐸(𝐾𝐾) = {{∞} ∪ : 𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴 + 𝐵𝐵}    (3) 

2.1. We can Use Geometry to Make the Points of an 
Elliptic Curve into a Group 

Figure 1.  𝑃𝑃 + 𝑄𝑄 

2.2. Properties of "Addition" on Elliptic Curve 

The addition law on an Elliptic curve has the following 
properties: 

a) 𝑃𝑃 + ∞ = ∞ + 𝑃𝑃 = 𝑃𝑃 for all 𝑃𝑃 ∈ 𝐸𝐸.
b) 𝑃𝑃 + (−𝑃𝑃) = ∞ for all 𝑃𝑃 ∈ 𝐸𝐸.
c) 𝑃𝑃 + (𝑄𝑄 + 𝑅𝑅) = (𝑃𝑃 + 𝑄𝑄) + 𝑅𝑅 for all 𝑃𝑃,𝑄𝑄,𝑅𝑅 ∈ 𝐸𝐸.
d) 𝑃𝑃 + 𝑄𝑄 = 𝑄𝑄 + 𝑃𝑃 for all 𝑃𝑃,𝑄𝑄 ∈ 𝐸𝐸.
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In other words, the addition law + makes the points of E 
into a commutative group. [11] 

2.3. The Addition Operation is Summarized below 
Let E be an elliptic curve defined by 𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵. 

Let 𝑃𝑃1 = (𝑥𝑥1,𝑦𝑦1)  and 𝑃𝑃2 = (𝑥𝑥2,𝑦𝑦2)  be points on E  with 
P1, P2 ≠ ∞. 
We the define 𝑃𝑃1 + 𝑃𝑃2 = 𝑃𝑃3 = (𝑥𝑥3,𝑦𝑦3) as follows  

1. If  𝑥𝑥1 ≠ 𝑥𝑥2 then 𝑥𝑥3 = 𝑚𝑚2 − 𝑥𝑥1 − 𝑥𝑥2,            
𝑦𝑦3 = 𝑚𝑚(𝑥𝑥1 − 𝑥𝑥3) − 𝑦𝑦1 where 𝑚𝑚 = 𝑦𝑦2−𝑦𝑦1

𝑥𝑥2−𝑥𝑥1
. 

2. If  x1 = 𝑥𝑥2 but 𝑦𝑦1 ≠ 𝑦𝑦2, then 𝑃𝑃1 + 𝑃𝑃2 = ∞. 
3. If 𝑃𝑃1 = 𝑃𝑃2 = (𝑥𝑥1,𝑦𝑦1 ) and 𝑦𝑦1 ≠ 0 then 𝑥𝑥3 = 𝑚𝑚2 −

2𝑥𝑥1,𝑦𝑦3 = 𝑚𝑚(𝑥𝑥1 − 𝑥𝑥3) − 𝑦𝑦1 where 𝑚𝑚 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 3𝑥𝑥1
2+𝐴𝐴

2𝑦𝑦1
. 

4. If 𝑃𝑃1 = 𝑃𝑃2 = (𝑥𝑥1,𝑦𝑦1 ) and 𝑦𝑦1 = 0, then  𝑃𝑃1 + 𝑃𝑃2 = ∞. 
Also we define 𝑃𝑃 + ∞ = 𝑃𝑃 for all points P on E [12]. 

2.3.1. Example 1 

Let  E be the curve 𝑦𝑦2 = 𝑥𝑥3 − 𝑥𝑥 + 1 and suppose we 
know the point �−11

9
, 17

27
� and (0,1) lies on the curve. To 

find another point on. In the notation of elliptic curve 
addition we have: 

m =
y2 − y1

x2 − x1
=

1 − 17
27

0 − 11
9

=
10
33

 

x3 = m2 − x1 − x2 = �10
33
�

2
+ 11

9
− 0 = 59

121
 , 

y3 = m(x1 − x3) − y1 =
10
33

�
−11

9
−

159
121

� −
17
27

=
−1861
1331

 

 

Figure 2.   𝑦𝑦2 − 𝑥𝑥 + 1 and its addition law 

2.3.2. Example 2 

The set 𝐸𝐸11(1,6)  is the set of integers (𝑥𝑥,𝑦𝑦)  that 
satisfy y2 = x3 + x + 6 (mod 11). 

We can see that (x, y) = (7,9) is the set as  
92 (mod 11) = (73 + 7 + 6) (mod 11) 

81 (mod 11) = 356 (mod 11) ⟺ 4 = 4 
To find all the points in E11(1,6) we find all the possible 

values x3 + x + 6 (mod 11) and then see what values of 
y2  will match. There are 11 choices of 𝑥𝑥 , the integers 
{0,1, … 10}. Subbing these values in turn into the cubic and 
reducing modulo 11 will give us the possible values of y2. 

a) x = 0 ⟹ RHS = 6 
b) x = 1 ⟹ RHS = 8 
c) x = 2 ⟹ RHS = 16 ≡ 5 
d) x = 3 ⟹ RHS = 36 ≡3 
e) x = 4 ⟹ RHS = 74 ≡ 8 
f) x = 5 ⟹ RHS = 136 ≡ 4 
g) x = 6 ⟹ RHS = 228 ≡8 
h) x = 7 ⟹ RHS = 356 ≡4 
i) x = 8 ⟹ RHS = 526 ≡ 9 
j) x = 9 ⟹ RHS = 744 ≡ 7 
k) x = 10 ⟹ RHS = 1016 ≡4 
So we can see that the possible values of 

𝑦𝑦2 {3, 4, 5, 6, 7, 8, 9} i.e. 𝑦𝑦2  cannot be 0, 1, 2 or 10. 
Next examine the 10 possible values of y and identify 

which values of x they could be paired with to give a point 
on the curve. 

a) y = 0 ⟹ y2= 0⟹ No points 
b) y = 1 ⟹ y2 = 1 ⟹ No points 
c) y = 2 ⟹ y2= 4 ⟹x = 5, 7, 10 
d) y = 3 ⟹ y2= 9 ⟹ x = 8 
e) y = 4 ⟹ y2= 16 ≡ 5 ⟹ x = 2 
f) y = 5 ⟹ y2= 25 ≡3 ⟹x = 3 
g) y = 6 ⟹ y2= 36 ≡3 ⟹x = 3 
h) y = 7 ⟹ y2= 49 ≡ 5 ⟹x = 2 
i) y = 8 ⟹ y2 = 64 ≡ 9 ⟹x = 8 
j) y = 9 ⟹ y2 = 81 ≡ 4 ⟹x = 5, 7, 10 
k) y = 10 ⟹ y2 = 100≡ 1 ⟹No points 
E11(1,6) ) − (the 12 found above and ∞ ): 
E11(1,6) = {(2, 4), (2, 7), (3, 5), (3, 6), (5, 2), (5, 9), 
(7, 2), (7, 9), (8, 3), (8, 8), (10, 2), (10, 9),∞} 

x2P = 12 − 2(8) = −15 = 7 (mod 11),  
 y2P = 1(8 − 7) − 3 = −2 = 9 (mod 11) 

So in E11(1,6) we find 2(8,3) = (7,9). 

3. Elliptic Curves over Finite Fields 
Let Ϝ be a finite field and E an elliptic curve defined over 

Ϝ. Since there are only a finite number of pairs (x, y), with 
𝑥𝑥,𝑦𝑦 ∈  Ϝ , the group 𝐸𝐸( Ϝ)  must itself be finite. In this 
section. We discuss the basic theory of elliptic curves over 
finite fields and also we will state Hasse’s theorem which 
gives a bound of the size of the group defined by 𝐸𝐸�Ϝ𝑞𝑞�. We 
also look at methods to find the order of a point in 𝐸𝐸( Ϝ). 
[12]. 

3.1. Example 4 
Let 𝐸𝐸 be thr curve 𝑦𝑦2 = 𝑥𝑥3 + 𝑥𝑥 + 1 over Ϝ5 = (𝛧𝛧5) 

{(0, 1), (0, 4), (2, 1), (2, 4), (3, 1), (3, 4), (4, 2), (4, 3),∞} 
E(Ϝ5) has order 9. E(Ϝ5) is cyclic and generated by (0,1). 

3.2. Methods to determine the order of 𝑬𝑬�Ϝ𝒒𝒒� 

Hasse’s theorem gave bounds for the group of points on an 
elliptic curve over a finite field. In this section we discuss 
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methods for determining the group order exactly. Suppose 
we have an elliptic curve defined over a finite field Ϝq , we 
can determine the order of 𝐸𝐸�Ϝ𝑞𝑞� by listing the points. We 
can then determine the order of 𝐸𝐸(𝐹𝐹𝑞𝑞𝑛𝑛) for all 𝑛𝑛. [12] 

3.2.1. Theorem 1 

Let #𝐸𝐸�Ϝ𝑞𝑞� = 𝑞𝑞 + 1 − 𝑎𝑎 write 𝑋𝑋2 − 𝑎𝑎𝑎𝑎 + 𝑞𝑞           
= (𝑋𝑋 − 𝛼𝛼)(𝑋𝑋 − 𝛽𝛽). then for all n ≥ 1 

𝐸𝐸�𝐹𝐹𝑞𝑞𝑛𝑛� = 𝑞𝑞𝑛𝑛 + 1 − (𝛼𝛼𝑛𝑛 + 𝛽𝛽𝑛𝑛)        (4) 

3.3. Example 3 

Let 𝐸𝐸:𝑦𝑦2 + 𝑥𝑥𝑥𝑥 = 𝑥𝑥3 + 1 be an elliptic curve Ϝ2 satisfies 
#E(Ϝ2) = 4. 

Therefore 𝑎𝑎 = 𝑞𝑞 + 1 − 𝐸𝐸�Ϝ𝑞𝑞� = 2 + 1 − 4 = −1  and 
we obtain the polynomial 

X2 + X + 2 = �X −
−1 + √7

2
��X −

−1 − √7
2

� 

#E(Ϝ4) = −�X −
−1 + √7

2
�

2

�X −
−1 − √7

2
�

2

 

We could compute the last expression directly, but better 
use the recurrence relation 
α2 + β2 = s2 = as1 − 2s0 = (−1)(−1) − 2(2) = −3 
So, #E(Ϝ4) = 4 + 1 − (−3) = 8, (as we calculated when 

listing points). 

3.4. Legendre Symbol 
To make a list of all the points on 𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵 over 

a finite field, we listed every possible value of x, and then 
found the square roots, y, of (𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵) if they existed. 
This procedure will be the basis for a simple point counting 
algorithm. 

The Legendre symbol we can generalize this to a finite 
field Ϝ𝑞𝑞 , 𝑞𝑞 odd, by defining for 𝑥𝑥 ∈ Ϝ𝑞𝑞  

�
𝑥𝑥
Ϝ𝑞𝑞
� = �

+1 𝑖𝑖𝑖𝑖 𝑡𝑡2 = 𝑥𝑥 ℎ𝑎𝑎𝑎𝑎 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 −1 𝑖𝑖𝑖𝑖 𝑡𝑡2 = 𝑥𝑥 ℎ𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

0  𝑖𝑖𝑖𝑖 𝑥𝑥 = 0
� 

We can now give a more accurate solution to the number 
of points on 𝐸𝐸�Ϝ𝑞𝑞�: 

1 + � �1 + �
𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵

Ϝ𝑞𝑞
��

𝑥𝑥∈Ϝ𝑞𝑞

 

= 𝑞𝑞 + 1 + � �1 + �
𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵

Ϝ𝑞𝑞
��

𝑥𝑥∈Ϝ𝑞𝑞

 

3.4.1. Theorem 2 

Let E be an elliptic curve y2 = x3 + Ax + B  over Ϝq . 
Then  

#𝐸𝐸�Ϝ𝑞𝑞� = 𝑞𝑞 + 1 + ∑ �1 + �𝑥𝑥
3+𝐴𝐴𝐴𝐴+𝐵𝐵
Ϝ𝑞𝑞

��𝑥𝑥∈Ϝ𝑞𝑞    (5) 

Proof. 
Consider a point x0 ∈  Ϝq . There are points on E with 

x −coodinate x0  if x0
3 + Ax0 + B is a non-zero square in 

Ϝq . There is one such point if it is zero, and no such points if 
it is square It follows that the number of points in E with x 
coordinate x0 is 

1 + �
𝑥𝑥0

3 + 𝐴𝐴𝑥𝑥0 + 𝐵𝐵
Ϝ𝑞𝑞

� 

So to find the order of E�Ϝq�  we must sum over all 
x0 ∈ Ϝq  and add 1 for the point at infinity: 

#𝐸𝐸�Ϝ𝑞𝑞� = 1 + � �1 + �
𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵

Ϝ𝑞𝑞
��

𝑥𝑥∈Ϝ𝑞𝑞

 

= 𝑞𝑞 + 1 + � �1 + �
𝑥𝑥3 + 𝐴𝐴𝑥𝑥 + 𝐵𝐵

Ϝ𝑞𝑞
��

𝑥𝑥∈Ϝ𝑞𝑞

 

3.5. Example 5 

Let E be the curve y2 = x3 + x + 1 over      
Ϝ5 , 12 = 1, 22 = 4, 32 = 9 (mod 5), 42 = 16 = 1(mod 5) 

So the non-zero squares modulo 5 are 1 and 4. 

#𝐸𝐸�Ϝ𝑞𝑞� = 1 + � �1 + �
𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵

Ϝ𝑞𝑞
��

𝑥𝑥∈Ϝ𝑞𝑞

 

= 5 + 1 + ��
𝑥𝑥3 + 𝑥𝑥 + 1

Ϝ5
�

4

𝑥𝑥=0

 

= 6 + �
1
Ϝ5
� + �

3
Ϝ5
� + �

11
Ϝ5
� + �

31
Ϝ5
� + �

69
Ϝ5
� 

= 6 + �
1
Ϝ5
� + �

3
Ϝ5
� + �

1
Ϝ5
� + �

1
Ϝ5
� + �

4
Ϝ5
� 

= 6 + 1 − 1 + 1 + 1 = 9 

3.6. Theorem 3 (Hasse’s Theorem) 
Let E be an elliptic curve over the finite field Ϝ𝑞𝑞 . Then the 

order of #𝐸𝐸�Ϝ𝑞𝑞� satisfies the following inequality. 

�𝑞𝑞 + 1 − #𝐸𝐸�Ϝ𝑞𝑞��  ≤  2�𝑞𝑞 

3.7. The Frobenius Endomorphism 

The Frobenius Map is the function 

  𝛵𝛵𝑝𝑝 :𝐸𝐸� Ϝ𝑞𝑞����� ⟶ 𝐸𝐸� Ϝ𝑞𝑞�����, 

𝜏𝜏𝑝𝑝(𝑥𝑥,𝑦𝑦) = (𝑥𝑥𝑝𝑝 ,𝑦𝑦𝑝𝑝)              (4) 

The quality 𝑎𝑎𝑝𝑝 = 𝑝𝑝 + 1 −  #𝐸𝐸�Ϝ𝑞𝑞� is called the Trace of 
Frobenius. [16] 

What are rational solutions? This question is even more 
difficult in general. If the degree of the equation is higher 
than three, little is known. If the degree is exactly three, we 
have essentially an elliptic curve. [17] 
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3.8. Theorem 4 (Henri Poincare’s Theorem, 1901) 
Let 𝐸𝐸 be an elliptic curve defined over a field 𝐾𝐾. Then 

𝐸𝐸(𝐾𝐾) is an abelian group under +. 

4. Conjecture 1 (Henri Poincare’s 
Conjecture, 1901) 

Let 𝐸𝐸  be an elliptic curve. Then 𝐸𝐸(ℚ)  is finitely 
generated Mordell gave a good partial answer in 1923 (based 
on a conjecture of Henri Poincare in 1901), known as 
Mordell’s Theorem. This result states that the group 𝐸𝐸(ℚ) 
of rational points on an elliptic curve is "finitely generated". 
This means that, if there are any rational solutions, then they 
can all be determined from a certain finite subset of them. 

Unfortunately, there are two things that Mordell’s result 
does not do. First, it provides no way to tell whether any 
rational points exist (other than the "point at infinity"). 
Second, it does not provide an "effective" means (i.e. an 
algorithm) for finding a set of generators for the group of 
rational points. In some cases Mordell’s methods are able to 
do this. And it has been conjectured, but not yet proven, that 
the methods will work in all cases. There is a general 
theorem about finitely generated abelian groups such as 
𝐸𝐸(ℚ). It states that any finitely generated abelian group is the 
"direct sum" of the subgroup consisting of elements of finite 
order and zero or more copies of the additive group ℤ of 
integers. [14] 

4.1. Theorem 5 (Mordell Theorem) 
If E is an elliptic curve over ℚ, then the commutative 

group 𝐸𝐸(ℚ) is finitely generated. 
By Mordell’s theorem we can write 

𝐸𝐸(ℚ) ≅ ℤ𝑟𝑟 ⊕ 𝑇𝑇 
Where 𝑟𝑟 is a nonnegative integer and T is the Torsion 

subgroup of elements of finite order in 𝐸𝐸(ℚ). This subgroup 
is called the torsion subgroup of 𝐸𝐸(ℚ). The integer 𝑟𝑟 is 
called the rank of 𝐸𝐸 and is written rank (E).  

Determining r theoretically and in practice is currently 
the main problem of arithmetic elliptic curve theory. As it 
happens, much more is known about the torsion part of the 
group  𝐸𝐸(ℚ), denoted by  𝑇𝑇. 

A theorem due to Elisabeth Lutz and Trygve Nagell in the 
1930’s showed how to compute T in any particular case. [1] 

4.2. Torsion Subgroups 

The torsion subgroup is "well-understood". First, there is 
an effective algorithm to determine 𝑇𝑇 given 𝐸𝐸. 

4.2.1. Theorem 6 (Nagell-Lutz) 

Let E  be the elliptic curve 𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵 . If 
(𝑥𝑥,𝑦𝑦) ∈ 𝑇𝑇 and Then (𝑥𝑥,𝑦𝑦) ≠ ∞, then 

1. (x, y) ∈ ℤ 
2.  either 𝑦𝑦 = 0 or 𝑦𝑦2 divides 4𝐴𝐴3 + 27𝐵𝐵2 

4.2.2. Corollary 1 

Let E  bean elliptic curve defined over ℚ . Then the 
torsion subgroup 𝑇𝑇 is finite. 

Proof: Suppose 𝐸𝐸 = (𝑥𝑥,𝑦𝑦) ∈ 𝑇𝑇. By Lutz-Nagell,  
y = 0  or  y2  divides 4A3 + 27B2  so there are only 

finitely many possibilities for y. Fixing y, there are at most 
3 solutions to E in x, thus T is finite group.  

4.2.3. Example 6 

Let y2 = x3 + 1, then Torsion subgroup (T) are 
1) (-1, 0) has order 2 
2) (0,±1) has order 3 
3) (2,±3) has order 6 

4.2.4. Theorem 7 (Mazur Theorem) 

If E is an elliptic curve, then T is one of the following 15 
groups: 

1. ℤ 𝑛𝑛ℤ⁄ ,𝑤𝑤𝑤𝑤𝑤𝑤ℎ 1 ≤ 𝑛𝑛 ≤ 10 𝑜𝑜𝑜𝑜 𝑛𝑛 = 12 
2.  ℤ 2𝑚𝑚ℤ⁄ × ℤ ℤ⁄ 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 1 ≤ 𝑚𝑚 ≤ 4 

 

 
Figure 3.  Examples of torsion subgroups of elliptic curves [9] 
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Each of the groups in Theorem 6 occurs infinitely often as 
the torsion subgroup of an elliptic curve over  ℚ. 

4.3. Ranks 

The rank of an elliptic curve is a measure of the size of the 
set of rational points. There is no analogue of Theorems 12 or 
14 for ranks: 
  there is no known algorithm guaranteed to determine 

rank of E; 
  it is not known exactly which integers can occur as the 

rank of an elliptic curve. [1] 

4.4. Reduction of an Elliptic Curve Modulo p 
Let E be an elliptic curve given by an equation 
𝐸𝐸:𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵 with 𝑎𝑎, 𝑏𝑏 ∈  ℤ. We can reduce the 

coefficients of E modulo a prime p to get an elliptic curve 
𝐸𝐸� with coefficients in Ϝ𝑝𝑝   

𝐸𝐸:𝑦𝑦2 = 𝑥𝑥3 + 𝐴̅𝐴𝑥𝑥 + 𝐵𝐵�  
With 𝐴̅𝐴,𝐵𝐵� ∈  Ϝ𝑝𝑝 . However, remember we must check that 

𝐸𝐸� is not singular, which means that we need the discriminant 
∆�= 4𝐴̅𝐴3 + 27𝐵𝐵�2 ≠ 0 𝑖𝑖𝑖𝑖 Ϝ𝑝𝑝  

We say that E has Good Reduction at p if p does not divide 
the discriminant ∆= 4𝐴𝐴3 + 27𝐵𝐵2  and we say that 𝐸𝐸  has 
Bad Reduction at 𝒑𝒑 if p does divide the discriminant. 
∆= 4𝐴𝐴3 + 27𝐵𝐵2. When we talk about reduction modulo p, 

we will generally assume that we have good reduction at 𝑃𝑃. 
[13] 

4.5. The Reduction Modulo p Homomorphism 

It is hard to overstate the importance of reduction modulo 
p. A first indication is: 

4.6. Theorem 8 

If 𝐸𝐸  has good reduction, then the reduction modulo 𝑝𝑝 
map 

𝐸𝐸(ℚ) ⟶ 𝐸𝐸�Ϝ𝑝𝑝� ,𝑃𝑃 ⟶ 𝑃𝑃�, 

is a group homomorphism. 

4.7. Example 6 
Let 𝐸𝐸 be the elliptic curve 

𝐸𝐸 ∶ 𝑦𝑦2 =  𝑥𝑥3 + 2𝑥𝑥 + 4 
Some points in are 

 P = (2, 4), Q =�1
4

, 17
8
� , P + Q = �−54

49
, −232

343
� 

The reduction modulo 11 map 
𝐸𝐸(ℚ) ⟶ 𝐸𝐸(Ϝ11) 

P�  =  (2 , 4) Q�  =  ( 3 , 9) , P�  +  Q�  =  (9 , 5)  = P +  Q��������� 

5. The Birch and Swinnerton-Dyer 
Conjecture 

Fix an elliptic curve E ∶ y2 =  x3 + Ax + B over ℚ. For 

every prime number 𝑝𝑝 not dividing the discriminant. 
∆= 4𝐴𝐴3 + 27𝐵𝐵2  of 𝐸𝐸, we can reduce 𝐴𝐴 and 𝐵𝐵 modulo 

𝑝𝑝 and view 𝐸𝐸 as an elliptic curve over the finite field Ϝ𝑝𝑝 . 
Reduction modulo 𝑃𝑃 induces a group homomorphism.  

𝐸𝐸(ℚ) ⟶ 𝐸𝐸�Ϝ𝑝𝑝� ,𝑃𝑃 ⟶ P�, 
The idea of Birch and Swinnerton-Dyer was that the large 

𝐸𝐸(ℚ)  is, the larger 𝐸𝐸�Ϝ𝑝𝑝�’s should be "on average" as 𝑝𝑝 
varies. The size of can be measured by rank of 𝐸𝐸, but how 
can one measure the average size of the 𝐸𝐸�Ϝ𝑝𝑝�’s? [1] 

5.1. What does 𝑬𝑬�Ϝ𝒑𝒑� look like? 

The group 𝐸𝐸�Ϝ𝑝𝑝� is obviously a finite group. Indeed, it 
clearly has no more than 2𝑝𝑝 + 1 points. For each 𝑥𝑥 ∈ Ϝ𝑝𝑝 , 
there is a "50% chance" that the value of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵  
is a square in Ϝ𝑝𝑝 . And if 𝑓𝑓(𝑥𝑥) = 𝑦𝑦2 is a square, then we 
(usually) get two points (𝑥𝑥 , ±𝑦𝑦) in 𝐸𝐸�Ϝ𝑝𝑝�. Plus there’s the 
point at infinity ∞ . Thus we might expect to contain 
approximately [13] 

𝐸𝐸�Ϝ𝑝𝑝� ≈  
1
2

 ∙ 2 ∙ 𝑝𝑝 + 1 = 𝑝𝑝 + 1 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

A famous theorem of Hasse makes this precise. 

5.2. Theorem 9 (Hasse’s Theorem) 
Let 𝐸𝐸 be an elliptic curve  

𝑦𝑦2 =  𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵 
with 𝐴𝐴,𝐵𝐵 ∈ Ϝ𝑝𝑝  .Then 

�#𝐸𝐸(𝐹𝐹𝑝𝑝) − 𝑝𝑝 + 1� ≤ 2�𝑝𝑝 

For every prime number p not dividing ∆ . 
Let  𝑁𝑁𝑝𝑝 = #𝐸𝐸(𝐹𝐹𝑝𝑝). 

5.2.1. Numerical experiments of the Birch and 
Swinnerton-Dyer 

To test their idea, in the 1950’s Birch and 
Swinnerton-Dyer computed 

� (𝑋𝑋) = 
𝐸𝐸

�
𝑁𝑁𝑁𝑁
𝑝𝑝

𝑝𝑝≤𝑋𝑋 ,𝑝𝑝′∆

 

as 𝑥𝑥 grows, for certain elliptic curves 𝐸𝐸. 
Figure 2 shows the behaviour of ∏ (𝑋𝑋)𝐸𝐸𝑑𝑑  for 𝑥𝑥  up to 

about 1.5 × 107 for five different curves 
𝐸𝐸𝑑𝑑 ∶  𝑦𝑦2 =  𝑥𝑥3 − 𝑑𝑑2𝑥𝑥 . 

The horizontal axis is 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥) and the vertical axis is 
log (∏ (𝑋𝑋)𝐸𝐸𝑑𝑑 ). 

From their data Birch and Swinnerton-Dyer were led to 
conjecture that 

   ∏ ~𝐸𝐸 𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋))𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝐸𝐸)       (5) 
As 𝑋𝑋 →  ∞ for some constant ℂ depending only on 𝐸𝐸 . 

(Note that this relation is consistent with the data in Figure 2. 
if the axes were to scale, then the slopes of the lines would be 
the ranks of the curves.) The function ∏ (𝑋𝑋)𝐸𝐸  does not 
behave very nicely and therefore is difficult to work with. 
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Birch and Swinnerton-Dyer stated a related conjecture, using 
the L-function of E in place of ∏ (𝑋𝑋)𝐸𝐸 . [1] 

 

Figure 4.  Birch and swinnerton-Dyer data for 𝑦𝑦2 = 𝑥𝑥3 − 𝑑𝑑2𝑥𝑥 

5.3. The L-Series of an Elliptic Curve 
Let 𝑎𝑎𝑝𝑝 =  #𝐸𝐸(𝐹𝐹𝑝𝑝) − 𝑝𝑝 + 1  Analogous to the Euler 

factors of the Riemann zeta function, we define the local 
L-factor of E to be 

𝐿𝐿(𝐸𝐸, 𝑠𝑠) = (1 − 𝑎𝑎𝑝𝑝
𝑝𝑝𝑠𝑠

+ 1
𝑝𝑝2𝑠𝑠−1)−1       (6) 

The variable s is a complex variable 𝑠𝑠 ∈ ℂ. 
When evaluating its value at s = 1, we retrieve the 

arithmetic information at 𝑝𝑝 

𝐿𝐿(𝐸𝐸, 1) = 𝑝𝑝
𝑝𝑝+1−𝑎𝑎

= 𝑝𝑝
#𝐸𝐸�Ϝ𝑝𝑝 �

           (7) 

Notice that each point in  𝐸𝐸(ℚ)  reduces to a point in 
 𝐸𝐸�Ϝ𝑝𝑝� . So when 𝐸𝐸(ℚ) then 𝐿𝐿(𝐸𝐸, 1)  tends to be small. 
Birch and Swinnerton-Dyer observed that if 𝐸𝐸(ℚ) is infinite, 
then the reduction of the points in 𝐸𝐸(ℚ)  tend to make 
#𝐸𝐸�Ϝ𝑝𝑝� large than usual. So they conjectured Birch and 
Swinnerton-Dyer did numerical experiments and suggested 

𝐿𝐿(𝐸𝐸, 1) = 0 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 #𝐸𝐸(ℚ) 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖.  
The L-function of 𝐸𝐸 is defined to be the product of all 

local 𝐿𝐿  

𝐿𝐿(𝐸𝐸, 1) = ∏𝑝𝑝∤∆ �1 − 𝑎𝑎𝑝𝑝
𝑝𝑝

+ 1
𝑝𝑝
�
−1

= ∏𝑝𝑝∤∆
𝑝𝑝

#𝐸𝐸�Ϝ𝑝𝑝 �
    (8) 

So intuitively the rank of 𝐸𝐸(ℚ) will correspond to the 
value of L(E, s) at s=1: the larger r is, the "smaller" L(E, 1) is. 
However, the value of L (E, s) at s = 1 does not make sense 
since the product of L (E, s) only converges when R(s) > 3/2. 

Nevertheless, if L(E, s) can be continued to an analytic 
function on the whole of ℂ, it may be reasonable to believe 
that the behavior of L(E, s) at s = 1 contains the arithmetic 
information of the rank of 𝐸𝐸(ℚ). 

A deep theorem of Wiles et al., which many consider the 
crowning achievement of 1990s number theory, implies that 
L(E, s) can be analytically continued to an analytic function 
on all ℂ . This implies that L(E, s) has a Taylor series 
expansion about s = 1. [12] 

5.4. Theorem 10 (Wiles’ Theorem) 
The function L(E, s) extends to an analytic function on all 

of ℂ and satisfies a function equation 
⋀(𝑠𝑠) = 𝑤𝑤𝐸𝐸⋀(2 − 𝑠𝑠)         (9) 

where 𝑤𝑤𝐸𝐸 = ±1 and 

∧ (𝑠𝑠) = 𝑁𝑁
𝑠𝑠
2(2𝜋𝜋)−1𝛤𝛤(𝑠𝑠)𝐿𝐿(𝐸𝐸, 𝑠𝑠)    (10) 

for some positive 𝑁𝑁(depending on E). 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐸𝐸) = �𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑤𝑤𝐸𝐸 = +1
𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑤𝑤𝐸𝐸 = −1

� 

Where 𝛤𝛤(𝑠𝑠) = ∫ 𝑡𝑡𝑠𝑠−1𝑒𝑒−𝑡𝑡  𝑑𝑑𝑑𝑑∞
0  

5.5. Taylor expansion of L(E,s) about s = 1 

𝐿𝐿(𝐸𝐸, 𝑠𝑠) = 𝑐𝑐𝐸𝐸(𝑠𝑠 − 1)𝑟𝑟 , 𝑐𝑐𝐸𝐸 =
1
𝑟𝑟!
𝐿𝐿(𝑟𝑟)(𝐸𝐸, 1) 

with 𝑟𝑟 = 𝑟𝑟𝑎𝑎𝑎𝑎  the analytic rank 
𝐿𝐿(𝐸𝐸, 𝑠𝑠) = 𝑐𝑐0 + 𝑐𝑐1(𝑠𝑠 − 1) + 𝑐𝑐2(𝑠𝑠 − 1)2 + ⋯ 

Define the analytic rank (𝑟𝑟𝑎𝑎𝑎𝑎 ) of E to be the order of 
vanishing of L (E, s) as s = 1. [5] 

The famous Birch and Swinnerton-Dyer conjecture asserts 
that Birch and Swinnerton-Dyer conjecture. 

5.6. Conjecture 1 
𝑜𝑜𝑜𝑜𝑜𝑜𝑠𝑠=1𝐿𝐿(𝐸𝐸, 𝑠𝑠) 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜 𝑓𝑓 𝐸𝐸.  The Birch and 

Swinnerton-Dyer Conjecture can then be stated simply as: 
for any elliptic curve 𝐸𝐸  over ℚ. Then the algebraic and 
analytic ranks of E are the same. Goldfeld also proved the 
following surprising result, which says in particular that, the 
connection between ∏𝐸𝐸( 𝑋𝑋) and 𝐿𝐿(𝐸𝐸, 𝑠𝑠) is off by a factor 
of √2. [17] 

5.7. Theorem 11. (Goldfled Theorem) 
Suppose ∏𝐸𝐸( 𝑋𝑋) ∼ 𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋))𝑟𝑟  where 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐸𝐸) 

with constants 𝐶𝐶 ∈  ℝ+ and 𝑟𝑟 ∈ ℝ. Then             
𝑟𝑟 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑠𝑠=1𝐿𝐿(𝐸𝐸, 𝑠𝑠) and 𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠→1

𝐿𝐿(𝐸𝐸,𝑠𝑠)
(𝑠𝑠−1)𝑟𝑟

= √2𝑒𝑒𝑟𝑟𝑟𝑟𝐶𝐶−1. 
Where 𝛾𝛾 Euler’s constant. In particular, if r = 0 then 

𝐿𝐿(𝐸𝐸, 𝑠𝑠) = √2�∏𝑝𝑝∤∆
𝑝𝑝

#𝐸𝐸�Ϝ𝑝𝑝�
� 

The lines 𝑙𝑙𝑙𝑙𝑙𝑙(𝑐𝑐) + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋) 𝑖𝑖𝑖𝑖 figure 2 were 
calculated using equation 5, Theorem 11, and the full Birch 
and Swinnerton-Dyer Conjecture to determine 𝐶𝐶 and 𝑟𝑟. 

5.8. Theorem 12 
Suppose 𝐸𝐸 is an elliptic curve over ℚ and that  𝑟𝑟𝑎𝑎𝑎𝑎 ≤ 1. 

Then the algebraic and analytic ranks of E are the same. 
A quote from William A. Stein: 
In 2000, Conjecture 1 was declared a million dollar 

millennium prize problem by the Clay Mathematics Institute, 
which motivated even more work, conferences, etc., on the 
conjecture. Since then, to the best of my knowledge, not a 
single new result directly about Conjecture 1 has been 
proved. The class of curves for which we know the 
conjecture is still the set of curves over ℚ with 𝑟𝑟𝑎𝑎𝑎𝑎 ≤ 1, 
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along with a finite set of individual curves on which further 
computer calculations have been performed (by Cremona, 
Watkins, myself, and others). 

"A new idea is needed". 
Nick Katz on BSD, at a 2001 Arizona Winter School. 
The following theorem, a combination of work of 

Kolyvagin, Gross and Zagier, and others, is the best result to 
date in the direction of the Birch and Swinnerton-Dyer 
Conjecture. [17] 

5.9. Theorem 13 (Gross-Zagier, Kolyvagin Theorem) 
(i) 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐸𝐸)  =  0 ⟹ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐸𝐸)  =  0, 
(ii) 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐸𝐸)  =  1 ⟹  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐸𝐸)  =  1 
Assertion (i) can be rephrase as "𝐿𝐿(𝐸𝐸, 1) ≠ 0 ⇒ 𝐸𝐸(ℚ) is 

finite”Assertion (ii) can be rephrase as "𝐿𝐿(𝐸𝐸, 1) = 0 and 
𝐿𝐿′(𝐸𝐸, 𝑠𝑠) ≠ 0, then r = 1, and there is an efficient method for 
calculating 𝐸𝐸(ℚ). 

The case 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐸𝐸) ≥ 2, remains completely open 
problem. 

5.9.1. Example 23 

If 𝐸𝐸 is the curve 𝑦𝑦2 = 𝑥𝑥3 − 𝑥𝑥, then  
𝐿𝐿(𝐸𝐸, 1) = 0.65551438857302995 ≠  0 

Thus theorem 22 (i) shows that 𝐸𝐸(ℚ) is finite. 
The sign 𝑤𝑤𝐸𝐸  in the functional equation for 𝐿𝐿(𝐸𝐸, 𝑠𝑠) 

determines the parity of 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐸𝐸): 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐸𝐸) = �𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑤𝑤𝐸𝐸 = +1
𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑤𝑤𝐸𝐸 = −1

� 

The Birch and Swinnerton-Dyer Conjecture predicts in 
particular that rank(E) and rankan(E) have the same parity, 
so the following is a consequence of the Birch and 
Swinnerton-Dyer Conjecture. 

5.10. Conjecture 2. (Parity Conjecture) 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐸𝐸) = �𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑤𝑤𝐸𝐸 = +1
𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑤𝑤𝐸𝐸 = −1

� 

To explain the recent progress concerning the Parity 
Conjecture, we need to introduce the Tate-Shafarevich group 
and the Selmer group. The Tate-Shafarevich group 𝐼𝐼𝐼𝐼𝐼𝐼𝐸𝐸  is a 
torsion group that measures the failure of the Hasse’s 
Principle for curves that is principal homogeneous spaces for 
𝐸𝐸. 

5.11. Conjecture 3 (Birch and Swinnerton-Dyer) 
Let E  be an elliptic curve over ℚ of rank 𝑟𝑟 . Then 

𝑟𝑟 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑠𝑠=1𝐿𝐿(𝐸𝐸, 𝑠𝑠)  and 
1
𝑟𝑟!
𝐿𝐿(𝑟𝑟)(𝐸𝐸, 𝑟𝑟) =

𝑤𝑤𝐸𝐸 .𝑅𝑅𝑅𝑅𝑅𝑅(𝐸𝐸). # .∏𝑝𝑝

#𝐸𝐸(ℚ)𝑡𝑡0𝑟𝑟
2    

And another quote from Bertolini-Darmon (2001): 
"The following question stands as the ultimate   

challenge concerning the Birch and Swinnerton-Dyer 
conjecture for elliptic curves over ℚ: Provide evidence for 
the Birch and Swinnerton-Dyer conjecture in cases where 
ords=1L(E, s) > 1". [17] 

6. Conclusions 
In conclusion, although there has been little success in the 

last fifty years in finding the number of rational points on an 
elliptic curve, there are still almost no methods for finding 
such points. It is to be hoped that a proof of the Birch and 
Swinnerton-Dyer conjecture will give some insight on the 
number of rational points on an elliptic curve. 
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