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The Properties of Pure Diagonal Bilinear Models 
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Abstract  Stationarity, invertibility and covariance structure of pure diagonal bilinear models have been studied in details 
in this paper. We transformed the pure diagonal bilinear model into the state space form and subsequently examined the 
condition under which it is stationary and invertible. We also derived the covariance structure of the pure diagonal bilinear 
model and showed that for every pure diagonal bilinear process there exists an ARMA process with identical covariance 
structure. 
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1. Introduction 
Let {Xt} and {et} be two stochastic processes. We assume 

that et, is independent, identically, distributed with E(et) = 0 
and E(et

2) = 𝜎𝜎2<∞. A bilinear model is one which is linear in 
both {Xt} and {et} but not in those variables jointly. Let 
a1,a2,…,ap,b1,b2,…bq and bij, 1 ≤ i ≤ m, 1 ≤ j ≤ k, be real 
constants. 

The general form of a bilinear model is given by Granger 
and Andersen(1978) as 

Xt = ∑ 𝑎𝑎𝑖𝑖𝑃𝑃
𝑖𝑖=1 𝑋𝑋𝑡𝑡−𝑖𝑖  + ∑ 𝐶𝐶𝑗𝑗 𝑒𝑒𝑡𝑡−𝑗𝑗

𝑞𝑞
𝑗𝑗=1  

+ ∑∑ 𝑏𝑏𝑖𝑖𝑖𝑖 𝑋𝑋𝑡𝑡−𝑖𝑖
𝑚𝑚,𝑘𝑘
𝑖𝑖=1,𝑗𝑗=1 𝑒𝑒𝑡𝑡−𝑗𝑗  + et      (1.1) 

The first part on the right hand side of (1) can be identified 
as the autoregressive part of the process Xt, the second part 
as the moving average part and the third part as the ‘pure’ 
bilinear part. Following Subba Rao (1981), we denote this 
model by BL (p,q,m,k), where BL is the abbreviation for 
bilinear. On the other hand if p = q = 0 and bij = 0, for all i≠ j, 
the model is called Pure Diagonal Bilinear Model of order 
p[PDBL(p)] and we write it as 

 Xt = ∑ 𝑏𝑏𝑖𝑖𝑋𝑋𝑡𝑡−𝑖𝑖𝑃𝑃
𝑖𝑖=1 𝑒𝑒𝑡𝑡−𝑖𝑖  + et         (1.2) 

Subba Rao (1981) obtained second order moments of the 
bilinear model BL(p,0,p,1), and Subba Rao and Gabr (1984) 
obtained third order moments of the BL(1,0,1,1) model. 
Sessay and SubbaRao (1988, 1991) have also shown that for 
the BL (p,0,p,1) model, third order moments satisfy 
Yule-Walker type difference equation. 

It is well known that the linear autoregressive moving 
average model can be written in the form of first order vector 
difference equation  (See Anderson, 1971;  Priestly, 1978,  
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1980) and this Vector form is known as the State Space Form. 
It is convenient to study the properties of a model when it is 
in the State Space Form (Akaike, 1974). Therefore, we put 
the pure diagonal bilinear model in the Vectorial form and 
subsequently examine the conditions under which it is 
stationary and invertible. 

2. Vectorial Representation of the Pure 
Diagonal Bilinear Model 

A time series {Xt} is said to be a diagonal bilinear process 
if it satisfies the difference equation 
Xt = ∑ ajXt−j +r

j=1 ∑ Cjet−j +q
j=1 ∑ bjXt−jee−j + et

p
j=1    (2.1) 

where {et} is a sequence of independent and identically 
distributed random variables with zero mean and variance 
𝜎𝜎2 < ∞. If r = q = 0, the model (2.1) is called Pure diagonal 
bilinear (PDBL) model and we write it as 

Xt =∑ bjXt−jee−j + et
p
j=1             (2.2) 

where {et} is as defined previously. The model (2.2) is 
denoted by PDBL (P). 

Let 

Apxp = 

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 … 0 0
1 0 0 … 0 0
0 1 0 … 0 0
. . . …
. . . …
0 0 0 … 1 0 ⎦

⎥
⎥
⎥
⎥
⎤

          (2.3) 

      Bjpxp = 

⎣
⎢
⎢
⎢
⎢
⎡
𝑏𝑏𝑗𝑗 0 0 … 0 0
0 0 0 … 0 0
0 0 0 … 0 0
. . . …
. . . …
0 0 0 … 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

          (2.4) 

( j = 1,2,…,p) 
C1xp

T = ( 1, 0, 0,…, 0, 0)             (2.5) 
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H1xp
T = ( 1, 0, 0,…, 0, 0)           (2.6) 

Xt
T= ( Xt , Xt−1,… , Xt−p+1)          (2.7) 

where T stands for operation transpose of a matrix. We now 
represent the model (2.2) in vectorial form. 
THEOREM 2.1 

If {Xt} satisfies (2.2) then 
Xt  = A Xt−1 + ∑ BjXt−jet−j + Cet

p
j=1   (2.8) 

is the vectorial form of (2.2) 
Proof. By direct Verification. 

2.1. Stationarity 

We want to examine the conditions under which a process 
{Xt} satisfying (2.8) exists. This type of problem has been 
tackled by Bhaskara Rao et al (1983) for the special class of 
models satisfying 

Xt = ∑ ajXt−j +P
j=1 ∑ bjXt−jet−j + et

q
j=1      (2.9) 

After putting this model in vectorial form, they gave a 
sufficient condition for the existence of a strictly stationary 
process {Xt} satisfying (2.9). Earlier, Subba Rao and Gabr 
(1981) gave a sufficient condition for the existence of a 
second order stationary process {Xt} satisfying (2.9) with 
P=q. The sufficient conditions in both cases were the same. 

Subba Rao and Gabr (1981) also obtained the same 
sufficient conditions for the existence of a second order 
stationary process {Xt} satisfying 

Xt = et +  ∑ ajXt−j +P
j=1 ∑∑ bij Xt−jet−j

P,P
i=1,j=1     (2.10) 

Under some conditions involving a,b, and 𝜎𝜎2. Akamanam 
et al (1986) have shown that under some conditions on the 
spectral radius of a matrix, the process {Xt} satisfying (2.1) 
do exist, are stationary, ergodic and unique. 

2.1.1. Vectorial Representaion Method 

We now give a set of sufficient conditions under which 
there is a strictly stationary and ergodic process Xt, t ɛ Z, 
satisfying (2.8). We use the methods of Akamanam et al 
(1986). 
THEOREM 2.2 (AKAMANAM, BHASKARA RAO, 
SUBRAMANYAM, 1986) 

Let {et} be sequence of independent and identically 
distributed random variables with zero mean and variance 
σ2 < ∞. Let Apxp, Bj pxp, j = 1, 2, …,p, C1xp

T , 
H1xp

T  and XT  be the matrices given by (2.3) to (2.7) 
respectively. 

Γ1 = A ⨂A + (B1  ⨂B1)σ2 
Γj = σ2[ Bj ⨂  (Aj−1B1 + … + ABj−1 + Bj ) +

 (Aj−1B1 + … + ABj−1)⨂ + Bj ] (for j = 2,…, P) 

where ⨂ is the symbol for Kronecker product of matrices. 
Suppose all the eigenvalues of the block companion matrix 

ΓP3×P3= 

⎣
⎢
⎢
⎢
⎢
⎡ Γ1 Γ2 … ΓP−1 ΓP
IP2 0 … 0 0

. .

. .

. .
0 0 … IP2 0 ⎦

⎥
⎥
⎥
⎥
⎤

     (2.11) 

have moduli less than unity, where In stands for the identity 
matrix of order n x n. 

Then there exists a strictly stationary and ergodic process 
{Xt} conforming to the model (2.8). 

Further, if a process {Ut} conforms to the above bilinear 
model (2.8), then Ut = 𝑋𝑋𝑡𝑡  

Proof. See Akamanam et al (1986). 

2.1.2. Characteristic Equation Method 

We use the above theorem to show that a sufficient 
condition for the existence of the strictly stationary process 
{Xt} satisfying (2.2) is that the roots (in modulus) of the 
characteristic equation 

⃒Γp  + βΓp−1 + β2Γp−2 + … + βp−1Γ1 − βpIpXp ⃒ = 0(2.12) 

are in absolute value less than unity. 
We proceed by considering the following cases. 

CASE 1  P=2    

Γ = �
Γ1 Γ2

Ipxp 0 � 

The eigenvalues of Γ are obtained as follows: 

⃒ Γ −  β𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝 ⃒ = �
       Γ1−𝛽𝛽𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝  ⋮ Γ2

Ipxp  ⋮β Ipxp � = 0 

Applying the procedure for obtaining the determinant of a 
partitioned matrix, we can show that  

⃒ Γ −  βIpxp ⃒ = βpxp  

⃒( Γ1 −  βIpxp ) − (Γ2 (1 β⁄ )Ipxp  . Ipxp   ⃒ = 0 

(See Morrison 1976). Simplifying the left-hand side, we 
have 

𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝 −1⃒Γ2 + 𝛽𝛽Γ1 - 𝛽𝛽2 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝 ⃒ = 0 

This implies⃒ Γ2  + 𝛽𝛽Γ1  - 𝛽𝛽2  𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝 ⃒  = 0, since 
𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝 −1  ≠ 0 
CASE 2  P=3 

Γ =  �
Γ1 Γ2 Γ2
𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝 0 0

0 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝 0
� 

Proceeding as in P = 2, we have 

⃒Γ - β Ipxp ⃒= 

⎣
⎢
⎢
⎡
Γ1 − βΙpxp Γ2                    ⋮      Γ3
Ιpxp          −βΙpxp            ⋮       0

⋯⋯⋯⋯⋯ ⋯  ⋯ ⋯             ⋮           ⋯⋯
0             Ιpxp               ⋮          −βΙpxp ⎦

⎥
⎥
⎤
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⃒Γ - β Ipxp ⃒ = βpxp  ⃒Γ1 − β Ipxp  +  (1 β⁄ )Γ2 + (1 ∕ β2)Γ3⃒ = 0 

Simplifying, we have 
⃒Γ - β Ipxp ⃒ = βpxp−2 ⃒Γ3 + β Γ2 + β2Γ1 - β3Γpxp  ⃒ = 0 

This implies that,  
⃒Γ3- β Γ2 + β2Γ1  -  β3Γpxp  ⃒ = 0 since βpxp−2 ≠ 0 

Thus, based on the behavior of the above two cases considered, it can be shown in general that 
⃒Γp- β Γp−1 + β2Γp−2  +…+  βp−1Γ1 − βpIpxp  ⃒ = 0 

Therefore, a sufficient condition for the existence of a strictly stationary process {Xt} satisfying (2.8) is that the roots 
(in modulus) of the characteristic equation (2.12) are in absolute value less than unity. 

The following example will illustrate further the work of this section. 

Γ2 4𝑥𝑥4 =

⎣
⎢
⎢
⎡ b1

2σ2 0 0 0
b1b2σ2 0 0 0
b1b2σ2 0 0 0

0 0 0 0⎦
⎥
⎥
⎤
 

Let βj = bjσ 
Therefore, 

Γ1  = �
β1

2 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

� 

Γ2  = �

β2
2 0 0 0

β1β2 0 0 0
β1β2 0 0 0

0 0 0 0

�  

From case one, 
⃒Γ2 + YΓ1 - Y2I2×2 ⃒ = 0 

Therefore, 

��

β1
2 0 0 0

β1β2 0 0 0
β1β2 0 0 0

0 0 0 0

�    +  �
Yβ1

2 0 0 0
0 0 0 0
0 0 0 0
Y 0 0 0

�  − �
−Y2 0 0 0

0 −Y2 0 0
0 0 −Y2 0
0 0 0 −Y2

�� = 0 

Implies 

⎣
⎢
⎢
⎡β2

2 + Yβ1
2Y2 0 0 0

β1β2           −Y2 0 0
β1β2           0 −Y2 0

Y            0 0 −Y2⎦
⎥
⎥
⎤
 = 0 

Implies 

⃒Y4⃒ � �β2
2 + Yβ1

2−Y2 0
β1β2               −Y2� − 0� = 0 

⃒Y4⃒ ⃒ (-Y2) (β2
2 + Yβ1

2−Y2) - 0 ⃒ = 0 

Y6 ⃒ Y2 β2
1Y − β2

2 ⃒ = 0 
This implies that 

Y2 - Yβ1
2 − β2

2  = 0 since Y6≠ 0 
We have shown that  

⃒Γ2 + YΓ1 - Y2I2×2 ⃒ = 0 implies 
⃒ Y2 Yβ1

2 − β2
2 ⃒ = 0 

It is also easy to show that  
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⃒Γ3 + YΓ2 - Y2Γ3 − Y3Ip×p  ⃒ = 0 implies 

Y3 − Y2β1
2 − Yβ2

2− β3
2  = 0 

In general  
⃒Γp  + βΓp−1 + β2 Γp−2 + … + βp−1 Γ1 − βpIp×p  ⃒ = 0 

Implies 
Yp  - Yp−1 β1

2 − YP−2β2
2 − YP−3β3

2 … βP−1
2 Y - βP

2  = 0 
An alternative approach for obtaining the characteristic equation is given below 

THEOREM 2.3 
Let {et} be sequence of independent and identically distributed random variable with zero mean and E 𝑒𝑒𝑡𝑡2 =  𝜎𝜎2 <  ∞. 

Suppose there exist a stationary and ergodic process {Xt} Satisfying 
  Xt = et + ∑ 𝑏𝑏𝑗𝑗𝑃𝑃

𝐽𝐽=1 𝑋𝑋𝑡𝑡−𝑗𝑗 𝑒𝑒𝑡𝑡−𝑗𝑗                                 (2.13) 

Let  

Hpxp =  

⎣
⎢
⎢
⎢
⎡β1

2     β1
2 … βp−1

2   βp
2

1      0 … 0 0
0     1 … 0 0
:        

0       0 … 0 0 ⎦
⎥
⎥
⎥
⎤

                            (2.14) 

Where βj = bj 𝜎𝜎 
Then e (H) < 1 
Where e(H) is the spectral radius of the matrix H. 
Proof: Squaring both sides of (2.13) and taking expectations, we obtain  

EXt
2= et + ∑ β1

2P
J=1 EXt−j

2 +  C                                  (2.15) 

Where 
C = σ2(1 + 2∑ β1

2P
J=1  + 2∑∑ βi i<𝑗𝑗 βj) 

Let  
   WT  = (EXt

2, EXt−1
2 , … EXt−p+1

2 ) 

RT  = (C, 0, 0, …, 0, 0)and H is defined in (2.14). With this notation, we can write (2.13) as the first order difference 
equation. 

Wt = HWt−1 + R,   t = 1,2,…. 
Because of stationarity of {Xt} we have Wt = Wt−1 for all t. consequently e(H) < 1. 
This therefore implies that the root (in modulus) of the equation 

Yp  - β1
2Yp−1 − β2

2YP−2 − … βP−1
2 Y - βP

2  = 0                         (2.16) 
Lies inside the unit circle. 

2.2. Invertibility 

For a time series to be useful for forecasting purposes, it is necessary that it should be invertible. We do not know of any 
nice conditions under which the general bilinear autoregressive moving average model is invertible. The invertibility of 
special cases of (2.1) have been studied by Granger and Anderson (1978), Subba Rao (1981), Pham and Tran (1981), Quinn 
(1982) and Iwueze (1988). 
THEOREM 2.4 (IWUEZE 1988) 

Let {et} be sequence of independent and identically distributed random variables with E(et) = 0 and 𝐸𝐸(𝑒𝑒𝑡𝑡4) < ∞. Then the 
second order strictly stationary and ergodic process {Xt} satisfying 

𝑋𝑋𝑡𝑡= ∑ 𝑎𝑎𝑗𝑗𝑋𝑋𝑡𝑡−𝑗𝑗𝑟𝑟
𝑗𝑗=1  + (b +∑ 𝑋𝑋𝑡𝑡−𝑞𝑞−𝑗𝑗 )𝑒𝑒𝑡𝑡−𝑞𝑞𝑟𝑟

𝑗𝑗=1                         (2.17) 

for every t is invertible if 
E log ⃒ b + ∑ 𝑏𝑏𝑗𝑗𝑋𝑋𝑡𝑡−𝑗𝑗𝑚𝑚

𝑗𝑗=0 ⃒ < 0 

Iwueze (1988) established that the presence of autoregressive part makes no impact on the invertibility of his special case 
(2.17). 
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A sufficient condition for invertibility of diagonal bilinear models (2.9) have been derived by Guegan and Pham (1987). It 
follows that our pure diagonal bilinear model (2.2) is invertible. 

2.3. Covariance Structure 

The second order properties of various forms of the bilinear model have been shown in the literature to be similar to those 
of some linear time series models. In particular, the second order covariance structure of the bilinear model BL(P,0,P,1) 
studied by Subba Rao (1981) is similar to that of an ARMA(P,1) model. Pham (1985) also arrived at the same conclusion 
after obtaining a Markovian representation of bilinear models. Akamanam (1983) showed that for a special case of the 
bilinear process, there exists an ARMA process with identical covariance structures. 

In this section, we show that for every pure diagonal bilinear process (2.2), there exists an ARMA process with identical 
covariance structure. We give the covariance function in section 2.5. 

3. Autocovariances of PDBL(P) Model 
It can be shown that for the model (2.2), the following are true 

E(𝑋𝑋𝑡𝑡) = 𝜎𝜎2  ∑ 𝑏𝑏𝑗𝑗 =  𝜇𝜇𝑃𝑃
𝑗𝑗=1                                  (2.18) 

E(𝑋𝑋𝑡𝑡𝑒𝑒𝑡𝑡) = 𝜎𝜎2                                     (2.19) 
E (𝑋𝑋𝑡𝑡2𝑒𝑒𝑡𝑡) = 2 ∑ 𝑏𝑏𝑗𝑗𝜎𝜎4 = 2 𝜇𝜇𝑃𝑃

𝑗𝑗=1 𝜎𝜎2                            (2.20) 

E (𝑋𝑋𝑡𝑡2𝑒𝑒𝑡𝑡2) = 𝜎𝜎2 ∑ 𝑏𝑏𝑗𝑗2𝐸𝐸�𝑋𝑋𝑡𝑡−𝑗𝑗2 𝑒𝑒𝑡𝑡−𝑗𝑗2 � + 𝑃𝑃
𝑗𝑗=1 2𝜎𝜎2 ∑∑ 𝑏𝑏𝑖𝑖𝑏𝑏𝑗𝑗𝑖𝑖<𝑗𝑗  + 3 𝜎𝜎4 = 

3 𝜎𝜎4+ 2 𝜎𝜎6 ∑∑ 𝑏𝑏𝑖𝑖𝑏𝑏𝑗𝑗𝑖𝑖<𝑗𝑗

1−𝜎𝜎2 ∑ 𝑏𝑏𝑗𝑗
2𝑃𝑃

𝑗𝑗=1  
,  𝜎𝜎2 ∑ 𝑏𝑏𝑗𝑗2𝑃𝑃

𝑗𝑗=1  < 1    (2.21) 

E(𝑋𝑋𝑡𝑡2) = ∑ 𝑏𝑏𝑗𝑗2𝐸𝐸�𝑋𝑋𝑡𝑡−𝑗𝑗2 𝑒𝑒𝑡𝑡−𝑗𝑗2 � + 𝑃𝑃
𝑗𝑗=1 2𝜎𝜎4 ∑∑ 𝑏𝑏𝑖𝑖𝑏𝑏𝑗𝑗𝑖𝑖<𝑗𝑗  +  𝜎𝜎2 = 

𝜎𝜎2+ 2𝜎𝜎4 ∑∑ 𝑏𝑏𝑖𝑖𝑏𝑏𝑗𝑗𝑖𝑖<𝑗𝑗 + 2 𝜎𝜎4 ∑ 𝑏𝑏𝑗𝑗     
2𝑃𝑃

𝑗𝑗=1

1− 𝜎𝜎2  ∑ 𝑏𝑏𝑗𝑗
2𝑃𝑃

𝑗𝑗=1  
, 𝜎𝜎2 ∑ 𝑏𝑏𝑗𝑗2𝑃𝑃

𝑗𝑗=1  < 1  (2.22) 

We have that the autocovariance function of a stationary process {Xt} is given by 
R(K) = E(Xt - µ) (Xt+k - µ) = E XtXt+k - µ2                         (2.23) 

Substituting (2.18) and (2.22) into (2.23), we obtain  

R (0) = 
𝜎𝜎2+ 2𝜎𝜎4 ∑∑ 𝑏𝑏𝑖𝑖𝑏𝑏𝑗𝑗

𝑃𝑃
𝑖𝑖<𝑗𝑗 + 2 𝜎𝜎4 ∑ 𝑏𝑏𝑗𝑗     

2𝑃𝑃
𝑗𝑗=1

1− 𝜎𝜎2  ∑ 𝑏𝑏𝑗𝑗
2𝑃𝑃

𝑗𝑗=1
 - �∑𝑏𝑏𝑗𝑗 �

2 𝜎𝜎4                    (2.24) 

Simplifying, we can show that 

R (0) = 
𝜎𝜎2+(1+ 2𝜎𝜎4 ∑ 𝑏𝑏𝑗𝑗     

2𝑃𝑃
𝑗𝑗=1 +2 𝜎𝜎2 ∑∑ 𝑏𝑏𝑖𝑖𝑏𝑏𝑗𝑗

𝑃𝑃
𝑖𝑖<𝑗𝑗 )+∑ 𝑏𝑏𝑗𝑗  𝜎𝜎2   

2𝑃𝑃
𝑗𝑗=1

1− 𝜎𝜎2  ∑ 𝑏𝑏𝑗𝑗
2𝑃𝑃

𝑗𝑗=1
                     (2.25) 

Where 𝜎𝜎2  ∑ 𝑏𝑏𝑗𝑗2𝑃𝑃
𝑗𝑗=1 < 1 

Now  
Xt+k = ∑ 𝑏𝑏𝑗𝑗𝑃𝑃

𝑗𝑗=1 Xt+k-j et+k-j + et+k                             (2.26) 

Therefore, 
E(XtXt+k) = ∑ 𝑏𝑏𝑗𝑗𝑃𝑃

𝑗𝑗=1 E(Xt+k-j et+k-jXt) + E(Xt et+k)                  (2.27)  

Now, when k ≤ p 
E(XtXt+k) = bkE(𝑋𝑋𝑡𝑡2𝑒𝑒𝑡𝑡) +∑ 𝑏𝑏𝑗𝑗𝑗𝑗=1,𝑗𝑗≠𝑘𝑘 E(Xt+k-j et+k-jXt)                 (2.28) 

But  
(Xt+k-j et+k-jXt) = ∑ 𝑏𝑏𝑗𝑗𝑃𝑃

𝑗𝑗=1 𝜎𝜎4                                (2.29) 

Therefore, 

E(XtXt+k)= 2∑ 𝑏𝑏𝑗𝑗𝑃𝑃
𝑗𝑗=1 𝑏𝑏𝑘𝑘𝜎𝜎4 + �∑ 𝑏𝑏𝑗𝑗

𝑝𝑝
𝑗𝑗=1,𝑗𝑗≠𝑘𝑘 ��∑ 𝑏𝑏𝑗𝑗

𝑝𝑝
𝑗𝑗=1 �𝜎𝜎4              (2.30) 

Hence, 

R(k) = 2∑ 𝑏𝑏𝑗𝑗𝑃𝑃
𝑗𝑗=1 𝑏𝑏𝑘𝑘𝜎𝜎4 + �∑ 𝑏𝑏𝑗𝑗

𝑝𝑝
𝑗𝑗=1,𝑗𝑗≠𝑘𝑘 ��∑ 𝑏𝑏𝑗𝑗

𝑝𝑝
𝑗𝑗=1 �𝜎𝜎4  - ∑ 𝑏𝑏𝑗𝑗2𝑃𝑃

𝑗𝑗=1 𝜎𝜎4 - ∑∑ 𝑏𝑏𝑖𝑖𝑏𝑏𝑗𝑗𝑃𝑃
𝑖𝑖<𝑗𝑗 𝜎𝜎4, k ≤ p    (2.31) 

Now, for k > p, we have 

E(XtXt+k)= �∑ 𝑏𝑏𝑗𝑗
𝑝𝑝
𝑗𝑗=1 �𝐸𝐸(Xt + k − j et + k − jXt) = ∑ 𝑏𝑏𝑗𝑗2𝑃𝑃

𝑗𝑗=1 𝜎𝜎4  - 2 ∑∑ 𝑏𝑏𝑖𝑖𝑏𝑏𝑗𝑗𝑃𝑃
𝑖𝑖<𝑗𝑗 𝜎𝜎4    (2.32) 

Therefore, 
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R(K) = ∑ 𝑏𝑏𝑗𝑗2𝑃𝑃
𝑗𝑗=1 𝜎𝜎4 - 2 ∑∑ 𝑏𝑏𝑖𝑖𝑏𝑏𝑗𝑗𝑃𝑃

𝑖𝑖<𝑗𝑗 𝜎𝜎4 - (∑ 𝑏𝑏𝑗𝑗2𝑃𝑃
𝑗𝑗=1 𝜎𝜎4 − 2 ∑∑ 𝑏𝑏𝑖𝑖𝑏𝑏𝑗𝑗𝑃𝑃

𝑖𝑖<𝑗𝑗 𝜎𝜎4 ) = 0, K> p      (2.33) 

Thus,  

R(k)= 
σ2+(1+σ2 ∑ bj    

2P
j=1 +2 σ2 ∑∑ bi bj ) ∑ bj

2P
j=1 σ4  P

i<𝑗𝑗

1−σ2  ∑ bj
2P

j=1  
k = 0 

R(K)= 2∑ bj
P
j=1 bkσ4 + �∑ bj

p
j=1,j≠k � �∑ bj

p
j=1 �σ4 − ∑ bj

2P
j=1 σ4 − 2 ∑∑ bibj

P
i<𝑗𝑗 σ4 , k ≤ p 

0                                                                   K > P         (2.34) 
 

This is similar to the autocovariance function of an 
ARMA(0,P) = MA(P) model. We see that the autocovariance 
function of a PDBL(P) process like that of a MA(P) process 
is zero beyond the order P of the process. In other words, the 
autocovariance function of a PDBL(P) process has a cut off 
at lag P. 

4. Conclusions 
In this paper we reviewed the properties of pure diagonal 

bilinear model. We looked at the conditions under which the 
pure diagonal bilinear model will be stationary and invertible. 
We derived the autocovariance function of the pure diagonal 
bilinear model and observed that it was similar to that of a 
moving model of order p. This implies that to distinguish 
between a bilinear model and an ARMA model we have to 
calculate the autocovariance of the squares of the data. 
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