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Abstract  A stochastic differential equation (SDE) defines N independent stochastic processes  (𝑋𝑋𝑖𝑖(𝑡𝑡), 𝑡𝑡 ∈  [0,𝑇𝑇𝑖𝑖]),  
𝑖𝑖 = 1, … ,𝑁𝑁. The drift term depends on the random variable  𝜙𝜙𝑖𝑖 . The distribution of the random effect  𝜙𝜙𝑖𝑖  depends on 
unknown parameters, which are to be estimated from continuous observation of the processes 𝑋𝑋𝑖𝑖 . When the drift term is 
defined linearly on the random effect  𝜙𝜙𝑖𝑖  (additive random effect) and  𝜙𝜙𝑖𝑖  has a Gaussian mixture distribution, we obtain an 
expression of the exact likelihood. When the number of components is known, we prove the consistency of the maximum 
likelihood estimators  (𝑀𝑀𝑀𝑀𝑀𝑀′𝑠𝑠) . The convergence of the EM algorithm described when the algorithm is used to 
compute (𝑀𝑀𝑀𝑀𝑀𝑀). 
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1. Introduction 
A mixture model (MM) is beneficial for modeling data as 

output from one of several groups, clusters, or classes; the 
groups (clusters, classes) might be different from each other, 
but the observations within the same group are similar to 
each other. In this paper, we concentrate on the 
classification problem of longitudinal data modeled by a 
stochastic differential equation (SDE) with random effects 
that have a mixture of Gaussian distributions. Some 
researchers state that the classes are known, whereas other 
researchers state the opposite. Arribas-Gil et al. [1] and 
references therein assumed that the classes are known and 
deal with classification drawbacks of longitudinal data by 
using random effects models or mixed-effects models. Their 
aim is to establish a classification rule of longitudinal 
profiles (curves) into a number that enables dissimilar 
classes to predict the class of a new individual. Celeux et al. 
[6] and Delattre et al. [9] assumed that the numbers of 
classes are unknown. Celeux et al. [6] used maximum 
likelihood with the EM algorithm to estimate the random 
effects within a mixture of linear regression models that 
include random effects (see, Dempster, A. et. al. [10]), and 
they used Bayesian information criterion (BIC) to select the 
number of components. Delattreet al. [9] used maximum 
likelihood to estimate the random effects in SDE with  
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multiplicative random effect in the drift and diffusion terms 
without random effects with the EM algorithm (Dempster, 
A. et. al. [10]). They also used BIC to select the number of 
components. Delattre et al. [9] studied SDEs with the 
following form: 

𝑑𝑑𝑋𝑋𝑖𝑖(𝑡𝑡) = �𝜑𝜑𝑖𝑖′𝑏𝑏�𝑋𝑋𝑖𝑖(𝑡𝑡)� + 𝑎𝑎�𝑋𝑋𝑖𝑖(𝑡𝑡)�� 𝑑𝑑𝑑𝑑 + 𝜎𝜎�𝑋𝑋𝑖𝑖(𝑡𝑡)�𝑑𝑑𝑊𝑊𝑖𝑖(𝑡𝑡),  

 (0) = 𝑥𝑥,                    (1) 
where (𝑊𝑊1, … ,𝑊𝑊𝑁𝑁) are 𝑁𝑁  independent Wiener processes, 
(𝜙𝜙1, … ,𝜙𝜙𝑁𝑁)  are N  independently and identically 
distributed (i. i. d) random variables. The processes 
(𝑊𝑊1, … ,𝑊𝑊𝑁𝑁)  are also independent on random variables 
 (𝜙𝜙1, … ,𝜙𝜙𝑁𝑁) , and 𝑥𝑥  is a known real value. The drift 
function 𝑏𝑏(𝑥𝑥;𝜑𝜑) is a known function defined on 𝑏𝑏( . ):ℝ →
ℝ𝑚𝑚  and the functions 𝜎𝜎( . ),𝑎𝑎( . ):ℝ → ℝ . Each process 
(𝑋𝑋𝑖𝑖(𝑡𝑡)) represents an individual, and the random variable 
𝜙𝜙𝑖𝑖  represents the random effect of individual 𝑖𝑖. 

Delattre et al. [2] considered the special case (multiple 
case) where b(x,ϕi)  is linear in ϕi ; in other 
words,  𝑏𝑏(𝑥𝑥,𝜙𝜙𝑖𝑖) =  𝜙𝜙𝑖𝑖  𝑏𝑏(𝑥𝑥) , where 𝑏𝑏(𝑥𝑥) is a known real 
function, and 𝜙𝜙𝑖𝑖  has a Gaussian mixture distribution. 

Here, we consider functional data modeled by a SDE with 
drift term 𝑏𝑏(𝑥𝑥,𝜙𝜙𝑖𝑖) depending on random effects where 
 𝑏𝑏(𝑥𝑥,𝜙𝜙𝑖𝑖)  is linear in random effects  𝜙𝜙𝑖𝑖  (addition case), 
 𝑏𝑏(𝑋𝑋𝑖𝑖(𝑡𝑡),𝜙𝜙𝑖𝑖) = 𝜙𝜙𝑖𝑖 + 𝑏𝑏(𝑋𝑋𝑖𝑖(𝑡𝑡))  and diffusion term without 
random effects. We consider continuous observations 
(𝑋𝑋𝑖𝑖(𝑡𝑡), 𝑡𝑡 ∈ [0,𝑇𝑇], 𝑖𝑖 = 1, … ,𝑁𝑁) with a given 𝑇𝑇. Here, 𝜃𝜃 are 
unknown parameters in the distribution of 𝜙𝜙𝑖𝑖  from the 
(𝑋𝑋𝑖𝑖 )’s which will be estimated, but the estimation is not 
straightforward. Generally, the exact likelihood is not 
explicit. Maximum likelihood estimation in SDE with 
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random effects has been studied in a few papers (Ditlevsen 
and De Gaetano, 2005 [11]; Donnet and Samson, 2008 [12]; 
Delattre et al. (2013) [8]; Alkreemawi et al. ([2], [3]); 
Alsukaini et al. ([4], [5]).  

In this paper, we assume that the random variables 
𝜙𝜙1, … ,𝜙𝜙𝑁𝑁 have a common distribution with density 𝑔𝑔(𝜑𝜑,𝜃𝜃) 
for all  𝜃𝜃 , which is given by a mixture of Gaussian 
distributions; this mixture distribution models the classes. 
We aim to estimate unknown parameters and study the 
proportions. 𝑔𝑔(𝜑𝜑,𝜃𝜃) is a density with respect to a dominant 
measure on  ℝ𝑚𝑚 , where ℝ is the real line, and 𝑚𝑚  is the 
dimension. 

𝑔𝑔(𝜑𝜑,𝜃𝜃) = ∑ 𝜋𝜋ℓ𝑛𝑛ℓ(𝜑𝜑,𝒯𝒯ℓ)𝑀𝑀
ℓ=1 ,  

  𝑛𝑛ℓ(𝜑𝜑,𝒯𝒯ℓ)𝑑𝑑𝑑𝑑 = 𝑁𝑁𝑚𝑚(𝜇𝜇ℓ,Ωℓ),        𝒯𝒯ℓ = (𝜇𝜇ℓ,Ωℓ) 

with 𝜋𝜋ℓ as the proportions of the mixture ∑ 𝜋𝜋ℓ𝑀𝑀
ℓ=1 = 1, 𝑀𝑀 

as the number of components in the mixture, and 𝜇𝜇ℓ ∈ ℝ𝑚𝑚  
and Ωℓ a 𝑚𝑚 × 𝑚𝑚 as an invertible covariance matrix. Let 
𝜃𝜃0 denote the true value of the parameter. M is the number 
of components and is known. 𝜃𝜃 = ((𝜋𝜋ℓ,𝒯𝒯ℓ), ℓ = 1, … ,𝑀𝑀  
is set for the unknown parameters to be estimated. Our aim 
is to find estimators of the parameters θ of the density of 
the random effects from the observations  (𝑋𝑋𝑖𝑖(𝑡𝑡), 𝑡𝑡 ∈
[0,𝑇𝑇], 𝑖𝑖 = 1, … ,𝑁𝑁) . We focus on an additional case of 
linear random effects  𝜙𝜙𝑖𝑖  in the drift term 𝑏𝑏(𝑋𝑋𝑖𝑖(𝑡𝑡),𝜙𝜙𝑖𝑖) =
𝜙𝜙𝑖𝑖 + 𝑏𝑏(𝑋𝑋𝑖𝑖(𝑡𝑡)). In addition, we prove and explain that the 
observations concerning exact likelihood are explicit. With 
M as the number of known components, we discuss the 
convergence of the EM algorithm, and the consistency of 
the exact maximum likelihood estimator is proven.  

The rest of this paper is organized as follows: Section 2 
contains the notation and assumptions, and we present the 
formula of the exact likelihood. In Section 3, we describe 
the EM algorithm and discuss its convergence. In Section 4, 
the consistency of the exact maximum likelihood estimator 
is proved when the number of components is known. 

2. Notations and Assumptions    
Consider the stochastic processes  ( 𝑋𝑋𝑖𝑖(𝑡𝑡), 𝑡𝑡 ≥ 0 ), 𝑖𝑖 =

1, … ,𝑁𝑁, ) , which are defined by (1). The processes 
(𝑊𝑊1, … ,𝑊𝑊𝑁𝑁)  and the random variables (𝜙𝜙1, … ,𝜙𝜙𝑁𝑁)  are 
defined on the probability space  ( 𝛺𝛺,ℱ,ℙ ) . We use the 
assumptions (H1, H2, and H3) in Delattre et al. [9].  
Consider the filtration ( ℱt , t ≥ 0 )  defined by  ℱt =
σ( ϕi , Wi(s), s ≤ t, i = 1, … , N ). 

 
H1. The functions 𝑥𝑥 → 𝑎𝑎(𝑥𝑥)  and 𝑥𝑥 → 𝑏𝑏(𝑥𝑥) =

(𝑏𝑏1(𝑥𝑥), … , 𝑏𝑏𝑚𝑚(𝑥𝑥))′ are Lipschitz continuous on ℝ  and 
𝑥𝑥 → 𝜎𝜎(𝑥𝑥) is Hölder continuous with exponent α ∈ [1 2⁄ , 1] 
on ℝ. 

By (H1), for 𝑖𝑖 = 1, … ,𝑁𝑁, for all 𝜑𝜑 = (𝜑𝜑1, … ,𝜑𝜑𝑚𝑚)′ ∈ ℝ𝑚𝑚 , 
the stochastic differential equation  

𝑑𝑑𝑋𝑋𝑖𝑖
𝜑𝜑(𝑡𝑡) = �𝜑𝜑 + 𝑏𝑏 �𝑋𝑋𝑖𝑖

𝜑𝜑(𝑡𝑡)� + 𝑎𝑎 �𝑋𝑋𝑖𝑖
𝜑𝜑(𝑡𝑡)��𝑑𝑑𝑑𝑑 

                                +𝜎𝜎 �𝑋𝑋𝑖𝑖
𝜑𝜑(𝑡𝑡)� 𝑑𝑑𝑊𝑊𝑖𝑖(𝑡𝑡),       𝑋𝑋𝑖𝑖

𝜑𝜑(0) = 𝑥𝑥   (2) 

admits a unique solution process (𝑋𝑋𝑖𝑖
𝜑𝜑(𝑡𝑡), 𝑡𝑡 ≥ 0) adapted to 

the filtration  ( ℱt , t ≥ 0 ) , Moreover, the stochastic 
differential equation (1) admits a unique strong solution 
adapted to ( ℱt) such that the joint process (𝜙𝜙𝑖𝑖 ,𝑋𝑋𝑖𝑖(𝑡𝑡)) is 
strong Markov and the conditional distribution of (𝑋𝑋𝑖𝑖(𝑡𝑡)) 
given ϕi = φ  is identical to the distribution of (2). (1) 
shows that the Markov property of (𝜙𝜙𝑖𝑖 ,𝑋𝑋𝑖𝑖(𝑡𝑡))  is 
straightforward as the two-dimensional SDE 

                                𝑑𝑑𝜙𝜙𝑖𝑖(𝑡𝑡) = 0,   𝜙𝜙𝑖𝑖(0) = 𝜙𝜙𝑖𝑖 , 

𝑑𝑑𝑋𝑋𝑖𝑖(𝑡𝑡) = �𝜑𝜑 + 𝑏𝑏�𝑋𝑋𝑖𝑖(𝑡𝑡)� + 𝑎𝑎�𝑋𝑋𝑖𝑖(𝑡𝑡)��𝑑𝑑𝑑𝑑 

                   +𝜎𝜎�𝑋𝑋𝑖𝑖(𝑡𝑡)�𝑑𝑑𝑊𝑊𝑖𝑖(𝑡𝑡),      𝑋𝑋𝑖𝑖(0) = 𝑥𝑥 
The processes (𝜙𝜙𝑖𝑖 ,𝑋𝑋𝑖𝑖(𝑡𝑡), 𝑡𝑡 ≥ 0), 𝑖𝑖 = 1, … ,𝑁𝑁  are 𝑖𝑖. 𝑖𝑖.𝑑𝑑 

(see Delattre et al. [8]; Genon-Catalot and Larédo [13], 
Alkreemawi et al. [2], [3]; Alsukaini et al. [4], [5]). To 
derive the likelihood function of our observations, under 
(H1), we introduce the distribution 𝑄𝑄𝜑𝜑

𝑥𝑥 ,𝑇𝑇  on ( 𝐶𝐶𝑇𝑇 ,𝐶𝐶𝑇𝑇) of 
(  𝑋𝑋𝑖𝑖

𝜑𝜑(𝑡𝑡), 𝑡𝑡 ∈ [0,𝑇𝑇] ) given by (2), where 𝐶𝐶𝑇𝑇  denotes the 
space of real continuous functions (𝑥𝑥(𝑡𝑡), 𝑡𝑡 ∈ [0,𝑇𝑇]) defined 
on [0,𝑇𝑇] endowed with the 𝜎𝜎-field 𝐶𝐶𝑇𝑇 associated with the 
topology of uniform convergence on [0,𝑇𝑇]. On ℝ𝑚𝑚 × 𝐶𝐶𝑇𝑇, let 
ℙ𝜃𝜃 = 𝑔𝑔(𝜑𝜑,𝜃𝜃)𝑑𝑑𝑑𝑑(𝜑𝜑) ⨂𝑄𝑄𝜑𝜑

𝑥𝑥 ,𝑇𝑇 denote the joint distribution of 
( 𝜙𝜙𝑖𝑖  , 𝑋𝑋𝑖𝑖(𝑡𝑡), 𝑡𝑡 ∈ [0,𝑇𝑇]) , and let ℚ𝜃𝜃  denote the marginal 
distribution of (  𝑋𝑋𝑖𝑖(𝑡𝑡), 𝑡𝑡 ∈ [0,𝑇𝑇] ) on  ( 𝐶𝐶𝑇𝑇 ,𝐶𝐶𝑇𝑇) . Also, we 
denote   𝒯𝒯ℓ = (𝜇𝜇ℓ,Ωℓ) , 𝑃𝑃𝒯𝒯ℓ  (resp.  𝑄𝑄𝒯𝒯ℓ ) the distribution 
𝑛𝑛𝑚𝑚(𝜑𝜑,𝒯𝒯ℓ)𝑑𝑑𝑑𝑑⨂𝑄𝑄𝜑𝜑

𝑥𝑥 ,𝑇𝑇  of �𝜙𝜙𝑖𝑖 ,𝑋𝑋𝑖𝑖( . )�  where 𝜙𝜙𝑖𝑖  has a 
distribution 𝑁𝑁𝑚𝑚 (𝜇𝜇ℓ,Ωℓ) (resp. of ( 𝑋𝑋𝑖𝑖(𝑡𝑡), 𝑡𝑡 ∈ [0,𝑇𝑇] )), with 
these notations 

              ℙ𝜃𝜃 = ∑ 𝜋𝜋ℓ𝑃𝑃𝒯𝒯ℓ
𝑀𝑀
ℓ  ,  ℚ𝜃𝜃 = ∑ 𝜋𝜋ℓ𝑄𝑄𝒯𝒯ℓ

𝑀𝑀
ℓ        (3) 

H2. For all 𝜑𝜑 ∈ ℝ𝑚𝑚 , 

𝑄𝑄𝜑𝜑
𝑥𝑥 ,𝑇𝑇 �∫ 𝑏𝑏′ �𝑋𝑋(𝑡𝑡)�𝑏𝑏�𝑋𝑋(𝑡𝑡)�+𝑎𝑎2�𝑋𝑋(𝑡𝑡)�

𝜎𝜎2�𝑋𝑋(𝑡𝑡)�
𝑇𝑇

0 𝑑𝑑𝑑𝑑 < +∞� = 1.  

We denote by ( 𝜙𝜙,𝑋𝑋 ) , with  𝑋𝑋 = ( 𝑋𝑋(𝑡𝑡), 𝑡𝑡 ∈ [0,𝑇𝑇] ) , 
which is the canonical process of ℝ𝑚𝑚 × 𝐶𝐶𝑇𝑇 . Under 
(H1)–(H2), based on Theorem 7.19 p. 294 in [14], the 
distributions 𝑄𝑄𝜑𝜑

𝑥𝑥 ,𝑇𝑇  and 𝑄𝑄0
𝑥𝑥 ,𝑇𝑇  are equivalent. Through an 

analog approach of [9], the following results are used: 
𝑑𝑑𝑄𝑄𝜑𝜑

𝑥𝑥 ,𝑇𝑇

𝑑𝑑𝑄𝑄0
𝑥𝑥 ,𝑇𝑇 (𝑋𝑋) =  𝐿𝐿𝑇𝑇(𝑋𝑋,𝜑𝜑) = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝜑𝜑′𝑈𝑈(𝑋𝑋) − 1

2
𝜑𝜑′𝑉𝑉(𝑋𝑋)𝜑𝜑�, 

where 𝑈𝑈(𝑋𝑋) is the vector, and 𝑉𝑉 (𝑋𝑋) is the 𝑑𝑑 ×  𝑑𝑑 matrix  

𝑈𝑈(𝑋𝑋) = ∫ 𝑏𝑏�𝑋𝑋(𝑠𝑠)�
𝜎𝜎2�𝑋𝑋(𝑠𝑠)�

(𝑑𝑑𝑑𝑑(𝑠𝑠) − 𝑎𝑎(𝑋𝑋(𝑠𝑠))𝑑𝑑𝑑𝑑)𝑇𝑇
0       (4) 

and 𝑉𝑉 (𝑋𝑋) is the 𝑑𝑑 ×  𝑑𝑑 matrix  

𝑉𝑉(𝑋𝑋) = ∫ 𝑏𝑏�𝑋𝑋(𝑠𝑠)�𝑏𝑏′�𝑋𝑋(𝑠𝑠)�
𝜎𝜎2�𝑋𝑋(𝑠𝑠)�

𝑑𝑑𝑑𝑑𝑇𝑇
0 .               (5) 

Thus, the density of ℚ𝜃𝜃  (the distribution of 𝑋𝑋𝑖𝑖  on 𝐶𝐶𝑇𝑇 ) 
with respect to 𝑄𝑄0

𝑥𝑥 ,𝑇𝑇 is obtained as follows: 
𝑑𝑑ℚ𝜃𝜃
𝑑𝑑𝑄𝑄0

𝑥𝑥 ,𝑇𝑇 (𝑋𝑋) = ∫ 𝑔𝑔(𝜑𝜑,𝜃𝜃)ℝ𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒 �𝜑𝜑′𝑈𝑈(𝑋𝑋) − 1
2
𝜑𝜑′𝑉𝑉(𝑋𝑋)𝜑𝜑�𝑑𝑑𝑑𝑑  

≔ Λ(𝑋𝑋,𝜃𝜃).                            (6) 
The exact likelihood of  (𝑋𝑋𝑖𝑖 = ( 𝑋𝑋𝑖𝑖(𝑡𝑡) , 𝑡𝑡 ∈ [0,𝑇𝑇] ), 𝑖𝑖 =

1, … ,𝑁𝑁, ) is 
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LN(θ) = ∏ Λ(Xi, θ)N
i=1                    (7) 

Thus, for our situation (addition situation) of drift 
where  𝑏𝑏(𝑥𝑥,𝜙𝜙𝑖𝑖)  is linear in  𝜙𝜙𝑖𝑖 ,   𝑏𝑏(𝑋𝑋𝑖𝑖(𝑡𝑡),𝜙𝜙𝑖𝑖) = 𝜙𝜙𝑖𝑖 +
𝑏𝑏�𝑋𝑋𝑖𝑖(𝑡𝑡)�, we have 

𝑑𝑑𝑄𝑄𝜑𝜑
𝑥𝑥 ,𝑇𝑇

𝑑𝑑𝑄𝑄0
𝑥𝑥 ,𝑇𝑇 (𝑋𝑋) =  𝐿𝐿𝑇𝑇(𝑋𝑋,𝜑𝜑) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝜑𝜑′�𝑌𝑌(𝑋𝑋) − 𝐷𝐷(𝑋𝑋)�  

                   − 1
2
𝜑𝜑′𝑍𝑍(𝑋𝑋)𝜑𝜑 + (𝑈𝑈(𝑋𝑋) − 1

2
𝑉𝑉(𝑋𝑋))),  

and,  
dℚθ

dQ0
x ,T (X) = ∫ g(φ, θ)ℝm exp(φ′�Y(X) − D(X)�  −

1
2
φ′Z(X)φ + (U(X) − 1

2
V(X)))dφ  

              = Λ(X, θ)                                 (8) 
where  

            Y(X) = ∫ 1
σ2�X(s)�

 �dX(s) − a�X(s)�ds�T
0 ,     (9) 

Z(X) = ∫ 1
σ2�X(s)�

 dsT
0 ,    D(X) = ∫ b�X(s)�

σ2�X(s)�
 dsT

0     (10) 

We have to consider distributions for 𝜙𝜙𝑖𝑖  such that the 
integral (8) can obtain a tractable formula for the exact 
likelihood. This is the case when 𝜙𝜙𝑖𝑖  has a Gaussian 
distribution and the drift term  𝑏𝑏(𝑥𝑥,𝜙𝜙𝑖𝑖)  is linear in 
 𝜙𝜙𝑖𝑖 ,   𝑏𝑏(𝑋𝑋𝑖𝑖(𝑡𝑡),𝜙𝜙𝑖𝑖) = 𝜙𝜙𝑖𝑖 + 𝑏𝑏�𝑋𝑋𝑖𝑖(𝑡𝑡)�  (addition situation), as 
shown in Alkreemawi et al. [2]. This is also the case for the 
larger class of Gaussian mixtures. The required assumption 
is defined as follows: 

 
H3. The matrix 𝑍𝑍(𝑋𝑋) is positive definite 𝑄𝑄0

𝑥𝑥 ,𝑇𝑇 -a.s. and 
ℚθ-a.s. for all 𝜃𝜃. 

 
(H3) is not true when the functions �𝑏𝑏𝑗𝑗 𝜎𝜎2⁄ � and (1 𝜎𝜎2⁄ ) 

are not linearly independent. Thus, (H3) can ensure a 
well-defined dimension of the vector 𝜙𝜙. 

 
Proposition 2.1. Assume that 𝑔𝑔(𝜑𝜑,𝜃𝜃)𝑑𝑑𝑑𝑑(𝜑𝜑)  is a 

Gaussian mixture distribution, and set   𝒯𝒯ℓ = (𝜇𝜇ℓ,Ωℓ) , 
𝑌𝑌i = 𝑌𝑌(𝑋𝑋𝑖𝑖) ,  𝑍𝑍𝑖𝑖 = 𝑍𝑍(𝑋𝑋𝑖𝑖) , 𝐷𝐷i = 𝐷𝐷(𝑋𝑋𝑖𝑖) , 𝑈𝑈𝑖𝑖 = 𝑈𝑈(𝑋𝑋𝑖𝑖) , 
𝑉𝑉𝑖𝑖 = 𝑉𝑉(𝑋𝑋𝑖𝑖). Under (H3), the matrices 𝑍𝑍𝑖𝑖 + Ω ℓ

−1, 𝐼𝐼𝑚𝑚 + 𝑍𝑍𝑖𝑖Ωℓ,
𝐼𝐼𝑚𝑚 + Ωℓ𝑍𝑍𝑖𝑖  are invertible 𝑄𝑄0

𝑥𝑥 ,𝑇𝑇 − 𝑎𝑎. 𝑠𝑠.  and ℚ𝜃𝜃 − a. s.  for 
all θ. By setting 𝑅𝑅𝑖𝑖 ,ℓ−1 = (𝐼𝐼𝑚𝑚 + 𝑍𝑍𝑖𝑖Ωℓ)−1𝑍𝑍𝑖𝑖 , we obtain,  

ΛN(θ) = ∑ πℓλ(Xi,𝒯𝒯ℓ)M
ℓ=1              (11) 

where  

𝜆𝜆(𝑋𝑋𝑖𝑖 ,𝒯𝒯ℓ) =
1

�𝑑𝑑𝑑𝑑𝑑𝑑(𝐼𝐼𝑚𝑚 + 𝑍𝑍𝑖𝑖𝛺𝛺ℓ)
𝑒𝑒𝑒𝑒𝑒𝑒 �−

1
2
� 

               �× �μℓ − Zi
−1(Yi − Di)�

′
Ri
−1�μℓ − Zi

−1(Yi − Di)�� 

                    × exp �1
2

(Yi − Di)′Zi
−1(Yi − Di)� exp �Ui −

1
2

Vi�  

                   = �2π det(Zi)exp �
1
2

(Yi − Di)′Zi
−1(Yi − Di)� 

× 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑈𝑈𝑖𝑖 −
1
2
𝑉𝑉𝑖𝑖� × 𝑛𝑛𝑚𝑚�(𝑌𝑌𝑖𝑖 − 𝐷𝐷𝑖𝑖), (𝑍𝑍𝑖𝑖𝜇𝜇ℓ , (𝐼𝐼𝑚𝑚 + 𝛺𝛺ℓ𝑍𝑍𝑖𝑖)𝑍𝑍𝑖𝑖� 

(12) 

Here, 𝑛𝑛𝑚𝑚�(𝑌𝑌𝑖𝑖 − 𝐷𝐷𝑖𝑖), (𝑍𝑍𝑖𝑖𝜇𝜇ℓ , (𝐼𝐼𝑚𝑚 + 𝛺𝛺ℓ𝑍𝑍𝑖𝑖)𝑍𝑍𝑖𝑖�  denotes the 
Gaussian density with mean 𝑍𝑍𝑖𝑖𝜇𝜇ℓ  and covariance matrix 
(𝐼𝐼𝑚𝑚 + 𝛺𝛺ℓ𝑍𝑍𝑖𝑖)𝑍𝑍𝑖𝑖 .  

Alkreemawi et al. [2]  considered the formula for 
 𝜆𝜆(𝑋𝑋𝑖𝑖 ,𝒯𝒯ℓ)  (Proposition 3.1.1 and Lemma 4.2). The exact 
likelihood (7) is explicit. Hence, we can study the asymptotic 
properties of the exact MLE, which can be computed by 
using the EM algorithm instead of maximizing the 
likelihood. 

3. Estimation Algorithm 
In the situation of mixtures distributions with number of 

components M, M is known, rather than of solving the 
likelihood equation, we use the EM algorithm to find a 
stationary point of the log-likelihood. A Gaussian     
mixture model (GMM) is helpful for modeling 𝜙𝜙𝑖𝑖        
by using a mixture of distributions, which means        
that the population of individuals is grouped in M clusters. 
Formally, for the individual i, we (may) introduce a random 
variable 𝑌𝑌𝑖𝑖 ∈ {1, … ,𝑀𝑀} , with 𝑃𝑃𝜃𝜃  (𝑌𝑌𝑖𝑖 = ℓ) = 𝜋𝜋ℓ  and 
𝑃𝑃𝜃𝜃  �𝜙𝜙𝑖𝑖 ∈ 𝑑𝑑𝜑𝜑 |𝑌𝑌𝑖𝑖 = ℓ� = 𝒩𝒩ℓ(𝜇𝜇ℓ,𝛺𝛺ℓ). We assume that (𝜙𝜙𝑖𝑖 ,𝑌𝑌𝑖𝑖) 
are 𝑖𝑖. 𝑖𝑖.𝑑𝑑 and (𝜙𝜙𝑖𝑖 ,𝑌𝑌𝑖𝑖)𝑖𝑖=1,… ,𝑁𝑁   independent of (𝑊𝑊1, … ,𝑊𝑊𝑁𝑁). 
The concept of the EM algorithm was presented in Dempster 
et al. [10] which considered the data 𝑋𝑋𝑖𝑖  as incomplete and 
introduced the unobserved variables (𝑌𝑌1, … ,𝑌𝑌𝑁𝑁). Simply, in 
the algorithm, we can consider random variables       
𝑍𝑍 = (𝑍𝑍𝑖𝑖)𝑖𝑖=1,…,𝑁𝑁, 𝑍𝑍𝑖𝑖 = (𝑍𝑍𝑖𝑖1, … ,𝑍𝑍𝑖𝑖𝑖𝑖) where𝑍𝑍𝑖𝑖ℓ = 1(𝑌𝑌𝑖𝑖=ℓ), for 
ℓ = 1, … ,𝑀𝑀 ; such values indicate that the density 
component drives the equation of subject 𝑖𝑖. For the complete 
data (𝑋𝑋𝑖𝑖 ,𝑍𝑍𝑖𝑖), the logarithm likelihood function is explicitly 
given by  

      ℒ𝑁𝑁�(𝑋𝑋𝑖𝑖 ,𝑍𝑍𝑖𝑖),𝜃𝜃� = ∑ ∑ 𝑍𝑍𝑖𝑖𝑖𝑖 log(𝜋𝜋ℓ𝜆𝜆(𝑋𝑋𝑖𝑖 , 𝜏𝜏ℓ))𝑀𝑀
ℓ=1

𝑁𝑁
𝑖𝑖=1    (13) 

The EM algorithm is an iterative method in which the 
iteration alternates between performing an expectation (E) 
step, which is the computation of 

𝑄𝑄�𝜃𝜃�𝜃𝜃(𝑡𝑡)� = 𝐸𝐸(ℒ𝑁𝑁((𝑋𝑋𝑖𝑖 ,𝑍𝑍𝑖𝑖);𝜃𝜃)|(𝑋𝑋𝑖𝑖);𝜃𝜃(𝑡𝑡)) 

where 𝐸𝐸(. |(𝑋𝑋𝑖𝑖);𝜃𝜃(𝑡𝑡))  is the conditional expectation 
given (𝑋𝑋𝑖𝑖) computed with the distribution of the complete 
data under the value 𝜃𝜃(𝑡𝑡)  of the parameter, and the 
maximization (M) step computes parameters that maximize 
the expected log-likelihood found on the (E) step 𝑄𝑄�𝜃𝜃�𝜃𝜃(𝑡𝑡)�. 
In the (E) step, we compute 

𝑄𝑄�𝜃𝜃�𝜃𝜃(𝑡𝑡)� = ∑ ∑ 𝜋𝜋�ℓ(𝑋𝑋𝑖𝑖 ,𝜃𝜃(𝑡𝑡)) log(𝜋𝜋ℓ𝜆𝜆(𝑋𝑋𝑖𝑖 , 𝜏𝜏ℓ))𝑀𝑀
ℓ=1

𝑁𝑁
𝑖𝑖=1   

where 𝜋𝜋�ℓ(𝑋𝑋𝑖𝑖 ,𝜃𝜃(𝑡𝑡)) is the posterior probability 

𝜋𝜋�ℓ�𝑋𝑋𝑖𝑖 ,𝜃𝜃(𝑡𝑡)� = 𝑃𝑃�𝑍𝑍𝑖𝑖ℓ = 1�(𝑋𝑋𝑖𝑖),𝜃𝜃(𝑡𝑡)� = 𝜋𝜋ℓ
(𝑡𝑡)𝜆𝜆(𝑋𝑋𝑖𝑖 ,𝜏𝜏ℓ

(𝑡𝑡))
Λ�𝑋𝑋𝑖𝑖 ,𝜃𝜃(𝑡𝑡)�

   (14) 

In the EM algorithm, at iteration 𝑛𝑛, we want to maximize 
𝑄𝑄�𝜃𝜃�𝜃𝜃�(𝑛𝑛)�  with respect to 𝜃𝜃 , where 𝜃𝜃�(𝑛𝑛)  is the current 
value of parameter  𝜃𝜃 . We can maximize the terms that 
contain 𝜋𝜋ℓ  and   𝒯𝒯ℓ = (𝜇𝜇ℓ,Ωℓ)  separately. We introduce 
one Lagrange multiplier 𝛼𝛼 to maximize with respect to 𝜋𝜋ℓ 

 

https://en.wikipedia.org/wiki/Iterative_method
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with the constraint ∑ 𝜋𝜋ℓ𝑀𝑀
ℓ=1 = 1  and solve the following 

equation: 
𝜕𝜕
𝜕𝜕𝜋𝜋ℓ

�∑ ∑ 𝜋𝜋�ℓ�𝑋𝑋𝑖𝑖 ,𝜃𝜃�(𝑛𝑛)�𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋ℓ + 𝛼𝛼�∑ 𝜋𝜋ℓℓ − 1�𝑀𝑀
ℓ=1

𝑁𝑁
𝑖𝑖=1 � = 0  

And the classical solution: 

𝜋𝜋�ℓ
(𝑛𝑛+1) = 1

𝑁𝑁
∑ 𝜋𝜋�ℓ�𝑋𝑋𝑖𝑖 ,𝜃𝜃�(𝑛𝑛)�𝑁𝑁
𝑖𝑖=1   

Then, we maximize ∑ ∑ 𝜋𝜋�ℓ�𝑋𝑋𝑖𝑖 ,𝜃𝜃�(𝑛𝑛)�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖 , 𝜏𝜏ℓ)𝑀𝑀
ℓ=1

𝑁𝑁
𝑖𝑖=1 , 

where the derivatives can be computed with respect to the 
components of 𝜇𝜇ℓ  and Ωℓ  by using some results from 
matrix algebra. When taking the log of 𝜆𝜆(𝑋𝑋𝑖𝑖 , 𝜏𝜏ℓ) , 
substituting it into ∑ ∑ 𝜋𝜋�ℓ�𝑋𝑋𝑖𝑖 ,𝜃𝜃�(𝑛𝑛)�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖 , 𝜏𝜏ℓ)𝑀𝑀

ℓ=1
𝑁𝑁
𝑖𝑖=1 , and 

taking the derivative w.r.t. 𝜇𝜇ℓ, we have 

𝜇̂𝜇ℓ
(𝑛𝑛+1) = �∑ π�ℓ�Xi,θ�(𝑛𝑛)�(𝐼𝐼𝑚𝑚 + Ωℓ𝑍𝑍𝑖𝑖)−1𝑍𝑍𝑖𝑖N

i=1 �−1
  

        × ∑ π�ℓ�Xi,θ�(𝑛𝑛)�(𝐼𝐼𝑚𝑚 + Ωℓ𝑍𝑍𝑖𝑖)−1N
i=1 (𝑌𝑌𝑖𝑖 − 𝐷𝐷𝑖𝑖)  (15) 

When the Ωℓs are known and when the Ωℓs are unknown, 
the maximum likelihood estimators of the parameters are 
given by the system. 

 
Proposition 3.1 The sequence 𝜃𝜃�(𝑛𝑛) generated by the EM 

algorithm converges to a stationary point of the likelihood. 
Proof. We prove the convergence for 𝑚𝑚 = 1 to avoid 

cumbersome details. We employ the results  obtained by 
McLachlan and Krishnan [15]. As the following conditions 
are given:  

1- Θ ⊂ ℝ3𝑀𝑀−1. 
2- Θ𝜃𝜃0 = {𝜃𝜃 ∈ Θ, 𝐿𝐿𝑁𝑁(𝜃𝜃) ≥ 𝐿𝐿𝑁𝑁(𝜃𝜃0)} is a compact set if 

𝐿𝐿𝑁𝑁(𝑋𝑋,𝜃𝜃0) > −∞. 
3- 𝐿𝐿𝑁𝑁(𝜃𝜃) is continuous on Θ and differentiable on the 

interior of Θ. 
4- 𝑄𝑄�𝜃𝜃,𝜃𝜃(𝑡𝑡)� is continuous with respect to both 𝜃𝜃 and 

𝜃𝜃(𝑡𝑡). 

5- 𝜕𝜕𝑄𝑄�𝜃𝜃 ,𝜃𝜃�(𝑛𝑛 )�
𝜕𝜕𝜕𝜕

|𝜃𝜃= 𝜃𝜃�(𝑛𝑛+1) = 0. 

6- ∂Q�θ ,θ(t)�
∂θ

 is continuous in both 𝜃𝜃 and 𝜃𝜃(𝑡𝑡). 

Conditions 3, 4, 5, and 6 are verified by the regularity of 
the likelihood (see Proposition 4.2). In a standard Gaussian 
mixture, condition 2 is usually unverified (see McLachlan 
and Krishnan [15]. However, here, one has the following 
result (see (12)): 

𝛬𝛬(𝑋𝑋,𝜃𝜃) ∝ ∑ 𝜋𝜋ℓ𝑀𝑀
ℓ 𝑛𝑛�(𝑌𝑌 − 𝐷𝐷), (𝜇𝜇ℓ𝑍𝑍 ,𝜎𝜎ℓ2𝑍𝑍�  

Where 𝜎𝜎ℓ2(𝑍𝑍) = 𝑍𝑍(1 + 𝑤𝑤ℓ2) ≥ 𝑍𝑍 > 0.  Therefore, the 
formula of 𝛬𝛬(𝑋𝑋,𝜃𝜃) is a mixture of Gaussian distributions 
that consist of variances all bounded from below. This 
finding reveals condition 2. 

4. Asymptotic Properties of MLE  
This section aims to investigate theoretically the 

consistency and asymptotic normality of the exact maximum 
likelihood estimator of  𝜃𝜃0 when we assume that the number 
of components 𝑀𝑀  is known. For simplicity’s sake, we 

consider only the case 𝑚𝑚 = 1. The parameter set Θ is given 
by 

Θ = { (𝜋𝜋ℓ, 𝜏𝜏ℓ)�, ℓ = 1, … ,𝑀𝑀,  
∀ℓ ∈ {1, … ,𝑀𝑀 − 1}, 0 < 𝜋𝜋ℓ < 1, 0 < 1 −∑ 𝜋𝜋ℓ𝑀𝑀−1

ℓ=1 < 1, 

𝜏𝜏ℓ = (𝜇𝜇ℓ,𝑤𝑤ℓ2) ∈ �ℝ × ℝ+, ℓ ≠ ℓ′ ⇒ 𝜏𝜏ℓ ≠ 𝜏𝜏ℓ′   } 

Now, we set 𝜋𝜋𝑀𝑀 = 1 −∑ 𝜋𝜋ℓ𝑀𝑀−1
ℓ=1 , but only 3M-1 

parameters need to be estimated. When necessary in 
notations, we set 𝜃𝜃 = (𝜃𝜃1, … ,𝜃𝜃3M−1). The MLE is defined 
as any solution of 

𝜃𝜃�𝑁𝑁 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃∈Θ𝐿𝐿𝑁𝑁(𝜃𝜃) 
where 𝐿𝐿𝑁𝑁(𝜃𝜃)  is defined by (7)–(11). To prove the 
identifiability property, the following assumption is required 
as in Alkreemawi et al. [2]: 

 
(H4) Either the function 𝑏𝑏( . )/𝜎𝜎( . ) is constant or not 

constant, and under  𝑄𝑄0
𝑥𝑥 ,𝑇𝑇 , the random variable 

(𝐷𝐷(𝑋𝑋),𝑌𝑌(𝑋𝑋),𝑍𝑍(𝑋𝑋))  admits a density 𝑓𝑓(𝑑𝑑,𝑦𝑦, 𝑧𝑧)  with 
respect to the Lebesgue measure on ℝ × ℝ+, which is jointly 
continuous and positive on an open ball of ℝ × ℝ+. 

When b( . )/σ( . )  is constant, this case is simple. For 
instance, let 𝑏𝑏( . ) ≡ 𝜎𝜎( . ) ≡ 1 . Then, 𝑍𝑍(𝑋𝑋) =  𝐷𝐷(𝑋𝑋) = 
𝑉𝑉(𝑋𝑋) = 𝑇𝑇 is deterministic, and under 𝑄𝑄0

𝑥𝑥 ,𝑇𝑇 , 𝑈𝑈(𝑋𝑋) = 𝑌𝑌(𝑋𝑋) 
= 𝑊𝑊𝑇𝑇. Under 𝑄𝑄𝜃𝜃 , (𝑌𝑌(𝑋𝑋) − 𝐷𝐷(𝑋𝑋)) is a mixture of Gaussian 
distributions with means (𝜇𝜇ℓ𝑇𝑇), variances (𝑇𝑇(1 + 𝑤𝑤ℓ2𝑇𝑇)), 
and proportions (𝜋𝜋ℓ). 

The case where b( . )/σ( . )  is not constant. Under 
smoothness assumptions on functions 𝑏𝑏,𝜎𝜎, assumption (H4) 
will be accomplished by using Malliavin calculus tools (see 
Alkreemawi et al. [2]). As mixture distributions are utilized, 
the identifiability of the entire parameter 𝜃𝜃  can only be 
obtained in the following concept: 

𝜃𝜃~𝜃𝜃0 ⇔  {(𝜋𝜋ℓ, 𝜏𝜏ℓ), ℓ = 1, … ,𝑀𝑀 } 
= ��𝜋𝜋ℓ,0), , 𝜏𝜏ℓ,0�, ℓ = 1, … ,𝑀𝑀 �  (16) 

Now, we can prove the following: 
 
Proposition 4.1. Under (H1)-(H2)-(H4), ℚ𝜃𝜃 = ℚ𝜃𝜃0  

implies that 𝜃𝜃~𝜃𝜃0. 
Proof. First, when b( . )/σ( . )  is not constant, we 

consider two parameters 𝜃𝜃 and 𝜃𝜃0, and aim to prove that 
ℚ𝜃𝜃 = ℚ𝜃𝜃0  implies 𝜃𝜃~𝜃𝜃0 . As Λ(𝑋𝑋,𝜃𝜃) and λ(𝑋𝑋, 𝜏𝜏ℓ) depend 
on 𝑋𝑋  only through the statistics 𝑌𝑌(𝑋𝑋),𝐷𝐷(𝑋𝑋),𝑍𝑍(𝑋𝑋),  
𝑈𝑈(𝑋𝑋),𝑉𝑉(𝑋𝑋) with a slight abuse of notation, we set 𝑌𝑌(𝑋𝑋) = 
𝑌𝑌,𝑈𝑈(𝑋𝑋) = 𝑈𝑈,𝑍𝑍(𝑋𝑋) = 𝑍𝑍,𝐷𝐷(𝑋𝑋) = 𝐷𝐷,𝑉𝑉(𝑋𝑋) = 𝑉𝑉 and 

Λ(𝑋𝑋,𝜃𝜃) = Λ(𝑌𝑌,𝐷𝐷,𝑍𝑍,𝑈𝑈,𝑉𝑉,𝜃𝜃), 
λ(𝑋𝑋, 𝜏𝜏ℓ) = λ(𝑌𝑌,𝐷𝐷,𝑍𝑍,𝑈𝑈,𝑉𝑉, 𝜏𝜏ℓ)     (17) 

Under (H4),  Λ(𝑦𝑦,𝑑𝑑, 𝑧𝑧,𝑢𝑢, 𝑣𝑣,𝜃𝜃)  is the density of the 
distribution of (𝑌𝑌,𝐷𝐷,𝑍𝑍,𝑈𝑈,𝑉𝑉, ) under ℚ𝜃𝜃  with respect to the 
density of (𝑌𝑌,𝐷𝐷,𝑍𝑍,𝑈𝑈,𝑉𝑉, )  under 𝑄𝑄0

𝑥𝑥 ,𝑇𝑇  and ℚ𝜃𝜃 = ℚ𝜃𝜃0  
implies Λ(𝑦𝑦,𝑑𝑑, 𝑧𝑧,𝑢𝑢, 𝑣𝑣,𝜃𝜃) =  Λ(𝑦𝑦,𝑑𝑑, 𝑧𝑧,𝑢𝑢, 𝑣𝑣,𝜃𝜃0)  a.e., hence, 
everywhere on ℝ × ℝ+  by the continuity assumption.   
We deduce that the following equality holds for all     
𝑦𝑦,𝑑𝑑 ∈ ℝ, 𝑧𝑧 > 0: 

 



166 Alkreemawi Walaa Khazal et al.:  Consistency of Estimators in Mixtures of  
Stochastic Differential Equations with Additive Random Effects 

∑ 𝜋𝜋ℓ𝑀𝑀
ℓ=1

1

�1+𝑤𝑤ℓ
2𝑧𝑧
𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑧𝑧�(𝑦𝑦−𝑑𝑑)
𝑧𝑧 −𝜇𝜇ℓ�

2

2�1+𝑤𝑤ℓ
2𝑧𝑧�

�  

                    =  ∑ 𝜋𝜋ℓ,0
𝑀𝑀
ℓ=1

1

�1+𝑤𝑤ℓ,0
2 𝑧𝑧

𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑧𝑧�(𝑦𝑦−𝑑𝑑)

𝑧𝑧 −𝜇𝜇ℓ,0�
2

2�1+𝑤𝑤ℓ,0
2 𝑧𝑧�

�  

Let us set 

𝑝𝑝(𝑧𝑧) = ∏ �1 + 𝑤𝑤ℓ2𝑧𝑧1≤ℓ≤𝑀𝑀  ,  

𝑞𝑞ℓ(𝑧𝑧) = ∏ �1 + 𝑤𝑤ℓ′
2 𝑧𝑧1≤ℓ′ ≤𝑀𝑀,ℓ′ ≠ℓ  , 

and 

𝑝𝑝0(𝑧𝑧) = ∏ �1 + 𝑤𝑤ℓ,0
2 𝑧𝑧1≤ℓ≤𝑀𝑀  ,  

𝑞𝑞ℓ,0(𝑧𝑧) = ∏ �1 + 𝑤𝑤ℓ′ ,0
2 𝑧𝑧1≤ℓ′ ≤𝑀𝑀,ℓ′ ≠ℓ  ,  

We note that  𝑞𝑞ℓ(𝑧𝑧)�1 + 𝑤𝑤ℓ2𝑧𝑧 = 𝑝𝑝(𝑧𝑧) , 

 𝑞𝑞ℓ,0(𝑧𝑧)�1 + 𝑤𝑤ℓ,0
2 𝑧𝑧 = 𝑝𝑝0(𝑧𝑧). Thus, such quantities do not 

depend on ℓ. After reducing to the same denominator, we 
obtain 

𝑝𝑝0(𝑧𝑧)
𝑝𝑝(𝑧𝑧) =

∑ 𝜋𝜋ℓ,0
𝑀𝑀
ℓ=1 𝑞𝑞ℓ,0(𝑧𝑧)𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑧𝑧�(𝑦𝑦−𝑑𝑑)

𝑧𝑧 −𝜇𝜇ℓ,0�
2

2�1+𝑤𝑤ℓ,0
2 𝑧𝑧�� �

∑ 𝜋𝜋ℓ𝑀𝑀
ℓ=1 𝑞𝑞ℓ(𝑧𝑧)𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑧𝑧�(𝑦𝑦−𝑑𝑑)

𝑧𝑧 −𝜇𝜇ℓ�
2

2�1+𝑤𝑤ℓ
2𝑧𝑧�� �

  

The right-hand side is a function of (𝑦𝑦,𝑑𝑑, 𝑧𝑧), whereas the 
left-hand side is a function of 𝑧𝑧  only. This approach is 
possible only if 𝑝𝑝(𝑧𝑧) = 𝑝𝑝0(𝑧𝑧) for all 𝑧𝑧 > 0. Therefore,  

{𝑤𝑤1
2, … ,𝑤𝑤𝑀𝑀2 } = �𝑤𝑤1,0

2 , … ,𝑤𝑤𝑀𝑀,0
2 �           (18) 

and the equality of the variances can be obtained by 
reordering the terms if required. Then, we have for   
𝜎𝜎ℓ2(𝑧𝑧) = 𝑧𝑧(1 + 𝑤𝑤ℓ2𝑧𝑧) and a fixed 𝑧𝑧, 

 ∑ 𝜋𝜋ℓ𝑀𝑀
ℓ=1 𝑞𝑞ℓ(𝑧𝑧)𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑧𝑧�(𝑦𝑦−𝑑𝑑)
𝑧𝑧 −𝜇𝜇ℓ�

2

2�1+𝑤𝑤ℓ
2𝑧𝑧�

�  

= 𝑝𝑝(𝑧𝑧)√2𝜋𝜋𝜋𝜋∑ 𝜋𝜋ℓ𝑀𝑀
ℓ=1 𝑛𝑛�(𝑦𝑦 − 𝑑𝑑), (𝜇𝜇ℓ𝑧𝑧,𝜎𝜎ℓ2(𝑧𝑧) )�  (19) 

Here, 𝑛𝑛�(𝑦𝑦 − 𝑑𝑑), (𝑚𝑚,𝜎𝜎2 )�  indicates the Gaussian 
density with mean 𝑚𝑚  and variance 𝜎𝜎2 . Analogously, by 
using the equality (18), 

∑ 𝜋𝜋ℓ,0
𝑀𝑀
ℓ=1 𝑞𝑞ℓ,0(𝑧𝑧)𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑧𝑧�(𝑦𝑦−𝑑𝑑)
𝑧𝑧 −𝜇𝜇ℓ,0�

2

2�1+𝑤𝑤ℓ,0
2 𝑧𝑧�

� =  

𝑝𝑝(𝑧𝑧)√2𝜋𝜋𝜋𝜋 × ∑ 𝜋𝜋ℓ,0
𝑀𝑀
ℓ=1 𝑛𝑛 �(𝑦𝑦 − 𝑑𝑑), �𝜇𝜇ℓ,0𝑧𝑧,𝜎𝜎ℓ,0

2 (𝑧𝑧) ��  

For all fixed 𝑧𝑧 > 0, we therefore have for all 𝑦𝑦,𝑑𝑑 ∈ ℝ,  

∑ 𝜋𝜋ℓ𝑀𝑀
ℓ=1 𝑛𝑛�(𝑦𝑦 − 𝑑𝑑), (𝜇𝜇ℓ𝑧𝑧,𝜎𝜎ℓ2(𝑧𝑧) )� =  

∑ 𝜋𝜋ℓ,0
𝑀𝑀
ℓ=1 𝑛𝑛 �(𝑦𝑦 − 𝑑𝑑), �𝜇𝜇ℓ,0𝑧𝑧,𝜎𝜎ℓ,0

2 (𝑧𝑧) ��. 

Herein, the equality of two mixtures of Gaussian 
distributions with proportions (𝜋𝜋ℓ) and (𝜋𝜋ℓ,0), expectations 
(𝜇𝜇ℓ𝑧𝑧) and (𝜇𝜇ℓ,0𝑧𝑧), and the same set of known variances 
𝑧𝑧(1 + 𝑤𝑤ℓ2𝑧𝑧) are given. From the identifiability of Gaussian 

mixtures, we have the equality 

{(𝜋𝜋ℓ,𝜇𝜇ℓ), ℓ = 1, … ,𝑀𝑀 } = ��𝜋𝜋ℓ,0,𝜇𝜇ℓ,0�, ℓ = 1, … ,𝑀𝑀 �, 

and thus, 𝜃𝜃~𝜃𝜃0. 
Second, when b( . )/σ( . )  is constant, for instance, let 

b( . ) ≡ 1,σ( . ) ≡ 1. As noted above, under 𝑄𝑄0
𝑥𝑥 ,𝑇𝑇, 𝑌𝑌 = 𝑊𝑊𝑇𝑇 

and 𝐷𝐷 = 𝑇𝑇. Therefore, (𝑌𝑌 − 𝐷𝐷) is a Gaussian distribution. 
Under 𝑄𝑄𝜃𝜃 , (𝑌𝑌 − 𝐷𝐷)  has density   Λ((𝑦𝑦 − 𝑑𝑑),𝜃𝜃)   ×  
𝑒𝑒𝑒𝑒𝑒𝑒(−((𝑦𝑦 − 𝑑𝑑) + 𝑇𝑇)2 2𝑇𝑇⁄ )  w. r. t. the Lebesgue measure 
on ℝ. Specifically, the mixture of Gaussian densities can 
also be deduced based on the identifiability property of 
Gaussian mixtures. 

 
Proposition 4.2. Let 𝔼𝔼𝜃𝜃0  denote the expectation under 

ℚ𝜃𝜃0 . The function 𝜃𝜃 → Λ(𝑋𝑋,𝜃𝜃) is 𝐶𝐶∞  on Θ and  

1- 𝔼𝔼𝜃𝜃0 �
𝜕𝜕 log Λ(𝑋𝑋,𝜃𝜃)

𝜕𝜕𝜃𝜃𝑘𝑘
|𝜃𝜃=𝜃𝜃0�

2
< +∞ and 

𝔼𝔼𝜃𝜃0 �
𝜕𝜕 log Λ(𝑋𝑋,𝜃𝜃)

𝜕𝜕𝜃𝜃𝑘𝑘
|𝜃𝜃=𝜃𝜃0� = 0 for all 1 ≤ 𝑘𝑘 ≤ 3𝑀𝑀 − 1. 

2- 𝔼𝔼𝜃𝜃0 �
𝜕𝜕2 log Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜃𝜃𝑘𝑘𝜕𝜕𝜃𝜃𝑗𝑗

|𝜃𝜃=𝜃𝜃0� < +∞ for all1 ≤ 𝑘𝑘,   

𝑗𝑗 ≤ 3𝑀𝑀 − 1. 

𝔼𝔼𝜃𝜃0 �
𝜕𝜕 log Λ(𝑋𝑋,𝜃𝜃)

𝜕𝜕𝜃𝜃𝑘𝑘
|𝜃𝜃=𝜃𝜃0

𝜕𝜕 log Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜃𝜃𝑗𝑗

|𝜃𝜃=𝜃𝜃0�  

= −𝔼𝔼𝜃𝜃0 �
𝜕𝜕2 log Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜃𝜃𝑘𝑘𝜕𝜕𝜃𝜃𝑗𝑗

� |𝜃𝜃=𝜃𝜃0   

for all 1 ≤ 𝑘𝑘, 𝑗𝑗 ≤ 3𝑀𝑀 − 1. 
The Fisher information matrix can be defined as  

𝐼𝐼(𝜃𝜃0) = �𝔼𝔼𝜃𝜃0 �
𝜕𝜕 log Λ(𝑋𝑋,𝜃𝜃)

𝜕𝜕𝜃𝜃𝑘𝑘
|𝜃𝜃=𝜃𝜃0

𝜕𝜕 log Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜃𝜃𝑗𝑗

|𝜃𝜃=𝜃𝜃0��  

for all 1 ≤ 𝑘𝑘, 𝑗𝑗 ≤ 3𝑀𝑀 − 1. 
 
Proof. We use results proved in Alkreemawi el al. [2] 

(Section 3.1, Lemma 3.1.1, Proposition 3.1.2) to prove this 
proposition. For all 𝑞𝑞 = (𝑦𝑦 − 𝑑𝑑) ∈  ℝ and all 𝜏𝜏 = ( 𝜇𝜇,𝑤𝑤2), 

𝐸𝐸𝑄𝑄𝜏𝜏 �𝑒𝑒𝑒𝑒𝑒𝑒 �𝑞𝑞
𝑌𝑌−𝐷𝐷

1+𝑤𝑤2𝑍𝑍
�� < +∞  

𝑄𝑄𝜏𝜏  is the distribution of 𝑋𝑋𝑖𝑖  when 𝜙𝜙𝑖𝑖  has a Gaussian 
distribution with parameters  𝜏𝜏 = ( 𝜇𝜇,𝑤𝑤2). This idea implies 
that 𝐸𝐸𝑄𝑄𝜏𝜏 �

𝑌𝑌−𝐷𝐷
1+𝑤𝑤2𝑍𝑍

�
𝑛𝑛

< +∞ for all 𝑛𝑛 ≥ 1.  
Let 

𝜂𝜂(𝜏𝜏ℓ) = �(𝑌𝑌−𝐷𝐷)−𝜇𝜇ℓZ
1+𝑤𝑤ℓ

2Z
� ,      𝜉𝜉(𝑤𝑤ℓ2) = Z

1+𝑤𝑤ℓ
2Z

  

The random variable that has moments of any order under 
𝑄𝑄𝜏𝜏 , 𝜉𝜉(𝑤𝑤ℓ2) is bounded, and the following relations hold: 

𝐸𝐸𝑄𝑄𝜏𝜏𝜂𝜂(𝜏𝜏ℓ) = 0, 𝐸𝐸𝑄𝑄𝜏𝜏�𝜂𝜂
2(𝜏𝜏ℓ) − 𝜉𝜉(𝑤𝑤ℓ2)� = 0    (20) 

𝐸𝐸𝑄𝑄𝜏𝜏 ��
1
2
�𝜂𝜂2(𝜏𝜏ℓ) − 𝜉𝜉(𝑤𝑤ℓ2)��

2
− 𝜂𝜂2(𝜏𝜏ℓ)𝜉𝜉(𝑤𝑤ℓ2)�  

�− 1
2
𝜉𝜉2(𝑤𝑤ℓ2)�  = 0                      (21) 

𝐸𝐸𝑄𝑄𝜏𝜏 �
1
2
𝜂𝜂3(𝜏𝜏ℓ) − 3

2
𝜂𝜂(𝜏𝜏ℓ)𝜉𝜉(𝑤𝑤ℓ2)� = 0        (22) 

All derivatives of Λ(𝑋𝑋,𝜃𝜃)  are well defined. For 
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ℓ = 1, … ,𝑀𝑀 − 1, we have 
𝜕𝜕Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜋𝜋ℓ

= 𝜆𝜆(𝑋𝑋, 𝜏𝜏ℓ) − 𝜆𝜆(𝑋𝑋, 𝜏𝜏𝑀𝑀) 

As for all 𝜏𝜏 = ( 𝜇𝜇,𝑤𝑤2) , 𝑄𝑄𝜏𝜏 = 𝜆𝜆(𝑋𝑋, 𝜏𝜏)𝑄𝑄0
𝑥𝑥 ,𝑇𝑇 , the random 

variable above is 𝑄𝑄0
𝑥𝑥 ,𝑇𝑇-integrable and 

∫𝐶𝐶𝑇𝑇
𝜕𝜕Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜋𝜋ℓ

𝑑𝑑𝑄𝑄0
𝑥𝑥 ,𝑇𝑇 = ∫𝐶𝐶𝑇𝑇

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜋𝜋ℓ

𝑑𝑑ℚ𝜃𝜃 = 0  

Moreover, as 𝜆𝜆(𝑋𝑋, 𝜏𝜏ℓ) Λ(𝑋𝑋,𝜃𝜃)⁄ ≤ 𝜋𝜋ℓ−1, we have 

�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜋𝜋ℓ

�
2
Λ(𝑋𝑋,𝜃𝜃) =

�𝜕𝜕Λ (𝑋𝑋 ,𝜃𝜃 )
𝜕𝜕𝜋𝜋ℓ

�
2

Λ(𝑋𝑋,𝜃𝜃)
  

≤ 2
𝜋𝜋ℓ
𝜆𝜆(𝑋𝑋, 𝜏𝜏ℓ) + 2

𝜋𝜋𝑀𝑀
𝜆𝜆(𝑋𝑋, 𝜏𝜏𝑀𝑀)  

Therefore,  

𝐸𝐸ℚ𝜃𝜃 �
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 Λ(𝑋𝑋,𝜃𝜃)

𝜕𝜕𝜋𝜋ℓ
�

2
  

∫𝐶𝐶𝑇𝑇
� 2
𝜋𝜋ℓ
𝜆𝜆(𝑋𝑋, 𝜏𝜏ℓ) + 2

𝜋𝜋𝑀𝑀
𝜆𝜆(𝑋𝑋, 𝜏𝜏𝑀𝑀) �𝑑𝑑𝑄𝑄0

𝑥𝑥 ,𝑇𝑇 = 2
𝜋𝜋ℓ

+ 2
𝜋𝜋𝑀𝑀

  

Higher order derivatives of Λ(𝑋𝑋,𝜃𝜃) with respect to the 
𝜋𝜋ℓ’s are nul: 

𝜕𝜕2Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜋𝜋ℓ𝜕𝜕𝜋𝜋ℓ′

= 0  

Now we find the derivatives with respect to the parameters 
𝜇𝜇ℓ, 𝑤𝑤ℓ2. We have:       

𝜕𝜕Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜇𝜇ℓ

= 𝜋𝜋ℓ
𝜕𝜕𝜕𝜕 (𝑋𝑋 ,𝜏𝜏ℓ)
𝜕𝜕𝜇𝜇ℓ

= 𝜋𝜋ℓ𝜂𝜂(𝜏𝜏ℓ)𝜆𝜆(𝑋𝑋, 𝜏𝜏ℓ)  

We know that:  

𝐸𝐸𝑄𝑄𝜏𝜏ℓ |𝜂𝜂(𝜏𝜏ℓ)| = ∫𝐶𝐶𝑇𝑇
|𝜂𝜂(𝜏𝜏ℓ)|𝜆𝜆(𝑋𝑋, 𝜏𝜏ℓ)𝑑𝑑𝑄𝑄0

𝑥𝑥 ,𝑇𝑇 < +∞   

𝐸𝐸𝑄𝑄𝜏𝜏ℓ𝜂𝜂(𝜏𝜏ℓ) = ∫𝐶𝐶𝑇𝑇
𝜂𝜂(𝜏𝜏ℓ)𝜆𝜆(𝑋𝑋, 𝜏𝜏ℓ)𝑑𝑑𝑄𝑄0

𝑥𝑥 ,𝑇𝑇  = 0.  

Consequently, 

∫𝐶𝐶𝑇𝑇
�𝜕𝜕Λ(𝑋𝑋,𝜃𝜃)

𝜕𝜕𝜇𝜇ℓ
� 𝑑𝑑𝑄𝑄0

𝑥𝑥 ,𝑇𝑇 < +∞,  

∫𝐶𝐶𝑇𝑇
𝜕𝜕Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜇𝜇ℓ

𝑑𝑑𝑄𝑄0
𝑥𝑥 ,𝑇𝑇 = 𝐸𝐸ℚ𝜃𝜃

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜇𝜇ℓ

= 0.  

Now,  

�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜇𝜇ℓ

�
2
Λ(𝑋𝑋,𝜃𝜃) =

�𝜕𝜕Λ (𝑋𝑋 ,𝜃𝜃 )
𝜕𝜕𝜇𝜇 ℓ

�
2

Λ(𝑋𝑋,𝜃𝜃)
= 𝜋𝜋ℓ

2𝜂𝜂2(𝜏𝜏ℓ)𝜆𝜆2(𝑋𝑋,𝜏𝜏ℓ)
Λ(𝑋𝑋,𝜃𝜃)

  

≤ 𝜋𝜋ℓ𝜂𝜂2(𝜏𝜏ℓ)𝜆𝜆(𝑋𝑋, 𝜏𝜏ℓ) 

Thus, 

𝐸𝐸ℚ𝜃𝜃 �
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 Λ(𝑋𝑋,𝜃𝜃)

𝜕𝜕𝜇𝜇ℓ
�

2
≤ 𝜋𝜋ℓ𝐸𝐸𝑄𝑄𝜏𝜏ℓ�𝜂𝜂

2(𝜏𝜏ℓ)� = 𝜋𝜋ℓ𝜉𝜉(𝑤𝑤ℓ2)  

Next, we have 
𝜕𝜕Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝑤𝑤ℓ

2 = 𝜋𝜋ℓ
𝜕𝜕𝜕𝜕 (𝑋𝑋 ,𝜃𝜃)
𝜕𝜕𝑤𝑤ℓ

2 = 𝜋𝜋ℓ
1
2
�𝜂𝜂2(𝜏𝜏ℓ) − 𝜉𝜉(𝑤𝑤ℓ2)�𝜆𝜆(𝑋𝑋, 𝜏𝜏ℓ)  

Again, we know that this random variable is 
𝑄𝑄0
𝑥𝑥 ,𝑇𝑇-integrable with nul integral, thereby obtaining 

𝐸𝐸ℚ𝜃𝜃 �
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 Λ(𝑋𝑋,𝜃𝜃)

𝜕𝜕𝑤𝑤ℓ
2 � < +∞, and 𝐸𝐸ℚ𝜃𝜃

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝑤𝑤ℓ

2 = 0, 

Moreover, 

�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝑤𝑤ℓ

2 �
2
Λ(𝑋𝑋,𝜃𝜃) =

�𝜕𝜕Λ (𝑋𝑋 ,𝜃𝜃 )
𝜕𝜕𝑤𝑤ℓ

2 �
2

Λ(𝑋𝑋,𝜃𝜃)
  

≤ 𝜋𝜋ℓ �
1
2
�𝜂𝜂2(𝜏𝜏ℓ) − 𝜉𝜉(𝑤𝑤ℓ2)�� 𝜆𝜆(𝑋𝑋, 𝜏𝜏ℓ)  

This finding implies that 

𝐸𝐸ℚ𝜃𝜃 �
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 Λ(𝑋𝑋,𝜃𝜃)

𝜕𝜕𝑤𝑤ℓ
2 �

2
< +∞. 

Now we look at second-order derivatives. The successive 
derivatives with respect to 𝜇𝜇ℓ, 𝜇𝜇ℓ′ , 𝑤𝑤ℓ2 , 𝑤𝑤ℓ′

2   with ℓ ≠ ℓ′  
are nul. We obtain 

𝜕𝜕2Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜇𝜇ℓ

2 = 𝜋𝜋ℓ
𝜕𝜕2𝜆𝜆(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜇𝜇ℓ

2 = 𝜋𝜋ℓ�𝜂𝜂2(𝜏𝜏ℓ) − 𝜉𝜉(𝑤𝑤ℓ2)�𝜆𝜆(𝑋𝑋, 𝜏𝜏ℓ). 

This random variable is integrable with respect to 𝑄𝑄0
𝑥𝑥 ,𝑇𝑇 

with the nul integral. Thus, 

𝜕𝜕2𝑙𝑙𝑙𝑙𝑙𝑙Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜇𝜇ℓ

2 Λ(𝑋𝑋,𝜃𝜃) = 𝜕𝜕2Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜇𝜇ℓ

2 −
�𝜕𝜕Λ (𝑋𝑋 ,𝜃𝜃 )

𝜕𝜕𝜇𝜇 ℓ
�

2

Λ(𝑋𝑋,𝜃𝜃)
, 

We find that this random variable is integrable with 
respect to 𝑄𝑄0

𝑥𝑥 ,𝑇𝑇, and computing the integral obtains  

𝐸𝐸ℚ𝜃𝜃
𝜕𝜕2𝑙𝑙𝑙𝑙𝑙𝑙Λ(𝑋𝑋,𝜃𝜃)

𝜕𝜕𝜇𝜇ℓ
2 = −𝐸𝐸ℚ𝜃𝜃 �

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜇𝜇ℓ

�
2
. 

Next, 

         𝜕𝜕
2Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜇𝜇ℓ𝜕𝜕𝑤𝑤ℓ

2 = 𝜋𝜋ℓ
𝜕𝜕2𝜆𝜆(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜇𝜇ℓ𝜕𝜕𝑤𝑤ℓ

2   

                 = 𝜋𝜋ℓ �
1
2
𝜂𝜂3(𝜏𝜏ℓ) − 3

2
𝜂𝜂(𝜏𝜏ℓ)𝜉𝜉(𝑤𝑤ℓ2)� 𝜆𝜆(𝑋𝑋, 𝜏𝜏ℓ)  

         𝜕𝜕
2Λ(𝑋𝑋,𝜃𝜃)

𝜕𝜕�𝑤𝑤ℓ
2�

2 = 𝜋𝜋ℓ ��
1
2
�𝜂𝜂2(𝜏𝜏ℓ) − 𝜉𝜉(𝑤𝑤ℓ2)��

2
−�  

�                  𝜂𝜂2(𝜏𝜏ℓ)𝜉𝜉(𝑤𝑤ℓ2) − 1
2
𝜉𝜉2(𝑤𝑤ℓ2)� 𝜆𝜆(𝑋𝑋, 𝜏𝜏ℓ). 

Thus, we conclude the proof analogously using (21) and 
(22). 

 
Proposition 4.3. Assume that 𝐼𝐼(𝜃𝜃0)  is invertible and 

(H1)–(H2). Then, an estimator 𝜃𝜃�𝑁𝑁  solves the likelihood 
estimating equation 𝜕𝜕𝐿𝐿𝑁𝑁(𝜃𝜃) 𝜕𝜕𝜕𝜕⁄ = 0  with a probability 
tending to 1 and 𝜃𝜃�𝑁𝑁 → 𝜃𝜃0 in probability. 

 
Proof. For weak consistency following the standard steps, 

the uniformity condition needs to be proven. We prove that  
 
An open convex subset 𝑆𝑆 of 𝛩𝛩 exists, which contains 𝜃𝜃0 

and functions 𝐺𝐺𝑘𝑘 ,𝑗𝑗 ,ℓ(𝑋𝑋) such that, on S, 

�𝜕𝜕
3𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜃𝜃𝑘𝑘𝜕𝜕𝜃𝜃𝑗𝑗 𝜕𝜕𝜃𝜃𝑟𝑟

� ≤ 𝐺𝐺𝑘𝑘 ,𝑗𝑗 ,ℓ(𝑋𝑋)  and 𝐸𝐸𝜃𝜃0�𝐺𝐺𝑘𝑘 ,𝑗𝑗 ,ℓ(𝑋𝑋)� < +∞  for 

all 1 ≤ 𝑘𝑘, 𝑗𝑗, 𝑟𝑟 ≤ 3𝑀𝑀 − 1. 
𝐾𝐾,𝛼𝛼,𝛽𝛽, 𝑐𝑐0, 𝑐𝑐1 are set as positive numbers such that 

0 < 𝛼𝛼 <  𝛽𝛽 < 1, 0 < 𝑐𝑐0 <  𝑐𝑐1 , and 𝜃𝜃0 is assumed to belong 
to  
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𝑆𝑆 = {(𝜋𝜋ℓ,𝜇𝜇ℓ,𝑤𝑤ℓ2)1<ℓ<𝑀𝑀
�,𝛼𝛼 < 𝜋𝜋ℓ <  𝛽𝛽, 

                               |𝜇𝜇ℓ| < 𝐾𝐾, 𝑐𝑐0 < 𝑤𝑤ℓ2  < 𝑐𝑐1, 1 < ℓ < �𝑀𝑀} 

where 𝜋𝜋𝑀𝑀 = 1 −∑ 𝜋𝜋ℓ𝑀𝑀−1
ℓ=1 . We have to study  

𝜕𝜕3𝑙𝑙𝑙𝑙𝑙𝑙Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜃𝜃𝑘𝑘𝜕𝜕𝜃𝜃𝑗𝑗 𝜕𝜕𝜃𝜃𝑟𝑟

 =  

1
Λ(𝑋𝑋,𝜃𝜃)

𝜕𝜕3Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜃𝜃𝑘𝑘𝜕𝜕𝜃𝜃𝑗𝑗 𝜕𝜕𝜃𝜃𝑟𝑟

− 1
Λ2(𝑋𝑋,𝜃𝜃)

Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜃𝜃𝑟𝑟

𝜕𝜕2Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜃𝜃𝑘𝑘𝜕𝜕𝜃𝜃𝑗𝑗

  

− 1
Λ2(𝑋𝑋,𝜃𝜃)

�Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜃𝜃𝑘𝑘

𝜕𝜕2Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜃𝜃𝑗𝑗 𝜕𝜕𝜃𝜃𝑟𝑟

− Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜃𝜃𝑗𝑗

𝜕𝜕2Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜃𝜃𝑘𝑘𝜕𝜕𝜃𝜃𝑟𝑟

�  

+ 2
Λ3(𝑋𝑋,𝜃𝜃)

  𝜕𝜕Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜃𝜃𝑘𝑘

  𝜕𝜕Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜃𝜃𝑗𝑗

  𝜕𝜕Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜃𝜃𝑟𝑟

  

Therefore, we have, for 𝑗𝑗, 𝑘𝑘, 𝑟𝑟 distinct indexes 

𝜕𝜕3𝑙𝑙𝑙𝑙𝑙𝑙Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜋𝜋𝑗𝑗 𝜕𝜕𝜋𝜋𝑘𝑘𝜕𝜕𝜋𝜋𝑟𝑟

= 2
Λ3(𝑋𝑋 ,𝜃𝜃)

�𝜆𝜆�𝑋𝑋, 𝜏𝜏𝑗𝑗 � − 𝜆𝜆(𝑋𝑋, 𝜏𝜏𝑀𝑀)�  

× �𝜆𝜆(𝑋𝑋, 𝜏𝜏𝑘𝑘) − 𝜆𝜆(𝑋𝑋, 𝜏𝜏𝑀𝑀)� �𝜆𝜆(𝑋𝑋, 𝜏𝜏𝑟𝑟) − 𝜆𝜆(𝑋𝑋, 𝜏𝜏𝑀𝑀)�  

As 𝜆𝜆�𝑋𝑋, 𝜏𝜏𝑗𝑗 � Λ(𝑋𝑋,𝜃𝜃)⁄ ≤ 𝜋𝜋𝑗𝑗−1 < 𝛼𝛼−1, 
𝜕𝜕3𝑙𝑙𝑙𝑙𝑙𝑙Λ(𝑋𝑋,𝜃𝜃)
𝜕𝜕𝜋𝜋𝑗𝑗 𝜕𝜕𝜋𝜋𝑘𝑘𝜕𝜕𝜋𝜋𝑟𝑟

≤ 24𝛼𝛼−3  

We use 𝜆𝜆�𝑋𝑋, 𝜏𝜏𝑗𝑗 � Λ(𝑋𝑋,𝜃𝜃)⁄ ≤ 𝜋𝜋𝑗𝑗−1 < 𝛼𝛼−1  again to bound 
the other third-order derivatives. Then, in the derivatives, 
random variables appear 

𝜂𝜂𝑛𝑛(𝜏𝜏) = �(𝑌𝑌−𝐷𝐷)−𝜇𝜇Z
1+𝑤𝑤2Z

�
𝑛𝑛

  

for different values of 𝑛𝑛. We now bound 𝜂𝜂(𝜏𝜏) by an r. v. 
independent of 𝜏𝜏 and have moments of any order under ℚ𝜃𝜃0 . 
We have 

(𝑌𝑌−𝐷𝐷)
1+𝑤𝑤2𝑍𝑍

= (𝑌𝑌−𝐷𝐷)
1+𝑐𝑐1𝑍𝑍

�1 + �𝑐𝑐1−𝑤𝑤2�𝑍𝑍
1+𝑤𝑤2𝑍𝑍

�  

Thus, 

|𝜂𝜂(𝜏𝜏)| ≤ 𝑐𝑐1
𝑐𝑐0
�(𝑌𝑌−𝐷𝐷)

1+𝑐𝑐1𝑍𝑍
� + 𝐾𝐾

𝑐𝑐0
  

Now, in the same method  

�(𝑌𝑌−𝐷𝐷)
1+𝑐𝑐1𝑍𝑍

� = � (𝑌𝑌−𝐷𝐷)
1+𝑤𝑤2𝑍𝑍

�1 + �𝑤𝑤2−𝑐𝑐1�𝑍𝑍
1+𝑐𝑐1𝑍𝑍

�� ≤ 3 � (𝑌𝑌−𝐷𝐷)
1+𝑤𝑤2𝑍𝑍

�  

For all 𝜏𝜏, this finding implies that 

   𝐸𝐸𝑄𝑄𝜏𝜏 �
(𝑌𝑌−𝐷𝐷)
1+𝑐𝑐1𝑍𝑍

�
𝑛𝑛

< +∞.  

Consequently, 

𝐸𝐸ℚ𝜃𝜃0
�(𝑌𝑌−𝐷𝐷)

1+𝑐𝑐1𝑍𝑍
�
𝑛𝑛

= ∑ 𝜋𝜋ℓ,0𝐸𝐸ℚ𝜏𝜏0
𝑀𝑀
ℓ=1 �(𝑌𝑌−𝐷𝐷)

1+𝑐𝑐1𝑍𝑍
�
𝑛𝑛

< +∞  

The proof of Proposition 4.3 is complete. 

5. Conclusions 
In stochastic differential equations based random effects 

model framework. We considered the addition case in the 
drift where 𝑏𝑏(𝑥𝑥,𝜙𝜙𝑖𝑖) is linear in 𝜙𝜙𝑖𝑖( 𝑏𝑏(𝑥𝑥,𝜙𝜙𝑖𝑖) =  𝜙𝜙𝑖𝑖 + 𝑏𝑏(𝑥𝑥)), 
where ϕi  has a mixture of Gaussian. We obtain an 

expression of the exact likelihood. When the number of 
components is known, we prove the consistency of the 
maximum likelihood estimators (MLEs). Properties of the 
EM algorithm are described when the algorithm is used to 
compute MLE. 
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