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The Properties of Pure Diagonal Bilinear Models
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Abstract Stationarity, invertibility and covariance structure of pure diagonal bilinear models have been studied in details
in this paper. We transformed the pure diagonal bilinear model into the state space form and subsequently examined the
condition under which it is stationary and invertible. We also derived the covariance structure of the pure diagonal bilinear
model and showed that for every pure diagonal bilinear process there exists an ARMA process with identical covariance

structure.
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1. Introduction

Let {X;} and {e;} be two stochastic processes. We assume
that e, is independent, identically, distributed with E(e;) =0
and E(e®) = 02<oo. A bilinear model is one which is linear in
both {X;} and {e,} but not in those variables jointly. Let
31,82,...,ap,b1,b2,...bq and bij, 1< i <m, 1 SJ < k, be real
constants.

The general form of a bilinear model is given by Granger
and Andersen(1978) as

X = Zf=1 a X + Z}I:l C} €r—j
+2 22211(,]:1 bijX;—ie; (1.1)

The first part on the right hand side of (1) can be identified
as the autoregressive part of the process X,, the second part
as the moving average part and the third part as the ‘pure’
bilinear part. Following Subba Rao (1981), we denote this
model by BL (p,q,m,k), where BL is the abbreviation for
bilinear. On the other hand if p=q =0 and b; =0, for all i+ j,
the model is called Pure Diagonal Bilinear Model of order
p[PDBL(p)] and we write it as

X=X biX_ie; +e (1.2)

Subba Rao (1981) obtained second order moments of the
bilinear model BL(p,0,p,1), and Subba Rao and Gabr (1984)
obtained third order moments of the BL(1,0,1,1) model.
Sessay and SubbaRao (1988, 1991) have also shown that for
the BL (p,0,p,1) model, third order moments satisfy
Yule-Walker type difference equation.

It is well known that the linear autoregressive moving
average model can be written in the form of first order vector
difference equation (See Anderson, 1971; Priestly, 1978,
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1980) and this Vector form is known as the State Space Form.
It is convenient to study the properties of a model when it is
in the State Space Form (Akaike, 1974). Therefore, we put
the pure diagonal bilinear model in the Vectorial form and
subsequently examine the conditions under which it is
stationary and invertible.

2. Vectorial Representation of the Pure
Diagonal Bilinear Model

A time series {X} is said to be a diagonal bilinear process
if it satisfies the difference equation

X[ = ]r=1 ant—j + Z?:l C] et_]‘ + Z]P=1 b]Xt_] ee_]' + et

2.1)

where {e;} is a sequence of independent and identically
distributed random variables with zero mean and variance
0% < o0, If r = q =0, the model (2.1) is called Pure diagonal

bilinear (PDBL) model and we write it as
Xt :Z]P=1 b]Xt_] ee_]' + et (22)

where {e;} is as defined previously. The model (2.2) is

denoted by PDBL (P).
Let
0 0 O 0 o0
1 0 O 0 O
0 1 0 0 o0
Apxp = (2.3)
0 0 O 1 0
by 0 0 0 07
0 0 O 0 o0
_10 0 O 0 o0
ijxv N 249
0 0 0 .. 0 O
(j=12,....p)
C%‘Xp:( 1505 Os---s Os 0) (25)
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HIXp:( 17 Oa 09"'9 07 O)
KtT:( th Xt—ls"' > Xt—p+1)

(2.6)
@.7)

where T stands for operation transpose of a matrix. We now
represent the model (2.2) in vectorial form.

THEOREM 2.1
If {X,} satisfies (2.2) then
Xe =A X F Z]P=1 BjX;-jer—j + Cer (2.8)

is the vectorial form of (2.2)
Proof. By direct Verification.

2.1. Stationarity

We want to examine the conditions under which a process
{Xi} satisfying (2.8) exists. This type of problem has been
tackled by Bhaskara Rao et al (1983) for the special class of
models satisfying

Xt = 2}3:1 ant—j + Z]q:1 b]Xt_] et_]' + €¢ (29)

After putting this model in vectorial form, they gave a
sufficient condition for the existence of a strictly stationary
process {X,} satisfying (2.9). Earlier, Subba Rao and Gabr
(1981) gave a sufficient condition for the existence of a
second order stationary process {X;} satisfying (2.9) with
P=q. The sufficient conditions in both cases were the same.

Subba Rao and Gabr (1981) also obtained the same
sufficient conditions for the existence of a second order
stationary process {X,} satisfying

PP
Xt = et + ij=1 ant—j + Z Zi=1,j=1 bl] Xt—j et_j

Under some conditions involving a,b, and . Akamanam
et al (1986) have shown that under some conditions on the
spectral radius of a matrix, the process {X} satisfying (2.1)
do exist, are stationary, ergodic and unique.

(2.10)

2.1.1. Vectorial Representaion Method

We now give a set of sufficient conditions under which
there is a strictly stationary and ergodic process X, t € Z,
satisfying (2.8). We use the methods of Akamanam et al
(1986).

THEOREM 2.2 (AKAMANAM, BHASKARA RAO,
SUBRAMANYAM, 1986)

Let {e;} be sequence of independent and identically
distributed random variables with zero mean and variance
02 < 0. Let Ay, Bjpp i = 1,2, ....p, Clyp,

fop and X" be the matrices given by (2.3) to (2.7)
respectively.

Fl =A ®A +(B1 ®B1)0-2
1?]' = 0'2[ BJ ® (Aj_lBl + +AB]_1 + B] ) +
(A]_lBl + ...+ AB]_1)® + B] ] (forj = 2,..., P)

Fl - Blpxp
T e

0
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where ® is the symbol for Kronecker product of matrices.
Suppose all the eigenvalues of the block companion matrix

IP2 0 . 0 0
[p3xp3= (2.11)
0 o0 P2 0

have moduli less than unity, where I, stands for the identity
matrix of order n x n.

Then there exists a strictly stationary and ergodic process
{X} conforming to the model (2.8).

Further, if a process {U;} conforms to the above bilinear
model (2.8), then U, = X,

Proof. See Akamanam et al (1986).

2.1.2. Characteristic Equation Method

We use the above theorem to show that a sufficient
condition for the existence of the strictly stationary process
{X;} satisfying (2.2) is that the roots (in modulus) of the
characteristic equation

‘Fp + Blp—1 + Bsz_z + ..+ BP7IN — BPLoxp ‘ =0(2.12)
are in absolute value less than unity.
We proceed by considering the following cases.
CASE1 P=2
L
= [Ipxp 0
The eigenvalues of I' are obtained as follows:
T1—Blyp iT2
| ['— Bl ‘ = Ipxp iBlpxp =0

Applying the procedure for obtaining the determinant of a
partitioned matrix, we can show that

| r— g, | = pro
‘(FI - Blpxp) - (FZ (1/B)Ipxp 'Ipxp | =0

(See Morrison 1976). Simplifying the left-hand side, we
have

pre -t \FZ + BTy - B2 Ly, \ =0

This implies| r, + pI, - B> 1

pxp | = 0, since
prP =t £ 0
CASE2 P=3
L L L
F = Ipxp g Q
0 I 0

- bxp

Proceeding as in P = 2, we have

NE!
lo &7
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I Bl [ =7 I =B, + /B + @ /g2 [ =0
Simplifying, we have
Ir- B Ipp | - PP —2 \r3 + BT, + BTy - BTy, =0

This implies that,

|F3- BL+ BTy - Bl | =0 since BPXP 2 £ 0
Thus, based on the behavior of the above two cases considered, it can be shown in general that

\Fp- BLy_i + BT,y +...t PPN — BPly, | =0
Therefore, a sufficient condition for the existence of a strictly stationary process {X;} satisfying (2.8) is that the roots

(in modulus) of the characteristic equation (2.12) are in absolute value less than unity.
The following example will illustrate further the work of this section.

[ bfa> 0 0 0]
F24x4=[b1b202 0 0 0‘
b;b,6> 0 0 0
0 0 0 O
Let B; = bjo
Therefore,
B2 0 0 0
r, = 0 0 0 O
0 0 0 O
L1 0 0 O
[B5 0 0 O
r, = |BiB 0 0 0
BiB2 0 0 O
L 0 0 0 O
From case one,
|F2 +YT - Yo, ‘ =0
Therefore,
BZ 0 0 O YB? 0 0 O -Y2 0o 0 0
8162000+0000_0—Y200:0
BB, O 0 O 0 0 0 O 0 0 -Y? 0
0 0 0 O Y 0 0 O 0 0 0 -Y?
Implies
B3 + YB?Y? 0 0 0
BlBZ -Y? 0 0 =0
B1B2 0 -Y* 0
Y 0 0 -Y?
Implies

ly# | | [B% +YBi-Y? 02] _ 0| o
B1B2 =Y -
|Y4 | \ -Y>) B2 +YB2-YH-0 | =0
yo | y2 BiY — B2 =0
This implies that
Y2 - YB? — B3 =0since YO0
We have shown that
‘Fz +YI - Yi,y, | =0 implies
| Y2 YB? — B3 |=0

It is also easy to show that
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‘F3 +YT, - Y2y — Y3Ipxp | = 0 implies
Y3 — Y2BE — YRS =0

In general

|rp + BLpoy + B2l + o+ RPN — PPl =0
Implies

YP - YPoIBE — YPTEBE —YPTIBE L B Y - B =0
An alternative approach for obtaining the characteristic equation is given below

THEOREM 2.3

Let {e,} be sequence of independent and identically distributed random variable with zero mean and E e? = 02 < oo.
Suppose there exist a stationary and ergodic process {X,} Satisfying

Xt = ¢ + Z}le bj Xt—j et_j (2.13)
Let
Bt B . Bi1 B
1 0 .. 0 0
He=10 1 . 0 o0 (2.14)
0o 0 .. 0 0

Where B; = bj o

Thene (H) <1

Where e(H) is the spectral radius of the matrix H.

Proof: Squaring both sides of (2.13) and taking expectations, we obtain

EX?= e + X, BT EXZ + C (2.15)
Where
C=o%(1+ 2% B +2XXi; Bi By)
Let
WT = (EXZ,EXE 4, ... EXZ,41)

RT =(C, 0,0, ..., 0, 0)and H is defined in (2.14). With this notation, we can write (2.13) as the first order difference
equation.
W, =HW,_; +R, t=12,....

Because of stationarity of {X;} we have W, = W,_; for all t. consequently e(H) < 1.
This therefore implies that the root (in modulus) of the equation

YP - B2YPT —B3YP 2 — B3, Y-B3=0 (2.16)

Lies inside the unit circle.

2.2. Invertibility

For a time series to be useful for forecasting purposes, it is necessary that it should be invertible. We do not know of any
nice conditions under which the general bilinear autoregressive moving average model is invertible. The invertibility of
special cases of (2.1) have been studied by Granger and Anderson (1978), Subba Rao (1981), Pham and Tran (1981), Quinn
(1982) and Iwueze (1988).

THEOREM 2.4 IWUEZE 1988)

Let {e,} be sequence of independent and identically distributed random variables with E(e,) = 0 and E(e/) < oo. Then the
second order strictly stationary and ergodic process {X,} satisfying

X= Z]r‘=1 X, + (b +Z]r'=1 Xi—q-j)ei—q (2.17)
for every t is invertible if
E log ‘ b+ Yob X, | <0

Iwueze (1988) established that the presence of autoregressive part makes no impact on the invertibility of his special case
(2.17).
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A sufficient condition for invertibility of diagonal bilinear models (2.9) have been derived by Guegan and Pham (1987). It
follows that our pure diagonal bilinear model (2.2) is invertible.

2.3. Covariance Structure

The second order properties of various forms of the bilinear model have been shown in the literature to be similar to those
of some linear time series models. In particular, the second order covariance structure of the bilinear model BL(P,0,P,1)
studied by Subba Rao (1981) is similar to that of an ARMA(P,1) model. Pham (1985) also arrived at the same conclusion
after obtaining a Markovian representation of bilinear models. Akamanam (1983) showed that for a special case of the
bilinear process, there exists an ARMA process with identical covariance structures.

In this section, we show that for every pure diagonal bilinear process (2.2), there exists an ARMA process with identical
covariance structure. We give the covariance function in section 2.5.

3. Autocovariances of PDBL(P) Model

It can be shown that for the model (2.2), the following are true

E(X,) =02 X[ b = (2.18)

E(X,e,) = o2 (2.19)

E (X?e,)=2X/_ 1 bo* =2puc? (2.20)
3042058 %i¢ibib; 5 «p

E(XZ2et)= 0% ¥I_ | PE(X2 el ;) +20° XY biby +3 o* b <1 (221)

—g2vF 2 > j=1
1-o Z;:lb]

21204y Y bibi+20t Yl | b?
E(X?) = S0 BPE(X2 el ;) +20* L Y1 biby + 0% = = PAGOIET B b 2 PP <1 (222)

_og2 yF 2
1-0 Zl=1bl

We have that the autocovariance function of a stationary process {X;} is given by
R(K) = B(X - 1) (Ko - 1) = E XXori - 1 (2.23)
Substituting (2.18) and (2.22) into (2.23), we obtain
o2+20* R3] bibj+ 20 X1 b}
1- g2 Zle b]?

R (0)= - (Zh) o (2.24)

Simplifying, we can show that

o241+ 204 5 b7 4202 NXF bibj)+T]_y b]_zgz

R(0)= v (2.25)
Where o2 Z}):l bjz< 1
Now
Xk = Bf =1 by Xej Ceni + € (2.26)
Therefore,
E(XXe1) = Xf =1 b EXisig eeaiXo) + B(X¢ ) (2.27)
Now, when k <p
E(XXu1) = biE(XZe,) T3 21,k b EXiieg e X0) (2.28)
But
(Xt €k Xe) = Zf=1 b a* (2.29)
Therefore,
E(XXea)= 2%/ -1 by bya* + (25;1,]‘ #k b]')(zj;l b )a* (2.30)
Hence,

R(K) =287, by bo* + (X0_y, b)) (Booy b)o* - SFo b2 ot - B30 bb ot k<p (231
Now, for k > p, we have
EXXw)= (X0 b)EXt+k—jet+k—jX0) = ¥/_ b? o* -2 ¥/ bibot (232
Therefore,
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R(K)= Y71 bfo* -2 XX bibjo* - (Xj_1bf o* =2 X 37 bbjo* )=0,K>p

Thus,

GZ+(1+62 Z]P:1 b]-2 +2 62 erq
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(2.33)

bib) X, b7t

R(k)=

R(K)= 2 ijzl b; byo* + (ijzl,j:ﬁk bi) ( 1P=1
0

This is similar to the autocovariance function of an
ARMA(0,P) = MA(P) model. We see that the autocovariance
function of a PDBL(P) process like that of a MA(P) process
is zero beyond the order P of the process. In other words, the
autocovariance function of a PDBL(P) process has a cut off
at lag P.

4. Conclusions

In this paper we reviewed the properties of pure diagonal
bilinear model. We looked at the conditions under which the

pure diagonal bilinear model will be stationary and invertible.

We derived the autocovariance function of the pure diagonal
bilinear model and observed that it was similar to that of a
moving model of order p. This implies that to distinguish
between a bilinear model and an ARMA model we have to
calculate the autocovariance of the squares of the data.
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