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Abstract  In this paper, some statistics properties of the mixture generalized linear failure rate distribution (or 

MGLFRD) and MGLFRD with fuzzy parameters methods have been investigated. Formulas of a fuzzy reliability function, 

fuzzy hazard function and their α-cut set are presented.  
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1. Introduction 

The mixture distributions have provided a 

mathematical-based approach to the statistical modeling of 

a wide variety of random phenomena. The mixture 

distributions are useful and flexible models to analyze 

random durations in a possibly heterogeneous population. 

In many applications, available data can be considered as 

the data coming from a mixture population of two or more 

distributions. Therefore mixture distributions play a vital 

role in many practical applications. For example, direct 

applications of finite mixture models are in fisheries 

research, economics, medicine, psychology, 

paleoanthropology, botany, agriculture, zoology, life testing 

and reliability, among others. Indirect applications include 

outliers, Gaussian sums, cluster analysis, latent structure 

models, modeling prior densities, empirical Bayes method 

and nonparametric density estimation. 

There are several methods and models in classical 

reliability theory, which assume that all parameters of 

lifetime density functions are precise. However, in the real 

world applications, randomness and fuzziness are often 

mixed up in the lifetimes of systems. However, the 

parameters sometimes cannot record precisely due to 

machine errors, experiment, personal judgment, estimation 

or some other unexpected situations. When parameter in the 

lifetime distribution is fuzzy, the conventional reliability 

system may have difficulty for handling reliability and 

hazard functions. The theory of fuzzy reliability was 

proposed and development by several authors (Cai et al. [1], 

[2]; Cai, [3]; Chen and Mon [4]; Hammer [5]; Onisawa and  
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Kacprzyk [6]; Utkin and Gurov, [7]). 

Aliev and Kara [8] considered fuzzy system reliability 

analysis using time dependent fuzzy set and the concept of 

alpha-cut. Utkin [9], [10] discussed imprecise reliability 

models for the general lifetime distribution classes. He 

applied the theory of imprecise probability to reliability 

analysis. Wu [11] considered fuzzy Bayesian system 

reliability assessment based on exponential distribution. Guo 

et al. [12] proposed a credibility hazard concept associated 

with fuzzy lifetimes. Guo et al. [13] considered random 

fuzzy variable modeling on repairable system. Yao et al. [14] 

applied a statistical methodology in fuzzy system reliability 

analysis and provided a fuzzy estimation of reliability. 

Karpisek et al. [15] described two fuzzy reliability models 

based on the Weibull fuzzy distribution. Baloui Jamkhaneh 

and Nozari [16] investigated fuzzy system reliability 

analysis based on confidence interval. Garg et al. [17] 

considered reliability analysis of the engineering systems 

using intuitionist fuzzy set theory. Pak et al. [18] presented a 

Bayesian approach to estimate the parameter and reliability 

function of Rayleigh distribution from fuzzy lifetime data. 

Baloui Jamkhaneh [19], [20] evaluated reliability function 

using fuzzy lifetime distribution. 

In this paper, mixture GLED have been used extensively 

in reliability and hazard analysis, we characterize the 

mixture of two GLED components. Some statistics 

properties are discussed. In addition, we study the two 

components mixture GLFRD with fuzzy parameters. 

2. Two Component Mixture GLFRD 

Generalized linear failure rate distribution with three 

parameters (a, b, α) and denoted by GLFRD (a, b, α). The 

probability density function (pdf) of GLFRD (a, b, α) is 

given by 
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𝑓 𝑥 = 𝛼 𝑎 + 𝑏𝑥 𝑒− 𝑎𝑥+
𝑏
2
𝑥2  1 − 𝑒− 𝑎𝑥+

𝑏
2
𝑥2  

𝛼−1

; 

𝑎, 𝑏, 𝛼 > 0 , 𝑥 > 0                        (1) 

The corresponding cumulative distribution function is as 

follows 

𝐹 𝑥 =  1 − 𝑒− 𝑎𝑥+
𝑏

2
𝑥2  

𝛼

               (2) 

where a and b are the scale parameters and α is the shape 

parameter. 

This distribution has increasing, decreasing or bathtub 

shaped hazard rate functions and it also generalizes many 

well-known distributions including the traditional linear 

failure rate distributions, such as, generalized exponential 

(GED(a,α)) and generalized Rayleigh (GRD(b, α)) by 

putting b = 0 and a = 0, respectively. 

The mixture distributions have provided a 

mathematical-based approach to the statistical modeling of a 

wide variety of random phenomena. The mixture 

distributions are useful and flexible models to analyze 

random durations in a possibly heterogeneous population. In 

many applications, available data can be considered as the 

data coming from a mixture population of two or more 

distributions. Therefore mixture distributions play a vital 

role in many practical applications. For example, direct 

applications of finite mixture models are in fisheries research, 

economics, medicine, psychology, paleoanthropology, 

botany, agriculture, zoology, life testing and reliability, 

among others. Indirect applications include outliers, 

Gaussian sums, cluster analysis, latent structure models, 

modeling prior densities, empirical Bayes method and 

nonparametric density estimation. 

The probability density function of two components 

mixture GLFRD is defined mathematically as 

 

𝑓 x;ω = π𝛼1 𝑎1 + 𝑏1𝑥 𝑒
− 𝑎1𝑥+

𝑏1
2
𝑥2  1 − 𝑒− 𝑎1𝑥+

𝑏1
2
𝑥2  

𝛼1−1

 

+ 1 − π 𝛼2 𝑎2 + 𝑏2𝑥 𝑒
− 𝑎2𝑥+

𝑏2
2
𝑥2  1 − 𝑒− 𝑎2𝑥+

𝑏2
2
𝑥2  

𝛼2−1

                  (3) 

where  0 < 𝜋 < 1,𝛼𝑖 > 0, 𝑎𝑖 > 0, 𝑏𝑖 > 0 are mixture weight, shape and scale parameters of subpopulation 𝑖respectively 

and 𝜔 = (𝜋, 𝛼1, 𝛼2, 𝑎1, 𝑎2, 𝑏1, 𝑏2) is called the parameter vector of two components mixture GLFRD. Plots of density of two 

components mixture GLFRD for different parameter values are given in Figure 1. 

 

A:   𝛼1 = 3    𝛼2 = 5      𝑎1 = 0.1     𝑎2 = 2.5          𝑏1 = 2.5        𝑏2 = 1       𝜋 = 0.5 

B:   𝛼1 = 1.5     𝛼2 = 2      𝑎1 = 0     𝑎2 = 0.5          𝑏1 =  0.5       𝑏2 = 1.5      𝜋 =0.4 

C:   𝛼1 = 10     𝛼2 = 1.5      𝑎1 = 0.2     𝑎2 = 1.5          𝑏1 = 5        𝑏2 = 6      𝜋 = 0.3 

D:   𝛼1 = 2     𝛼2 =  1     𝑎1 = 0.9     𝑎2 = 0.5          𝑏1 = 0.05        𝑏2 = 0     𝜋 =0.9 

Figure 1.  Plots of density of two components mixture GLFRD for different parameter values 
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The survival (or reliability) function S x\ω ( or R x;ω ) of two components mixture GLFRD is given as follows: 

𝑅 𝑥;𝜔 = 𝜋  1 −  1 − 𝑒− 𝑎1𝑥+
𝑏1
2
𝑥2  

𝛼1

 +  1 − 𝜋  1 −  1 − 𝑒− 𝑎2𝑥+
𝑏2
2
𝑥2  

𝛼2

 .           (4) 

Plots of reliability function of two components mixture GLFRD for different parameter values are given Figure 2. 

 

A:   𝛼1 = 3    𝛼2 = 5      𝑎1 = 0.1     𝑎2 = 2.5          𝑏1 = 2.5        𝑏2 = 1       𝜋 = 0.5 

B:   𝛼1 = 1.5     𝛼2 = 2      𝑎1 = 0     𝑎2 = 0.5          𝑏1 =  0.5       𝑏2 = 1.5      𝜋 =0.4 

C:   𝛼1 = 10     𝛼2 = 1.5      𝑎1 = 0.2     𝑎2 = 1.5          𝑏1 = 5        𝑏2 = 6      𝜋 = 0.3 

D:   𝛼1 = 2     𝛼2 =  1     𝑎1 = 0.9     𝑎2 = 0.5          𝑏1 = 0.05        𝑏2 = 0     𝜋 =0.9 

Figure 2.  Plots of reliability functions of two components mixture GLFRD for different parameter values 

The hazard function 𝑕 𝑥;𝜔  of two components mixture GLFRD is given as follows: 

𝑕 𝑥;𝜔 =
𝜋𝛼1 𝑎1 + 𝑏1𝑥 𝑒

− 𝑎1𝑥+
𝑏1
2
𝑥2 

 1 − 𝑒
− 𝑎1𝑥+

𝑏1
2
𝑥2 

 
𝛼1−1

𝜋  1 −  1 − 𝑒
− 𝑎1𝑥+

𝑏1
2
𝑥2 

 
𝛼1

 +  1 − 𝜋  1 −  1 − 𝑒
− 𝑎2𝑥+

𝑏2
2
𝑥2 

 
𝛼2

 

 

+

 1−𝜋 𝛼2 𝑎2+𝑏2𝑥 𝑒
− 𝑎2𝑥+

𝑏2
2
𝑥2 

 1−𝑒
− 𝑎2𝑥+

𝑏2
2
𝑥2 

 

𝛼2−1

𝜋 1− 1−𝑒
− 𝑎1𝑥+

𝑏1
2
𝑥2 

 

𝛼1

 + 1−𝜋  1− 1−𝑒
− 𝑎2𝑥+

𝑏2
2
𝑥2 

 

𝛼2

 

                        (5) 

Plots of hazard functions of two components mixture GLFRD for different parameter values are given in Figure 3. 
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A:   𝛼1 = 3    𝛼2 = 5      𝑎1 = 0.1     𝑎2 = 2.5          𝑏1 = 2.5        𝑏2 = 1       𝜋 = 0.5 

B:   𝛼1 = 1.5     𝛼2 = 2      𝑎1 = 0     𝑎2 = 0.5          𝑏1 =  0.5       𝑏2 = 1.5      𝜋 =0.4 

C:   𝛼1 = 10     𝛼2 = 1.5      𝑎1 = 0.2     𝑎2 = 1.5          𝑏1 = 5        𝑏2 = 6      𝜋 = 0.3 

D:   𝛼1 = 2     𝛼2 =  1     𝑎1 = 0.9     𝑎2 = 0.5          𝑏1 = 0.05        𝑏2 = 0     𝜋 =0.9 

Figure 3.  Plots of hazard functions of two components mixture GLFRD for different parameter values 

3. Moments 

The following lemma gives the kth moment of two components mixture GLFRD (a, b, α), when 𝛼 ≥ 1. 

Lemma 3.1 If X has GLFRD (𝜋, 𝛼1, 𝛼2, 𝑎1, 𝑎2, 𝑏1, 𝑏2), then the rth moment of X, say  𝜇(𝐾), is given as follows 

For 𝑎1 =  𝑎2 = 0, 𝑏1, 𝑏2 > 0: 

𝜇  𝑟 =
𝜋𝛼1𝛤 

𝑟

2
+1 

 
𝑏1
2
 
𝑟  

 −1 𝑖  
𝛼1−1
𝑖

 

 𝑖+1 
𝑟
2+1

∞
𝑖=0 + (1 − 𝜋)

𝛼2𝛤 
𝑟

2
+1 

 
𝑏2
2
 
𝑟  

 −1 𝑗   
𝛼2−1
𝑗

 

 𝑗+1 
𝑟
2+1

∞
𝑗=0 ,                   (6) 

For 𝑎1, 𝑎2 > 0, 𝑏1, 𝑏2 ≥ 0: 

𝜇  𝑟 = 𝜋𝛼1    −1 𝑖  
𝛼1 − 1

𝑖
 

∞

𝑙=0

∞

𝑖=0

𝛤 𝑟 + 𝑙 + 1 𝑔𝑖1
 𝑙  0 

𝑙!    𝑖 + 1 𝑎1 
𝑟+𝑙+1

 𝑎1 +
 𝑟 + 𝑙 + 1 𝑏1

 𝑖 + 1 𝑎1
  

+ 1 − 𝜋 𝛼2    −1 𝑗  
𝛼2 − 1

𝑗
 ∞

𝑘=0
∞
𝑗=0

𝛤 𝑟+𝑘+1 𝑔𝑗2
 𝑘  0 

𝑘!   𝑗+1 𝑎2 
𝑟+𝑘+1  𝑎2 +

 𝑟+𝑘+1 𝑏2

 𝑗+1 𝑎2
 ,                  (7) 

where 𝑔𝑖1
 𝑙  0 =  

𝑑 𝑙

𝑑𝑥 𝑙
𝑒−

𝑏1
2
 𝑖+1 𝑥2

 
𝑥=0

, 𝑔𝑗2
 𝑘  0 =  

𝑑𝑘

𝑑𝑥𝑘
𝑒−

𝑏2
2
 𝑗+1 𝑥2

 
𝑥=0

 

and 𝛤(. ) is the complete gamma function. 
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Proof: 

𝜇(𝑟) =  𝑥𝑟  𝑓 𝑥; 𝜋, 𝛼1, 𝛼2, 𝑎1, 𝑎2, 𝑏1, 𝑏2 

∞

0

 𝑑𝑥 

then substituting from (1) into the above relation we have 

𝜇(𝑟) =  𝑥𝑟

 
 
 
 π𝛼1 𝑎1 + 𝑏1𝑥 𝑒

− 𝑎1𝑥+
𝑏1
2
𝑥2  1 − 𝑒− 𝑎1𝑥+

𝑏1
2
𝑥2  

𝛼1−1

+ 1 − π 𝛼2 𝑎2 + 𝑏2𝑥 𝑒
− 𝑎2𝑥+

𝑏2
2
𝑥2  1 − 𝑒− 𝑎2𝑥+

𝑏2
2
𝑥2  

𝛼2−1

 
 
 
 

 𝑑𝑥
∞

0
                (8) 

since, 0 < 𝑒
− 𝑎1𝑥+

𝑏1
2
𝑥2 

< 1,0 < 𝑒
− 𝑎2𝑥+

𝑏2
2
𝑥2 

< 1 for 𝑥 > 0 by using the binomial series expansion we have  

 1 − 𝑒− 𝑎1𝑥+
𝑏1
2
𝑥2  

𝛼1−1

=  (−1)𝑖  
𝛼1 − 1

𝑖
 

∞

𝑖=0

𝑒−𝑖 𝑎1𝑥+
𝑏1
2
𝑥2 

 

and 

 1 − 𝑒− 𝑎2𝑥+
𝑏2
2
𝑥2  

𝛼2−1

=  (−1)𝑖  
𝛼2 − 1

𝑗
 

∞

𝑗=0

𝑒−𝑗 𝑎2𝑥+
𝑏2
2
𝑥2 

 

then,  

𝜇 𝑟 = 𝜋𝛼1  𝑥𝑟 𝑎1 + 𝑏1𝑥   −1 𝑖  
𝛼1 − 1

𝑖
 

∞

𝑖=0

𝑒−
 𝑖+1  𝑎1𝑥+

𝑏1
2
𝑥2  𝑑𝑥

∞

0

 

+(1 − 𝜋)𝛼2  𝑥𝑟 𝑎2 + 𝑏2𝑥   −1 𝑗  
𝛼2 − 1

𝑗
 ∞

𝑗=0 𝑒
− 𝑗+1  𝑎2𝑥+

𝑏2
2
𝑥2 

 𝑑𝑥
∞

0
      (9) 

since the inner quantity of the summation is absolutely integrable, interchanging the integration and summation, we get 

𝜇 𝑟 = 𝜋𝛼1   −1 𝑖  
𝛼1 − 1

𝑖
 

∞

𝑖=0

 𝑥𝑟 𝑎1 + 𝑏1𝑥 𝑒
− 𝑖+1  𝑎1𝑥+

𝑏1
2
𝑥2  𝑑𝑥

∞

0

 

+ (1 − 𝜋)𝛼2   −1 𝑗  
𝛼2 − 1

𝑗
  𝑥𝑟 𝑎2 + 𝑏2𝑥 𝑒

− 𝑗+1  𝑎2𝑥+
𝑏2
2
𝑥2  𝑑𝑥

∞

0
∞
𝑗=0        

 
    (10) 

Now arises two cases. The first case arises when 𝑎1 =  𝑎2 = 0 and 𝑏1, 𝑏2 > 0. In this case, the integral in (10) becomes 

 𝑥𝑟 𝑎1 + 𝑏1𝑥 𝑒
− 𝑖+1  𝑎1𝑥+

𝑏1
2
𝑥2 

 𝑑𝑥
∞

0
=  𝑏1𝑥

𝑟+1𝑒−
𝑏1
2
 𝑖+1 𝑥2

 𝑑𝑥
∞

0
=

𝑏1

2

𝛤(
𝑟

2
+1)

 
𝑏1
2
 𝑖+1  

𝑟
2

+1
,         (11) 

and 

 𝑥𝑟 𝑎2 + 𝑏2𝑥 𝑒
− 𝑗+1  𝑎2𝑥+

𝑏2
2
𝑥2 

 𝑑𝑥
∞

0
=  𝑏2𝑥

𝑟+1𝑒−
𝑏2
2
 𝑗+1 𝑥2

 𝑑𝑥
∞

0
=

𝑏2

2

𝛤(
𝑟

2
+1)

 
𝑏2
2
 𝑗+1  

𝑟
2

+1
,         (12) 

Substituting from (11) and (12) into (10), one gets (6) which completes the first part of the lemma. 

The second case arises when 𝑎1, 𝑎2 > 0 and 𝑏1, 𝑏2 ≥ 0. For this case, using the Taylor expansion of the function 

𝑒−
𝑏1
2
 𝑖+1 𝑥2

 and 𝑒−
𝑏2
2
 𝑗+1 𝑥2

 given by 

𝑒−
𝑏1
2
 𝑖+1 𝑥2

=  
𝑔𝑖1
 𝑙  0 

𝑙!

∞

𝑙=0

𝑥𝑙 , 𝑔𝑖1
 𝑙  0 =  

𝑑𝑙

𝑑𝑥𝑙
𝑒−

𝑏1
2
 𝑖+1 𝑥2

 
𝑥=0

, 

and 

𝑒−
𝑏2
2
 𝑗+1 𝑥2

=  
𝑔𝑗2
 𝑘  0 

𝑘!

∞

𝑘=0

𝑥𝑘 , 𝑔𝑗2
 𝑘  0 =  

𝑑𝑘

𝑑𝑥𝑘
𝑒−

𝑏2
2
 𝑗+1 𝑥2

 
𝑥=0

, 

One can rewrite (10) as 
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𝜇 𝑟 = 𝜋𝛼1    −1 𝑖  
𝛼1 − 1

𝑖
 

∞

𝑙=0

∞

𝑖=0

𝑔𝑖1
 𝑙  0 

𝑙!
 𝑥𝑟+𝑙 𝑎1 + 𝑏1 𝑥 

∞

0

𝑒− 𝑖+1 𝑎1  𝑥  𝑑𝑥 

+ (1 − 𝜋)𝛼2    −1 𝑗   
𝛼2 − 1

𝑗
 

∞

𝑘=0

∞

𝑗=0

𝑔𝑗2
 𝑘  0 

𝑘!
 𝑥𝑟+𝑘 𝑎2 + 𝑏2 𝑥 

∞

0

𝑒− 𝑗+1 𝑎2  𝑥  𝑑𝑥 

= 𝜋𝛼1    −1 𝑖  
𝛼1 − 1

𝑖
 

∞

𝑙=0

∞

𝑖=0

𝑔𝑖1
 𝑙  0 

𝑙!
 
𝑎1 𝛤 𝑟 + 𝑙 + 1 

  𝑖 + 1 𝑎1 
𝑟+𝑙+1

+
𝑏1 𝛤 𝑟 + 𝑙 + 2 

  𝑖 + 1 𝑎1 
𝑟+𝑙+3

  

+(1 − 𝜋)𝛼2    −1 𝑗  
𝛼2 − 1

𝑗
 ∞

𝑘=0
∞
𝑗=0

𝑔𝑗2
 𝑘  0 

𝑘!
 
𝑎2  𝛤(𝑟+𝑘+1)

  𝑖+1 𝑎2 
𝑟+𝑘+1 +

𝑏2  𝛤(𝑟+𝑘+2)

  𝑖+1 𝑎2 
𝑟+𝑘+3

 .      (13) 

That completes the proof of the lemma. 
Based on the results, the measures of skewness and kurtosis of two components mixture GLFRD can be obtained as 

respectively; 

θ =
𝜇 

(3)
−3𝜇𝜇 

 2 
+2𝜇

3

 𝜇  2 −𝜇2 
3

2

                                             (14) 

and 

φ =
𝜇 

(4)
−4𝜇𝜇 

 3 
+6𝜇

2
𝜇 
 2 

−3𝜇
4

 𝜇  2 −𝜇2 
2                         (15) 

4. Fuzzy Reliability Function 

Sometimes we are faced with situations that the parameters of lifetime variable cannot be expressed as crisp values. They 

can be stated as “approximately”, “around”, “between”, or “about”. Fuzzy sets theory is a useful tool for conveying these 

expressions into mathematical functions. In this case, reliability theory should be considered with respect to fuzzy rules. 

Buckley [21] analyzed probability density functions when their parameters are fuzzy. We may consider the two components 

mixture GLFRD with fuzzy parameters and trapezoidal fuzzy number of 𝑎 1, 𝑎 2 that is replaced instead of 𝑎1, 𝑎2 in consider 

the two components mixture GLFRD. In this case, we show the fuzzy probability of obtaining a value in the interval 

 𝑐∗, 𝑑∗ , 𝑐∗ ≥ 0 is as 𝑃  𝑐∗ ≤ 𝑋 ≤ 𝑑∗  and compute its 𝜗 - cut as follows: (For more details, refer to Buckley [21]) 

𝑃  𝑐∗ ≤ 𝑋 ≤ 𝑑∗  𝜗 =    𝑓 x 𝑑𝑥|
𝑑∗

𝑐∗
𝑎𝑖𝜖𝑎 𝑖 𝜗  =  𝑃𝐿 𝜗 , 𝑃𝑈 𝜗  , 𝑖 = 1,2                     (16) 

where 

𝑃𝐿 𝜗 = 𝑚𝑖𝑛   𝑓 x 𝑑𝑥|

𝑑∗

𝑐∗

𝑎𝑖𝜖𝑎 𝑖 𝜗  ,  

𝑃𝑈 𝜗 = 𝑚𝑎𝑥   𝑓 x 𝑑𝑥|
𝑑∗

𝑐∗
𝑎𝑖𝜖𝑎 𝑖 𝜗  .                                       (17) 

We represent parameter 𝑎 𝑖  with a trapezoidal fuzzy number as 𝑎 𝑖 =  𝑎𝑖1, 𝑎𝑖2, 𝑎𝑖3, 𝑎𝑖4 , 𝑖 = 1,2 such that we can describe 

a membership function 𝜉𝑎 𝑖(𝑥) in the following manner: 

𝜉𝑎 𝑖 𝑥 =

 
 
 

 
 

𝑥−𝑎𝑖1

𝑎𝑖2−𝑎𝑖1
, 𝑎𝑖1 ≤ 𝑥 < 𝑎𝑖2

1           , 𝑎𝑖2 ≤ 𝑥 ≤ 𝑎𝑖3
𝑎𝑖4−𝑥

𝑎𝑖4−𝑎𝑖3
, 𝑎𝑖3 < 𝑥 ≤ 𝑎𝑖4

  0             ,         𝑛𝑜𝑡

                                          (18) 

The 𝜗 - cut 𝑎 𝑖  denote as 𝑎 𝑖 𝜗 =  𝑎𝑖1 +  𝑎𝑖2 − 𝑎𝑖1 𝜗, 𝑎𝑖4 + (𝑎𝑖4 − 𝑎𝑖3)𝜗  

Fuzzy reliability (or fuzzy survival) function of two components mixture GLFRD distribution (𝑅  t; ω ) is the fuzzy 

probability a unit survives beyond time t. Let the random variable X denote lifetime of a system component, also let X follow 

fuzzy density function of two components mixture 𝑓(𝑥, 𝛼 ; 𝜔) and fuzzy cumulative distribution function of two components 

mixture 𝐹 𝑋 𝑡; 𝜔 = 𝑃 (𝑋 ≤ 𝑡) where parameter 𝛼 1 and 𝛼 2 are a fuzzy number, in these conditions the fuzzy reliability 

function at time t of two components mixture GLFRD is defined as (See Baloui Jamkhaneh [20]): 
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𝑅  𝑡\𝜔  𝜗 = 𝑃  𝑋 > 𝑡  𝜗 =   𝑓 𝑥; 𝜔 𝑑𝑥 𝛼𝑖 ∈ 𝛼 𝑖[𝜗] 
∞

𝑡
 =  𝑅𝐿 𝑡; 𝜔  𝜗 , 𝑅𝑈 𝑡; 𝜔  𝜗  ,   𝑡 > 0, 𝑖 = 1,2         (19) 

where 

𝑅𝐿 𝑡; 𝜔  𝜗 = 𝑚𝑖𝑛   𝑓 𝑥;𝜔 𝑑𝑥 𝛼𝑖 ∈ 𝛼 𝑖[𝜗] 

∞

𝑡

  

and 

𝑅𝑈 𝑡; 𝜔  𝜗 = 𝑚𝑎𝑥  𝑓 𝑥;𝜔 𝑑𝑥 𝛼𝑖 ∈ 𝛼 𝑖[𝜗] 
∞

𝑡
 .                               (20) 

Therefore, fuzzy reliability function of two components mixture GLFRD based on fuzzy GLFRD is as follows: 

𝑅  𝑡; 𝜔  𝜗 =   π𝛼1 𝑎1 + 𝑏1𝑥 𝑒
− 𝑎1𝑥+

𝑏1
2
𝑥2  1 − 𝑒− 𝑎1𝑥+

𝑏1
2
𝑥2  

𝛼1−1
∞

𝑡

+  1 − π 𝛼2 𝑎2 + 𝑏2𝑥 𝑒
− 𝑎2𝑥+

𝑏2
2
𝑥2  1 − 𝑒− 𝑎2𝑥+

𝑏2
2
𝑥2  

𝛼2−1

𝑑𝑥 𝑎𝑖 ∈ 𝑎 𝑖 𝜗    

=  𝜋  1 −  1 − 𝑒− 𝑎1𝑡+
𝑏1
2
𝑡2  

𝛼1

 +  1 − 𝜋  1 −  1 − 𝑒− 𝑎2𝑡+
𝑏2
2
𝑡2  

𝛼2

  𝑎𝑖 ∈ 𝑎 𝑖 𝜗   , 

 𝑡 > 0, 0 < 𝜋 < 1,𝛼𝑖 > 0,  𝑎𝑖 > 0,  𝑏𝑖 > 0 𝑎𝑛𝑑 𝑖 = 1,2.                                     (21) 

According to the function of 1 −  1 − 𝑒
− 𝑎𝑖𝑡+

𝑏𝑖
2
𝑡2 
 
𝛼𝑖

 that is decreasing in terms of 𝑎𝑖 , we have: 

𝑅  𝑡; 𝜔  𝜗 =  𝜋  1 −  1 − 𝑒− (𝑎14 +(𝑎14−𝑎13 )𝜗)𝑡+
𝑏1
2
𝑡2  

𝛼1

 +  1 − 𝜋  1 −  1 − 𝑒− (𝑎24 +(𝑎24−𝑎23 )𝜗)𝑡+
𝑏2
2
𝑡2  

𝛼2

 ,

  𝜋1−1−𝑒−(𝑎11+(𝑎12−𝑎11)𝜗)𝑡+𝑏12𝑡2𝛼1+1−𝜋1−1−𝑒−(𝑎21+(𝑎22−𝑎21)𝜗)𝑡+𝑏22𝑡2𝛼2      (22) 

Upper and lower bound of 𝑅  𝑡; 𝜔  𝜗  are two dimensional functions in terms of 𝜗 and t (0 ≤ 𝜗 ≤ 1 𝑎𝑛𝑑 𝑡 > 0). For any 

particular value of   𝑡0, 𝑅  𝑡0; 𝜔  𝜗0  is a fuzzy number. Finally, 𝑅  𝑡0; 𝜔  𝜗0 =  𝑅𝐿 𝑡0; 𝜔  𝜗0 , 𝑅
𝑈 𝑡0; 𝜔  𝜗0   is 𝜗0-cut 

of fuzzy reliability of a unit. In this method, for any particular level of 𝜗0, upper and lower bound of 𝑅  𝑡0; 𝜔  𝜗0  are two 

functions in terms of 𝑡0. So, in this case reliability curve is like a band with upper and lower bound whose width depends on 

the ambiguity parameter (See Baloui Jamkhaneh [19]).  

If 𝛼1 = 𝛼2 = 1 then fuzzy reliability function is as follows, 

𝑅  𝑡  𝜗 =  
𝜋𝑒

−  𝑎14 + 𝑎14−𝑎13 𝜗 𝑡+
𝑏1
2
𝑡2 

+  1 − 𝜋 𝑒
−  𝑎24 + 𝑎24−𝑎23 𝜗 𝑡+

𝑏2
2
𝑡2 

,

 𝜋𝑒
−  𝑎11 + 𝑎12−𝑎11 𝜗 𝑡+

𝑏1
2
𝑡2 

+  1 − 𝜋 𝑒
− (𝑎21 +(𝑎22−𝑎21 )𝜗)𝑡+

𝑏2
2
𝑡2 

 .                   (23) 

For 𝑡0, reliability function is a fuzzy number and membership function of  𝑅  𝑡0  is as follows, 

𝜉𝑎 𝑖 𝑥 =
𝑥  𝜋𝑒−

𝑏1
2
𝑡0

2

+  1 − 𝜋 𝑒−
𝑏2
2
𝑡0

2

 –  𝜋𝑒−𝑎14𝑡0 +  1 − 𝜋 𝑒−𝑎24𝑡0 

 𝜋𝑒−𝑎13𝑡0 +  1 − 𝜋 𝑒−𝑎23𝑡0 −  𝜋𝑒−𝑎14𝑡0 +  1 − 𝜋 𝑒−𝑎24𝑡0 
, 

for      𝜋𝑒−𝑎14𝑡0−
𝑏1
2
𝑡0

2

+  1 − 𝜋 𝑒−𝑎24𝑡0−
𝑏2
2
𝑡0

2

≤ 𝑥 < 𝜋𝑒−𝑎13𝑡0−
𝑏1
2
𝑡0

2

+  1 − 𝜋 𝑒−𝑎23𝑡0−
𝑏2
2
𝑡0

2

. 

𝜉𝑎 𝑖 𝑥 = 1   ,  

For     𝜋𝑒−𝑎13𝑡0−
𝑏1
2
𝑡0

2

+  1 − 𝜋 𝑒−𝑎23𝑡0−
𝑏2
2
𝑡0

2

≤ 𝑥 ≤ 𝜋𝑒−𝑎12𝑡0−
𝑏1
2
𝑡0

2

+  1 − 𝜋 𝑒−𝑎22𝑡0−
𝑏2
2
𝑡0

2

. 

𝜉𝑎 𝑖 𝑥 =
 𝜋𝑒−𝑎11𝑡0 +  1 − 𝜋 𝑒−𝑎21𝑡0 − 𝑥  𝜋𝑒−

𝑏1
2
𝑡0

2

+  1 − 𝜋 𝑒−
𝑏2
2
𝑡0

2

 

 𝜋𝑒−𝑎11𝑡0 +  1 − 𝜋 𝑒−𝑎21𝑡0 −  𝜋𝑒−𝑎12𝑡0 +  1 − 𝜋 𝑒−𝑎22𝑡0 
, 

For     𝜋𝑒−𝑎12𝑡0−
𝑏1
2
𝑡0

2

+  1 − 𝜋 𝑒−𝑎22𝑡0−
𝑏2
2
𝑡0

2

< 𝑥 ≤ 𝜋𝑒−𝑎11𝑡0−
𝑏1
2
𝑡0

2

+  1 − 𝜋 𝑒−𝑎21𝑡0−
𝑏2
2
𝑡0

2

.        (24) 

for every 𝑏1 and 𝑏2, the value of 𝑒−
𝑏1
2
𝑡0

2

 and 𝑒−
𝑏2
2
𝑡0

2

 are greater than or equal to 1 and 𝑒−
𝑏1
2
𝑡0

2

 and 𝑒−
𝑏2
2
𝑡0

2

 are a 

non-decreasing function of 𝑏1 and 𝑏2. If  𝑏1 = 𝑏2 = 0, then fuzzy number of reliability will have its maximum value with 

the lowest uncertainty. As the values of 𝑏1 and 𝑏2 increases, we get lower values for fuzzy numbers of reliability with more 
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uncertainty. 

5. Fuzzy Hazard Function 

Another fuzzy characterizes of the lifetime distribution is the fuzzy hazard function of two components mixture GLFRD 

𝑕 (𝑡; 𝜔). This function is also known as the instantaneous failure rate function. We propose the concept of a fuzzy hazard 

function based on the fuzzy probability measure and named 𝜗 −cut hazard band. The fuzzy hazard function of two 

components mixture GLFRD 𝑕 (𝑡; 𝜔) is the fuzzy conditional probability of an item failing in the short time interval t to (t + 

dt) given that it has not failed at time t. Mathematically, we would define the fuzzy hazard function as 

𝑕  𝑡; 𝜔  𝜗 = lim∆𝑡→0
𝑃  𝑡<𝑋<𝑡+∆𝑡|𝑋>𝑡 

∆𝑡
=  lim

∆𝑡→0

𝑅 𝑡 −𝑅 𝑡+∆𝑡 

∆𝑡 𝑅 𝑡 
|𝑎𝑖 ∈ 𝑎 𝑖 𝜗  =  

−𝑅`(𝑡;𝜔)

𝑅(𝑡;𝜔)
|𝑎𝑖 ∈ 𝑎 𝑖 𝜗  =  

𝑓(𝑡;𝜔)

𝑅(𝑡;𝜔)
|𝑎𝑖 ∈ 𝑎 𝑖 𝜗    (25) 

The fuzzy of two components mixture GLFRD has the following fuzzy hazard function, 

𝑕  𝑡; 𝜔  𝜗 = 

 
 
 
 
 

 
 
 
 π𝛼1 𝑎1+𝑏1𝑥 𝑒

− 𝑎1𝑥+
𝑏1
2
𝑥2 

 1−𝑒
− 𝑎1𝑥+

𝑏1
2
𝑥2 

 

𝛼1−1

𝜋 1− 1−𝑒
− 𝑎1𝑥+

𝑏1
2
𝑥2 

 

𝛼1

 + 1−𝜋  1− 1−𝑒
− 𝑎2𝑥+

𝑏2
2
𝑥2 

 

𝛼2

 

+

 1−π 𝛼2 𝑎2+𝑏2𝑥 𝑒
− 𝑎2𝑥+

𝑏2
2
𝑥2 

 1−𝑒
− 𝑎2𝑥+

𝑏2
2
𝑥2 

 

𝛼2−1

𝜋 1− 1−𝑒
− 𝑎1𝑥+

𝑏1
2
𝑥2 

 

𝛼1

 + 1−𝜋  1− 1−𝑒
− 𝑎2𝑥+

𝑏2
2
𝑥2 

 

𝛼2

 

|𝑎𝑖 ∈ 𝑎 𝑖 𝜗 

 
 
 
 
 

 
 
 
 

,           (26) 

If 𝛼1 = 𝛼2 = 1 then 

𝑕  𝑡; 𝜔  𝜗 =  
π 𝑎1+𝑏1𝑥 𝑒

− 𝑎1𝑥+
𝑏1
2
𝑥2 

𝜋𝑒
− 𝑎1𝑥+

𝑏1
2
𝑥2 

+ 1−𝜋 𝑒
− 𝑎2𝑥+

𝑏2
2
𝑥2 

+
 1−π  𝑎2+𝑏2𝑥 𝑒

− 𝑎2𝑥+
𝑏2
2
𝑥2 

𝜋𝑒
− 𝑎1𝑥+

𝑏1
2
𝑥2 

+ 1−𝜋 𝑒
− 𝑎2𝑥+

𝑏2
2
𝑥2 

|𝑎𝑖 ∈ 𝑎 𝑖 𝜗  ,      (27) 

And  𝜗 −cut of 𝑕  𝑡  is as follows, 

𝑕  𝑡  𝜗 = 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

π  𝑎11 + 𝑎12−𝑎11 𝜗 +𝑏1𝑥 𝑒
−  𝑎11 + 𝑎12−𝑎11 𝜗  𝑥+

𝑏1
2
𝑥2 

𝜋𝑒
−  𝑎11 + 𝑎12−𝑎11 𝜗  𝑥+

𝑏1
2
𝑥2 

+ 1−𝜋 𝑒
−  𝑎21 + 𝑎22−𝑎21 𝜗  𝑥+

𝑏2
2
𝑥2 

+

 1−π   𝑎21 + 𝑎22−𝑎21 𝜗 +𝑏2𝑥 𝑒
−  𝑎21 + 𝑎22−𝑎21 𝜗  𝑥+

𝑏2
2
𝑥2 

𝜋𝑒
−  𝑎11 + 𝑎12−𝑎11 𝜗  𝑥+

𝑏1
2
𝑥2 

+ 1−𝜋 𝑒
−  𝑎21 + 𝑎22−𝑎21 𝜗  𝑥+

𝑏2
2
𝑥2 

 

 
 
 
 

,

 

 
 
 

π  𝑎14 + 𝑎14−𝑎13 𝜗 +𝑏1𝑥 𝑒
−  𝑎14 + 𝑎14−𝑎13 𝜗  𝑥+

𝑏1
2
𝑥2 

𝜋𝑒
−  𝑎14 + 𝑎14−𝑎13 𝜗  𝑥+

𝑏1
2
𝑥2 

+ 1−𝜋 𝑒
−  𝑎24 + 𝑎24−𝑎23 𝜗  𝑥+

𝑏2
2
𝑥2 

+

 1−π  (𝑎24+(𝑎24−𝑎23)𝜗)+𝑏2𝑥 𝑒
− (𝑎24 +(𝑎24−𝑎23 )𝜗 )𝑥+

𝑏2
2
𝑥2 

𝜋𝑒
− (𝑎14 +(𝑎14−𝑎13 )𝜗 )𝑥+

𝑏1
2
𝑥2 

+ 1−𝜋 𝑒
− (𝑎24 +(𝑎24−𝑎23 )𝜗 )𝑥+

𝑏2
2
𝑥2  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

              (28)

𝑕  𝑡; 𝜔  𝜗  is a two dimensional function in terms of 𝜗 

and t (0 ≤ 𝜗 ≤ 1 and t >0 ). In this method, for every 𝜗 − 

cut, hazard curve is like a band. One of the most important 

aspects of the GLFRDis performance of its hazard band. This 

band with change the parameters of density function can 

decrease, increase and be constant. For 𝑏1 = 𝑏2 = 1, hazard 

function is a fuzzy number constant for every t, whereas 

𝑏1, 𝑏2 > 1, leads to an increasing band, and hence can be 

considered to model wear-out, as often deemed appropriate 

for mechanical units, and 𝑏1, 𝑏2 < 1  leads to decreasing 

band, hence modeling wear-in of a product as often 

advocated for electronic units. An increasing hazard band at 

time t indicates fuzzy failure probability of component in 

time (t, t + dt) is more than fuzzy failure probability the 

previous period the same length, that is, components wear 

during the time. 

6. Conclusions 

In this paper, we have studied the mixture generalized 
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linear failure rate distribution (or MGLFRD) and discussed 

some statistical properties of the MGLFRD. The fuzzy 

reliability function and fuzzy hazard function have been 

successfully investigated in this paper. Whenever the 

lifetimes of components and parameters contain 

randomness and fuzziness respectively, the approach of 

reliability theory based on traditional statistical analysis 

may be inappropriate. Fuzzy system reliability is based on 

the concept of fuzzy set and fuzzy probability theory in our 

method. 
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