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Abstract  The paper discusses the graph completion inclusion isotone for interval least squares problem wherein, 
incorporated the Tikhonov regularization for resolving the recurrent problem of ill-conditioning for the resulting interval 
linear least squares using quadratic polynomial fit. It is established that convergence of interval operators to the described 
interval least squares problems implies convergence in the tempered distribution of interval data in the sense of [2]. The open 
Question of Completeness of graph in Banach Space Topology is addressed and estimate of eigenvalues to the interval matrix 
was given further interpretation using ideas of [24] which has great importance in the study of growth rate of a system. 
Numerical example is demonstrated with described methods. 
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1. Introduction 
The paper considers graph completion inclusion isotone 

for least squares problem with uncertain data. The closed 
graph theorem in the sense of [1], and [2] for instance gives a 
basic result that characterizes continuous functions in terms 
of their graphs. For any function ,: YXF → we define 

the graph YXF →: , as the map F  to be the 
Cartessian product 

( ){ }YyandXxyFxYXyx ∈∈=×∈= ,,:ψ . 

There is a metric topology for which is defined
Fxxx += . When kx is Cauchy, for ,...,2,1,0=k

it follows that xxk →  in X  as yFxk → . In other 

words, for a closed graph F, it holds that yFx =  forcing

0→− xxk  implying the graph of kF  is enclosed by 
the convex hull of control points. In a nutshell, a graph 

YXF →: is continuous at the point Xx ∈0  if it pulls 
open sets back to open sets and carries open sets over to open 
sets. 

Fundamental to this discussion are the basic principles of 
advanced topology. Good reference texts may be [1], [3] and 
[4]. Following [1], a linear map F from a linear topological  
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space X to a linear topological space Y will be called 
bounded if it maps bounded sets to bounded sets. A map 
which is a linear topological space X to a linear topological 
space Y will be called sequentially continuous if for every 

sequence ( ) 1k kx ∞
=  converging to some point x of E has a 

bounded envelope and such a sequentially continuous map is 
ultrabarrelled [1]. A function F is called approxable in the 
sense of [5] if for a multi valued mapping YXF →:  for 
every 0>ε  there is continuous single valued mapping 

YXf →:  with graph ( )FgraphOf ε⊆)( . A 
function YXF →:  is said to be upper semi-continuous at 

Xx ∈0  if for any neighbourhood ( ))( 0xFN  of 

( )0xF  there exists a neighbourhood )( 0xN  of 0x  such 

that ( )( )00 ))(( xFNxNF ⊆ . A similar definition goes 
for a lower semi continuous function. 

By reasons due to recurrence and category theorem, the 
map YXF →:  has a measure preserving 
homeomorphism and hence its set of recurrent point is 
residual and of full measure. In other words it can be said that 
such a map has a generic measure preserving 
homeomorphism whose square has a dense orbit. In some 
cases one often comes across some functions with distortions 
at some points which necessitate the following definition. 

Definition 1.1, [6]. Let YXF →:  be a map between 
two locally Euclidean metric spaces. The quantity  
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called the radius ε  distortion of f  at x. 
As a consequence following, we introduce the nonlinear 

system of equation 

0)( =xF                 (1.1) 

where nm IRIRIDF →⊆: , m>n, nIR  is an interval 
vector. It is supposed that the function F has at least 

],[1 baC  where IDx ∈ . Therefore, in a Frechet space E, 
every continuous linear map from a Frechet space E into F 
has a closed range and such a map is finite dimensional.   

Applications of nonlinear systems for example are well 
documented in the work of [7] which includes the following: 
Aircraft stability problems, Inverse Elastic rod problems, 
Equations of radiative transfer, Elliptic boundary value 
problems, Power flow problems, Distribution of water on a 
pipeline, Discretization of evolution problems using implicit 
schemes, Chemical plant equilibrium problems and, 
Nonlinear programming problems. We often adopt the 
concept of divided difference from a univariate function 
which is extended over to multivariate vector valued 
function by defining slope as  

( ) ( ) ( )( )( )∫ −+=
1

0

00/0 ],[ dtxxtxFxxF , provided that 

F is differentiable on the line ( )0xx−
−

. 
Motivated by the above details, we state the following: 
Lemma 1.1, [8]. Let nRD ⊆  be convex and let 

nRDF →:  be continuously differentiable in D. 

(i) If 
( ) Dxx ∈0,  then 

( ) ( )( ) ( ) ( )( )000 ],[ xxxxFxFxF −=−  
(This is a strong form of Mean-value theorem); 

(ii) if ( ) DxLxF ∈∀≤/  then  
( ) ( ) DxxLxxF ∈∀≤ 00 ,],[  and 

( ) ( ) ( ) DxxxxLxFxF ∈∀−≤− 000 ,)()(   

(This is a weak form of Mean-value theorem); 
(iii) if )(/ xF  is Lipschitz continuous in D, that is the 

relation ( ) ( ) DyxyxyFxF ∈∀−≤− ,// ς  

holds for some R∈ς , then  

( ) ( )( ) ( )( ) ( )

( )

20 0 0/

0
2

,

F x F x F x x x

x x D

ς
− − ≤ −

∀ ∈

 

(This is truncated Taylor expansion with remainder term). 
It is a result to follow up to the discussion that we have the 

following theorems. 
Theorem 1.1, [9]. Suppose nm RRDF →⊂:  has an 

F-derivative at each point of an open neighbourhood of
Dx ∈ . Then, /F  is strong at x if and only if /F  is 

continuous at x . 
Because system 1.1 is over determined, we often 

transform to a linear system by the process of 2-norm 
assuming that the Jacobian matrix )(xA  which is 
rectangular exists in the form 

yxAxxAxA TT )()()(
^

=        (1.2) 

This operator is required to be everywhere defined that 
also holds verbatim in Banach space, provided its graph 

YXF →:  is closed in YX ×  with respect to its 
product topology. 

Of paramount interest to us is a mapping that is balanced 
and absorbent whose inductive limit is ultra barrelled for 
which contraction mapping of Newton-Mysovskii theorem 
follows:  

Theorem 1.2, [9]. Supposing that nn RRDF →⊂:  
is F-differentiable on a convex set DD ⊂0  and that for 

each )(, /
0 xFDx ∈  is non-singular and satisfies  

/ /
1 2 1 2

/ 1
1 2 0

( ) ( ) ,

( ) , ,

F x F x x x

F x x x D

η

β−

− ≤ −

≤ ∀ ∈
. Assuming further 

that 00 Dx ∈  such that ς≤− )()( 0
1

0
/ xFxF ; 

1
2
1

<= βηςα   and ( ) 000

_
, DrxS ⊂  for which 

2 1
0

0

j

j
r ς α

∞
−

=
= ∑ . Then the iterated contraction of 

Newton operator is in the form: 

,...,1,0),()( 1/
1 =−= −

+ kxFxFxx kkkk   (1.3) 

which remains in ( )00 , rxS
−

 and converges to a solution 
∗x  of 0=Fx . 
Moreover, 

..,,2,1,2
1 =−≤− −

∗ kxxxx kkkk ε
 

where  

( )
12 12 2

0
1

j
k k

k
j

αε α α ς α
ς

−∞ −

=

   = ≤ −    ∑ . 

We expect the weak pre-image 
( ) { }φ≠∈=− XxFXxxF )(:1  and the strong 

pre-image ( ){ }XxFXxxF ⊂∈=← :)(  coincide 
simultaneously such that the orbit of F is a sequence { }kx  
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for which  

( ) ...,1,01 =∀∈+ kxFx kk      (1.4) 

holds good that F  be coercive and a local 
homeomorphism of nR  to itself, every zero of kF  is in 
the intersection of convex hull with the hyper plane

01 =+kx . 
As a result of equation 1.4 the norm reducing property of 

Newton operator for system 1.1 is given by 
)()( 1 kk xFxF ≤+  for k=0,1,.., . 

The quantity 
*

1
*

ln
lim

ln

k

k k

x x
v

x x

+

→∞

 
 
 
 
 

−
=

−
 will be called 

the order of convergence for { }kx  assuming the limit exists 
which is again equal to the R-Order of convergence of [9]. 

The rest part in the paper is arranged as follows: Section 2 
discusses what is meant by the statistical meaning of the 
matrix 1)( −AAT . Section 3 describes completeness of 
graph in Banach space topology. Procedure for estimating 
eigenvalues of interval Jacobian matrix formed the basis of 
discussion in chapter 4. Section 5 in the paper gives 
numerical illustration of what has been discussed in previous 
sections. 

2. The Statistical Meaning of the Matrix 

1)( −AAT  and Its Applications 

Henceforth, we adopt that the matrix A denotes the matrix 
A(x). In line with ideas expressed in [10] we give the 
statistical meaning to the matrix 1)( −AAT . We note that the 

components miyi ,...,2,1, =  are independent, normally 

distributed random variable with mean iµ   and all having 

the same variance 2δ  which we describe in the form: 

iiyE µ=][ ,  

( )( )


 =

=−−
otherwise

kifor
yyE kkii 0

][
2δ

µµ  

Therefore setting ( )T
mµµµ ...,,1=  there holds that 

( ) ( ) IyyEandyE T 2][,][ δµµµ =−−=  
The covariance matrix of the random vector y is given by

I2δ . The first moments are ( ) µTT AAAxE 1(][ −
=  and

( )( ) ( ) ( ) 12])([ −
=−− AAxExxExE TT δ . For a 

rectangular matrix A for which AAT
 is non singular 

Nuemaier [11] using QRA =  decomposition proved that 

( )( )
2

1 AxAAx kk
T

k
−

≤  for all x. 
Following [12], it was proved that over any field,

Arank
OA

AO
rank

H

2=







 and that ( )AArankrankA H=  

holds over any field of characteristic 0. This means 
computing least squares solution or bounding the errors of 
computations are not defined over an arbitrary field. It thus 
holds that ( ) ( )2

22 )(AcondAAcond H =  and that

( ) ∞==







,2,1, pAcond

OA
AO

cond p

H

p . 

We shall be interested in the least squares problem where 
the coefficient matrix and right hand vector assume some 
kind of noise often known as white noise. This situation 
leads to what is called Total Least Squares Problem (TLS) 
whereby, tempered distribution to the coefficient matrix A is

A∆ , and to the vector y by mRy ∈∆  respectively for 
which holds 

( ) !min, 2 =∆∆
F

yA           (2.1) 

Subject to  

( ) yyxAA ∆+=∆+            (2.2) 

The expression F
.  is the usual Frobenius norm which 

coincides with norml −2  in the classical Banach space. 
In its simplest form, the linear inverse problem [13], [14] to 
which the least squares problem belongs was described in the 
form: 

Find x  given η+= bBx ,        (2.3) 

where, B  represents ( )AAT , yAb T=  , and η is the 
realization of random noise. Thus when B is invertible the 
linear system 2.3 is said to be well posed whereas it is 
ill-posed when B is not invertible. 

As a result the minimum 2l -norm of the residual is given 
by 

bxBr −=
^                (2.4) 

Where, it is understood that )2(p
 is the norm on 2R  

with unit ball defined by 1≤+ pp yx .. 
By substituting (2.4) into (1.1) we have that 

ηη 1**11
^

)( −−− −=−== BxBxBbBx   (2.5) 

In equation 2.5, the second term η1−B  dominates in the 
ill-posed problem when the uncertainty is high thereby 
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making 
^
x  practically useless in most cases of applications. 

This means that the induced map nn RRF →:  is open, 
nearly continuous, and nearly open if and only if B  has the 
same ill-posed property, [1]. Therefore via interval 
arithmetic this problem has been addressed [15]. 

We expect that both 0x and *x be closed in the X  

topology [1] so that, *x  convergence implies convergence 
in the tempered distribution for which any neighbourhood 

( )0xuu =  in the metric space ( )ρ,X  holds for 

( ) ( )( )ερ ,0xfBuF ⊆  satisfying system 1.1. 
As pointed by some schools of thought, one drawback of 

Tikhonov regularization is that it tends to produce a solution 
that is often excessively smooth in image processing for 
which this method results in loss of sharpness. Nevertheless, 
the classical Tikhonov regularization method for minimizing 

22 xyAx τ+− has the solution as 

( ) yAAAIx TT 1)( −
+= ττ  in the sense of [16]. The equation 

that determines τ  in the restructured least squares sense 
was given by  

( )
( ) 12 +

−
=

τω

τ
τ

x

yAx
           (2.6) 

where 1<≤∆∆ ωbA  is well defined. 

Thus when 1=ω  the optimal solution is given by 

( ) ( )







 >
−

=+
=

+

−

otherwiseyA
r

rifAyAAI
x

T

RLS

0,1 νττ
 

Where ( )r,ν  are the unique optimal point to the 
problem minimize ts.ν  

r
x

ryAx

≤








−≤−

1

,ν

 

Note that [ ]
( )2

1
2 1+

=∆∆

x
bA τ

 and 







≠
−

−
= yAxif

bAx
yAxτ . 

Since [ ] ∆=∆∆= bAν  and ∆  is rank one, it holds 
that 1=∆=∆

F
. This forces 

( ) ( )A A x b b+ ∆ − + ∆ = ( )
1

2 21Ax b x− + + . 

Equation 2.6 is used when there is no perturbation in y. In 
case of total least squares the solution to the perturbed least 
squares equation 2.1 is given by the  

( ) yAIAAx TT
TLS

12 −
−= σ ,       (2.7) 

where σ  is the smallest singular value of ],[ yA , ([ 17], 
e.g.,).  

In most applications of interest we often perturb the matrix 
B such that perturbation B∆  satisfies the condition that 

)()( BRangeBRange ⊆∆  and  

( )( ) ( )TT BRangeBRange ⊆∆         (2.8) 

Because of equation 2.8, it follows that 

( ) ( ) ( )20 ε+∆−=∆+ ++++ BBBBBB    (2.9) 

Where we used the fact that ( ) BBB ∆=∆+ + , and

( ) ( )TT BBBB ∆=∆+ . The matrix +B is the 

Pseudo-Penrose inverse of B . 
As a result of equations 2.8 and 2.9 and in view of 

equation 2.7, it can be deduced that  

( ) ( )
( ) ( )20

x x B B b b

x B b B B B b ε

+

+ + +

+ ∆ = + ∆ + ∆

= + ∆ − ∆ +
  (2.10) 

The actual value of x∆  as well as b∆ is obtained in the 
form 

( )bBxBx ∆−∆−≈∆ +           (2.11) 

Bx
xB

b
b ∆−=∆            (2.12) 

Therefore when the matrix B is perturbed by B∆ , from 
well known result [18] there holds the estimate 

( )
1)(,

1
1

1
1

1

1
1

11

<
∆

=
−

≤
∆+−

−

−−

B
B

BKe
e

e
B

BBB
(2.13) 

3. The Question of Completeness of 
graph in Banach Space Topology 

We are interested in the regularity property of graph that is 
equated to openness which relates regularity to inversion 
problems. By this we mean regularity of set valued maps, [19] 
for which openness and inversion properties of equation 1.1 
form the basis of investigation. Inverse mapping theorem 
asserts that the inverse of an invertible bounded linear 
operator between Banach spaces is a continuous map. 

As is well known, a complete metric space cannot be 
written as a countable union of nowhere dense sets. The 
Baire Category theorem provides that
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( ) ( ) ( ( ))ttB y F B xδ
−−−−−−−−

⊂ , an indication that F is open 

around ( ))(, xFx  and )(xBδ  is the open δ
-neighbourhood of x in ID . That is, 

{ }δδ <−∈= cc xxIDxxB :)(       (3.1) 

Fundamentally, what is required is the graph completion 
operator that is inclusion isotone with respect to functional 
argument. That is, the Hausdorff continuous operator 

)(xH  satisfying the inclusion )()( xgxf ⊆  which is 
Dedekind order complete )(xC  with respect to point wise 
defined partial ordering. As it were, we also assume that 

−σ finite algebra of measurable sets holds verbatim.   
As is standard, the completeness of the graph suffices to 

show ∑ ∞<
p

xH )( . That ∑ ≤ )()( xHxH i  

implies that it is absolutely summable, which is that, 

ip p
i

H H≤ ∑ . It follows that 
1

n
i pp i

H H H
+

− ≤∑ ∑ , 

a consequence of Banach space. We note in passing that if 
)(xH  is not Hausdorff, an extreme point is not a 

supporting set. 

4. Distribution of Eigenvalues of the 
Jacobian Matrix 

A very important issue in engineering application has 
always been the occurrence of a saddle node bifurcation , 
Hopf bifurcation or solution near such bifurcation 
points,[20].  

Denoting A(x) as the Jacobian matrix of partial derivative 
of F(x) assuming that system 1.1 is of order n, the 
eigenvalues of A(x) is represented by ))(( xAiλ .  

Let { }r=−=Γ λµµ  which does not contain 

eigenvalues of A other than λ . Then 

( )0inf 0
K

m
µ

ϑ µ
∈

= > . The number of zeros ( )εϑ µ  

inside Γ  is given by argument principle [10] 

/ ( )1( )
2 ( )

d
i

εµϑ µ
λ ε µ

π ϑ µ
Γ

=
 ∫         (4.1) 

Thus 0εε ≤ , the integral is analytic function of ε  and 

of )(ελ . 

In other words assuming ( )zf  is analytic in the sense of 
[21] inside and on a closed contour Γ which encloses 

( )Aλ , then ( )Af  will be defined by the equation 
 

( ) ( )( ) 11
2

f A f z zI A dz
iπ

−

Γ

= −
 ∫     (4.2) 

Supposing the eigenvalues are able to discriminate their 
goals such that 

 ( ) ( ) njxAxA ji ≤≤≥ 1,)()( λλ ,    (4.3) 

And assuming further one can find ( ) 0)( =xAiλ , then 
x  is called a saddle-node bifurcation point of the nonlinear 

system of equation 1.1. Furthermore, if A(x) has a pair of 
conjugate eigenvalues passing the imaginary axis while the 
other eigenvalues have negative real parts, then x is called a 
Hopf bifurcation point. 

The solution to nonlinear system 1.1 is said to be stable if 
the eigenvalues of A(x) have negative real part. 

Using [17], the 2-norm, ( )TAAA += λµ
2
1max)(  

for unsymmetrical matrix A  is the numerical abscissa 

zAFz RA )(2 max)( ∈=α
 

where in its application, the 

behaviour of 
2

tAe
 
may be different in the initial, transient, 

and asymptotic phase. In other words, the asymptotic 

behaviour depends on )(Aµ  as 0lim =
∞→

tA

t
e whenever

0)( <Aµ . In any case, the bound given by 

2121 )( AnAAAA ≤≤=
∞

σ is the best 

possible. 
The cosine angle between two matrices nnRCA ×∈,  

using Frobenius inner product is given by  

∞=
><

= ,2,1,,),( F
CA
CACACos

FF

    (4.4) 

Where  

( )CAtrCA T=>< , , [20] and IC =  is often used in 

practice in which case 
2
1

1,),(
n

IA
IAIACos

FF

=
><

= (4.5) 

The relative condition numbers for the matrix sine and 
cosine in the sense of [22] satisfy  

( )
( )

( )
( )A

AA
AK

A
AA

AK
sin

cos
)(,

cos
sin

)( sincos ≥≥ (4.6) 

( )
2 4 6

...,
2! 4! 6!
A A ACos A I= − + − +

 
3 5 7

( ) ...
3! 5! 7!
A A ASin A A= − + − +  
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After all these, the estimation of eigenvalues of interval 
Jacobian matrices will be computed. Popular such methods 
for estimating bounds of eigenvalues have been the 
Gesrchgorin disks or Ovals of Cassini, [23]. Unfortunately 
the bounds these methods produce for the case of interval 
matrices had been known to be too wide for any meaningful 
uses. We proceed in the same spirit similar to [24] as well as 
[25] to provide realistic bounds for eigenvalues of interval 
matrices coming from the Jacobian of system 1.1. 

For general treatment of eigenvalues, consider 
unsymmetric matrices of order n where for clarity, we adopt 
the following notation: 







 +=

−

−
AAAc 2

1
, 






 −=∆

−

−

AA
2
1

, and after 

verification of ( ) 11 <∆−
cAρ  Rohn showed that a 

necessary and sufficient condition for λ to be eigenvalue of 
interval matrix [A] is that ( ) ( )[ ]∆+−∆−− IAIA cc λλ ,
is singular. That is to say a number λ  is an eigenvalue of

cA if the two conditions below can be verified 

( )( ) 1max)( 1 ≥∆− −

jjcj
IAifi λ  then λ  is a real 

eigenvalue of A 

( )( ) 1)( 1 <∆− −IAifii c λρ then λ  is not a real 

eigenvalue of A 
[22] proved that eigenvalues of  symmetric interval 

matrix A lie in the interval ],[
0

00
−

−
=⊂∧ λλλ  where 

( ) ( ),min
0 ∆−=

−
ρλλ cA  ( ) ( )∆+=

−

ρλλ cAmax

0

. 

The ( ),min cAλ ( )cAmaxλ  respectively denote minimal 

and maximal eigenvalue of cA . Let us take note that a 

rectangular matrix cA  has full column rank if it possible to 

compute ( ) 11
<





 ∆

− T
cc

T
c AAAρ . For example the upper 

end point 
−

λ  of the desired interval indicates how fast a 
population can grow or how fast a disease can spread in any 
experimental data analysis. As pointed out by [24] the 
estimated eigenvalue bound provided by Rohn’s method has 
the drawback of still not being empty even when the set of 
eigenvalues is empty. 

 

5. Numerical Examples  
Problem 1. 

Consider a set of two-dimensional points ( )ii yx , : 

)7,0()3,7()13,8()22,0()19,10()10,17()0,18()8,12(
)6,1()4,8()14,8()22,1()18,11()9,18()1,18()8,11(
)4,2()5,8()15,7()22,2()18,12()8,18()2,17()9,10(
)4,2()6,8()16,7()22,3()17,13()7,18()3,17()9,9(
)3,3()7,8()17,6()21,4()16,14()6,18()4,17()9,8(

)2,4()8,8()18,5()21,5()15,15()5,18()5,16()9,7(
)1,4()9,8()19,4()21,6()14,15()4,18()6,16()9,6(
)0,5()10,8()20,3()20,7()13,16()3,18()7,15()9,5(

)8,2()1,6()11,8()21,2()20,8()12,16()2,18()8,4()9,4(
)7,1()2,7()12,8()21,1()20,9()11,17()1,18()8,13()8,3(

−−−
−−−−−−
−−−−−
−−−−−
−−−−−−

−−−−−−
−−−−−−

−−−−−
−−−−−−
−−−−−−

 
Using quadratic polynomial fit for the data set and if we take notice of the resulting Vandermode matrix, and using 

MATLAB version 2007, the solution for equation 2.1 is obtained as 

( )Tx 0078.0,0757.0,0437.8
^

−−= , with eigenvalues to the symmetric matrix 















+=

3085.2
0026.0
0000.0

*)0060.1()( eBλ . 

Providing solution to the interval linear system a procedure earlier described in [15] applies. As a consequence, we omit 
repeating it here. 
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We are concerned with providing estimates of the eigenvalues computed for interval matrix which was derived from the 

above statistical data set 















=

]2301226,2301206[]129328,129308[]9850,9830[
]129328,129308[]9850,9830[]448,428[

]9850,9830[]448,428[]92,72[
][B

 
 

And this was computed to be 
















−+=

]3085.2,0905.0[
]0026.0,0003.0[

]3092.2,0000.0[
*)0060.1(])([ eBλ . 

Using Rohn’s method [24] we also obtained eigenvalues 
bound to be 

[ 60, 60]
[200, 230]
[230790, 230910 ]

− 
 
 
   

 

Using a 20% impurity as data noise we obtained bounds 
for eigenvalues of interval matrix as  

( )














 −
=

]6.2308600,4.2308699[
]6.260,4.259[

]6000.0,6000.0[
Bλ  

With condition number 0046499.6)( += eBCond c  
and it can be seen that matrix eigenvalues may be affected by 
level of impurities in the statistical data set. 

6. Conclusions 
The paper studied graph completion operator for interval 

least squares problem. We discussed the statistical meaning 

of the matrix ( ) 1−AAT  obtained from the statistical data 
entries of observation. It is shown that convergence of 
inverse operators for the resulting regularized Tikhonov 
parameter implies convergence in the tempered distribution 
of data noise wherein the earlier procedure described in [15] 
is applicable. Our emphasis was placed on estimating 
interval matrix which has great applications in the study of 
growth rate of a system which was applied on statistical least 
squares problem. As pointed out by [24] the estimated 
eigenvalue bound provided by Rohn’s method [24] has the 
drawback of still not being empty even when the set of 
eigenvalues may be empty as demonstrated by numerical 
example. This may be found useful in both Scientific and 
Engineering designs. 
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