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Abstract  An analytical approach for finding the best sampling design subject to a cost constraint is developed. We 
consider stratified random sampling design when elements of the inclusion probabilities are not equal but are in same stratum 
and proposed estimators of totals for domains of study under nonresponse in the context of calibration estimation. We derived 
optimum stratum sample sizes for a given set of unit costs for the sample design and compared empirically the relative 
performances of the proposed calibration estimators with a corresponding global estimator. Analysis and evaluation are 
presented. 
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1. Introduction 
In sample survey, separate estimates of a parameter may 

be required for subpopulations into which a population is 
divided without separately sampling from these 
subpopulations. Such subpopulations are called domains of 
study [1]. The method of estimating the domain parameters 
is called domain estimation.  

[2] first considered in detail some of the problems 
associated with the estimation of domain totals, means and 
proportions in the case of a single-stage simple random 
sampling. He noted that the variance of an estimator of a 
domain parameter is increased by the fact that the number of 
the domain elements, and hence the number of those 
elements that can fall in a random sample of a fixed size, is 
unknown before the start of the survey. [3] gave a derivation 
of Yates’ results in multi-stage sampling. [3] paper is one of 
the first attempts to unify the theory of domain estimation. 
Hartley provided the theory for a number of sample designs 
where domain estimation was of interest. His paper mostly 
discussed estimations that did not make use of auxiliary 
information. He did, however, consider the case of ratio 
estimation where population totals were known for the 
domains. 

[4] extended Yates’ results to double sampling for 
probability proportional to size (PPS) when information on 
the size, X, of each sampling unit is unknown. [5] proposed 
an empirical Bayes estimation of domain means under nested  
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error linear regression model with measurement errors in the 
covariates. The problem of allocation of resources when 
domains of study are of primary interest is discussed by [6].  

However, despite these vast extensions of Yates results, 
the phenomenon of nonresponse and its problems in domain 
estimation have not been adequately addressed. In many 
human surveys, information is in most cases not obtained 
from all the units in the survey even after some call-backs. 
An estimate obtained from such incomplete data may be 
misleading especially when the respondents differ from the 
non-respondents because the estimate can be biased. 

Nonresponse always exists when surveying human 
populations as people hesitate to respond in surveys; and 
increases notably while studying sensitive issues like family 
size. Nonresponse as an aspect in almost every type of 
sample survey creates problems for estimation which cannot 
simply be eliminated by increasing sample size. 

The phenomenon of nonresponse in a sample survey 
reduces the precision of parameters estimates and increases 
bias in estimates resulting in larger mean square error, thus 
ultimately reducing their efficiency. 

An important technique to address these problems is by 
calibration. Calibration as a tool for reweighting for 
nonresponse was first introduced by [7] for the estimation of 
finite population characteristics like means, ratios and totals. 
This calibration approach requires the formulation of 
suitable auxiliary variables. The calibration approach 
provides a unified treatment of the use of auxiliary 
information in surveys with nonresponse. In the presence of 
powerful auxiliary information, the calibration approach 
meets the objectives of reducing both the sampling error and 
the nonresponse error.  

In survey sampling many authors, such as [7-11] defined 
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some calibration estimators using different constraints. In 
stratified random sampling, calibration approach is used to 
obtain optimum strata weights. [12-13] defined some 
calibration estimators in stratified random sampling. This 
article is an attempt to extend [7] results to stratified 
sampling design for domain estimation in the presence of 
nonresponse by calibration approach.   

2. Sample Design and Estimation 
2.1. Domain Characteristics 

Consider the finite population under study 𝑈𝑈 of size 𝑁𝑁 
divided into 𝐷𝐷  domains; 𝑈𝑈1,𝑈𝑈2, … ,𝑈𝑈𝐷𝐷  of sizes 
𝑁𝑁1,𝑁𝑁2, … ,𝑁𝑁𝐷𝐷  respectively. Domain membership of any 
population unit is unknown before sampling. It is assumed 
that domains are quite large. Following from [14], for a 
typical 𝑑𝑑 th domain 𝑈𝑈𝑑𝑑  several characteristics may be 
defined including the domain total: 

𝑌𝑌𝑈𝑈𝑑𝑑 = ∑ 𝑦𝑦𝑑𝑑𝑑𝑑𝑈𝑈𝑑𝑑                  (1) 

Domain mean 

𝑌𝑌�𝑈𝑈𝑑𝑑 = 1
𝑁𝑁𝑑𝑑
∑ 𝑦𝑦𝑑𝑑𝑑𝑑𝑈𝑈𝑑𝑑               (2) 

Domain variance 

𝑆𝑆𝑈𝑈𝑑𝑑
2 (𝑌𝑌) = 1

𝑁𝑁𝑑𝑑−1
∑ �𝑦𝑦𝑑𝑑𝑑𝑑 − 𝑌𝑌�𝑈𝑈𝑑𝑑 �

2
𝑘𝑘∈𝑈𝑈𝑑𝑑         (3) 

And domain covariance between two characteristics 𝑋𝑋 
and 𝑌𝑌 

𝐶𝐶𝑈𝑈𝑑𝑑 (𝑋𝑋,𝑌𝑌) = 1
𝑁𝑁𝑑𝑑−1

∑ �𝑥𝑥𝑑𝑑𝑑𝑑 − 𝑋𝑋�𝑈𝑈𝑑𝑑 ��𝑦𝑦𝑑𝑑𝑑𝑑 − 𝑌𝑌�𝑈𝑈𝑑𝑑 �𝑘𝑘∈𝑈𝑈𝑑𝑑   (4) 

In this article the estimation of domain totals is 
considered. 

2.2. Domain Estimation by Calibration 
The technique of estimation by calibration is based on the 

idea to use auxiliary information to obtain a better estimate 
of a population statistic. Consider a finite population 𝑈𝑈 of 
size 𝑁𝑁 with unites labels 1,2, … ,𝑁𝑁. Let 𝑦𝑦𝑘𝑘 , 𝑘𝑘 = 1,2, … ,𝑁𝑁 
be the study variable and 𝑥𝑥𝑘𝑘  ,𝑘𝑘 = 1,2, … ,𝑁𝑁  be the 
𝑘𝑘-dimensional vector of auxiliary variables associated with 
unit 𝑘𝑘. 

Suppose we are interested in estimating the domain total 
 𝑌𝑌𝑑𝑑 = ∑ 𝑦𝑦𝑑𝑑𝑑𝑑𝑈𝑈𝑑𝑑 . We draw a sample 𝑠𝑠 = {1,2, … ,𝑛𝑛} ∈ 𝑈𝑈𝑑𝑑  
using a probability sampling design 𝑃𝑃,  with 
probability 𝑃𝑃(𝑠𝑠), where the first and second order inclusion 
probabilities are  𝜋𝜋𝑘𝑘 = 𝑃𝑃(𝑘𝑘 ∈ 𝑠𝑠)  and  𝜋𝜋𝑘𝑘𝑘𝑘 = 𝑃𝑃(𝑘𝑘, 𝑙𝑙 ∈ 𝑠𝑠) 
respectively. 

An estimate of 𝑌𝑌𝑑𝑑  is the Horvitz-Thompson (HT) 
estimator 

𝑌𝑌�𝑑𝑑𝑑𝑑𝑑𝑑 = ∑ 𝑑𝑑𝑘𝑘𝑦𝑦𝑑𝑑𝑑𝑑𝑠𝑠               (5) 

where 𝑑𝑑𝑘𝑘 = 1 𝜋𝜋𝑘𝑘⁄  is the sampling weight defined as the 
inverse of the inclusion probability 𝜋𝜋𝑘𝑘  for unit 𝑘𝑘. 

An attractive property of the HT-estimator is that it is 

guaranteed to be unbiased regardless of the sampling design 
𝑃𝑃 [15]. It variance under 𝑃𝑃 is given as: 

𝑉𝑉𝑃𝑃�𝑌𝑌�𝐻𝐻𝐻𝐻� = ∑ ∑ (𝜋𝜋𝑘𝑘𝑘𝑘 − 𝜋𝜋𝑘𝑘𝜋𝜋𝑙𝑙)
𝑦𝑦𝑘𝑘
𝜋𝜋𝑘𝑘

𝑦𝑦𝑙𝑙
𝜋𝜋𝑙𝑙

𝑁𝑁
𝑙𝑙=1

𝑁𝑁
𝑘𝑘=1      (6) 

Suppose there are 𝑥𝑥𝑘𝑘   {𝑘𝑘 = 1,2, … ,𝑁𝑁}  auxiliary 
variables at unit 𝑘𝑘  and 𝒙𝒙𝑘𝑘 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 , … , 𝑥𝑥𝑁𝑁) may or 
may not be known a priori. 𝑿𝑿𝑑𝑑 = ∑ 𝑥𝑥𝑑𝑑𝑑𝑑𝑠𝑠  is the domain 
total for  𝑿𝑿, and is known a priori. Ideally, we would like  

𝑿𝑿�𝑑𝑑 = ∑ 𝑑𝑑𝑘𝑘𝒙𝒙𝑑𝑑𝑑𝑑𝑠𝑠                 (7) 

but often times this is not true. 
The idea behind calibration estimation is to find weights 

𝑤𝑤𝑘𝑘 ,𝑘𝑘 = 1,2, … ,𝑛𝑛 close to 𝑑𝑑𝑘𝑘  based on a distance function 
such that 

𝑿𝑿�𝑑𝑑 ,𝑤𝑤 = ∑ 𝑤𝑤𝑘𝑘𝒙𝒙𝑑𝑑𝑑𝑑𝑠𝑠   =    ∑ 𝒙𝒙𝑑𝑑𝑑𝑑𝑈𝑈𝑑𝑑        (8) 

Expression (8) is the calibration constraint. We wish to 
find weights 𝑤𝑤𝑘𝑘  similar to  𝑑𝑑𝑘𝑘  so as to preserve the 
unbiased property of the HT-estimator. Once 𝑤𝑤𝑘𝑘  is found, 
then our propose calibration estimator for 𝑌𝑌𝑑𝑑 ,𝑤𝑤  is: 

𝑌𝑌�𝑑𝑑𝑑𝑑 = ∑ 𝑤𝑤𝑘𝑘𝑠𝑠 𝑦𝑦𝑑𝑑𝑑𝑑               (9) 

where 𝑤𝑤𝑘𝑘 = 𝑑𝑑𝑘𝑘𝑔𝑔𝑘𝑘 . 
Thus  

𝑌𝑌�𝑑𝑑𝑑𝑑 = ∑ 𝑑𝑑𝑘𝑘𝑔𝑔𝑘𝑘𝑠𝑠 𝑦𝑦𝑑𝑑𝑑𝑑            (10) 

This can be written in regression form as:  

    𝑌𝑌�𝑑𝑑 ,𝑤𝑤 =  𝑌𝑌�𝑑𝑑𝑑𝑑𝑑𝑑 + �𝑋𝑋�𝑑𝑑 ,𝑤𝑤 − 𝑋𝑋�𝑑𝑑�𝛽̂𝛽𝑑𝑑        (11) 

where   

𝛽̂𝛽𝑑𝑑 =
∑ 𝑑𝑑𝑘𝑘𝑞𝑞𝑘𝑘𝑥𝑥𝑑𝑑𝑑𝑑𝑇𝑇𝑠𝑠 𝑦𝑦𝑑𝑑𝑑𝑑
∑ 𝑑𝑑𝑘𝑘𝑞𝑞𝑘𝑘𝑥𝑥𝑑𝑑𝑑𝑑 𝑥𝑥𝑑𝑑𝑑𝑑𝑇𝑇𝑠𝑠

 

And its variance estimator is; 

𝑉𝑉𝑃𝑃�𝑌𝑌�𝑑𝑑 ,𝑤𝑤� = ��(𝜋𝜋𝑘𝑘𝑘𝑘 − 𝜋𝜋𝑘𝑘𝜋𝜋𝑙𝑙)(𝑑𝑑𝑘𝑘𝐸𝐸𝑑𝑑𝑑𝑑 )(𝑑𝑑𝑙𝑙𝐸𝐸𝑑𝑑𝑑𝑑 )
𝑁𝑁

𝑙𝑙=1

𝑁𝑁

𝑘𝑘=1

       

𝑉𝑉𝑃𝑃�𝑌𝑌�𝑑𝑑 ,𝑤𝑤� = ∑ ∑ �𝑑𝑑𝑘𝑘𝑑𝑑𝑙𝑙
𝑑𝑑𝑘𝑘𝑘𝑘

− 1�𝑁𝑁
𝑙𝑙=1

𝑁𝑁
𝑘𝑘=1 𝐸𝐸𝑑𝑑𝑑𝑑   𝐸𝐸𝑑𝑑𝑑𝑑        (12) 

where 𝐸𝐸𝑑𝑑𝑑𝑑 = 𝑦𝑦𝑑𝑑𝑑𝑑 − 𝑥𝑥𝑑𝑑𝑑𝑑𝑇𝑇 𝛽𝛽𝑑𝑑     

2.3. Sample Design for the Calibration Estimator 
Consider a stratified random sampling design with 𝐻𝐻 

strata and such that 𝑛𝑛ℎ  elements are considered from 𝑁𝑁ℎ  
in stratum  ℎ ,ℎ = 1,2, … ,𝐻𝐻 . Then, the design weights 
needed for the point estimation are 𝑑𝑑𝑘𝑘 = 𝑁𝑁ℎ 𝑛𝑛ℎ⁄  for all 𝑘𝑘 
in stratum ℎ , 𝑘𝑘 = 1,2, … ,𝑁𝑁ℎ . However, the design weights 
 𝑑𝑑𝑘𝑘𝑘𝑘  needed for the variance estimation if 𝑘𝑘 ≠ 𝑙𝑙 and both 
𝑘𝑘 and 𝑙𝑙 are in stratum ℎ is: 

𝑑𝑑𝑘𝑘𝑘𝑘 =
𝑁𝑁ℎ
𝑛𝑛ℎ

�
𝑁𝑁ℎ − 1
𝑛𝑛ℎ − 1

� 

Using equation (12): ∑ ∑ (𝑑𝑑𝑘𝑘𝑑𝑑𝑙𝑙 𝑑𝑑𝑘𝑘𝑘𝑘⁄ − 1)𝑁𝑁ℎ
𝑘𝑘=1

𝐻𝐻
ℎ=1 𝐸𝐸𝑘𝑘𝐸𝐸𝑙𝑙   

Then we have; 
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𝑉𝑉𝑃𝑃�𝑌𝑌�𝑑𝑑 ,𝑤𝑤� = ����
𝑁𝑁ℎ
𝑛𝑛ℎ
�

2
�
𝑁𝑁ℎ − 1
𝑛𝑛ℎ − 1

� −
𝑁𝑁ℎ
𝑛𝑛ℎ

�
𝑁𝑁ℎ − 1
𝑛𝑛ℎ − 1

� �
𝑁𝑁ℎ
𝑛𝑛ℎ

�
𝑁𝑁ℎ − 1
𝑛𝑛𝑛𝑛 − 1

��� �
𝑁𝑁ℎ

𝑘𝑘=1

𝐻𝐻

ℎ=1

𝐸𝐸𝑘𝑘𝐸𝐸𝑙𝑙  

𝑉𝑉𝑃𝑃�𝑌𝑌�𝑑𝑑 ,𝑤𝑤� = ����𝑁𝑁ℎ2(𝑁𝑁ℎ − 1) −𝑁𝑁ℎ𝑛𝑛ℎ(𝑁𝑁ℎ − 1)� 𝑛𝑛ℎ2 (𝑛𝑛ℎ − 1)� � × �
𝑁𝑁ℎ
𝑛𝑛ℎ

�
𝑁𝑁ℎ − 1
𝑛𝑛𝑛𝑛 − 1

��
𝑁𝑁ℎ

𝑘𝑘=1

𝐻𝐻

ℎ=1

𝐸𝐸𝑘𝑘𝐸𝐸𝑙𝑙  

𝑉𝑉𝑃𝑃�𝑌𝑌�𝑑𝑑 ,𝑤𝑤� = ��
𝑁𝑁ℎ(𝑁𝑁ℎ − 1)

𝑛𝑛ℎ
�
𝑁𝑁ℎ − 𝑛𝑛ℎ

𝑛𝑛ℎ(𝑛𝑛ℎ − 1)�
𝑁𝑁ℎ

𝑘𝑘=1

𝐻𝐻

ℎ=1

𝑛𝑛ℎ
𝑁𝑁ℎ

�
𝑛𝑛ℎ − 1
𝑁𝑁𝑛𝑛 − 1

�𝐸𝐸𝑘𝑘𝐸𝐸𝑙𝑙         

𝑉𝑉𝑃𝑃�𝑌𝑌�𝑑𝑑 ,𝑤𝑤� = ��
𝑁𝑁ℎ
𝑛𝑛ℎ

�
𝑁𝑁ℎ − 𝑛𝑛ℎ
𝑁𝑁ℎ

�
𝑁𝑁ℎ

𝑘𝑘=1

𝐻𝐻

ℎ=1

𝐸𝐸𝑘𝑘𝐸𝐸𝑙𝑙  

𝑉𝑉𝑃𝑃�𝑌𝑌�𝑑𝑑 ,𝑤𝑤� = ∑ 𝑁𝑁ℎ2
(1−𝑓𝑓ℎ )
𝑛𝑛ℎ

𝐻𝐻
ℎ=1 𝐸𝐸𝑘𝑘𝐸𝐸𝑙𝑙                                                    (13) 

Therefore our variance estimator of (12) becomes 

𝑉𝑉�𝑃𝑃�𝑌𝑌�𝑑𝑑 ,𝑤𝑤� = ∑ 𝑁𝑁ℎ2
(1−𝑓𝑓ℎ )
𝑛𝑛ℎ

𝑐𝑐𝑐𝑐𝑐𝑐 (𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙𝐻𝐻
ℎ=1 )                                (14) 

But  𝑐𝑐𝑐𝑐𝑐𝑐 (𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙) = 𝜎𝜎ℎ2𝜌𝜌 and from the principle of SRS 𝜎𝜎2 = �𝑁𝑁−1
𝑁𝑁
� 𝑆𝑆2. 

Therefore, 

𝜎𝜎ℎ2 = �𝑁𝑁ℎ−1
𝑁𝑁ℎ

� 𝑆𝑆ℎ2                                             (15) 

and 

𝑐𝑐𝑐𝑐𝑐𝑐 (𝑒𝑒𝑘𝑘𝑒𝑒𝑙𝑙) = �𝑁𝑁ℎ−1
𝑁𝑁ℎ

� 𝑆𝑆ℎ2𝜌𝜌                                      (16) 

Substituting (16) into (14) we have 

𝑉𝑉�𝑃𝑃�𝑌𝑌�𝑑𝑑 ,𝑤𝑤� = �𝑁𝑁ℎ2
(1 − 𝑓𝑓ℎ)
𝑛𝑛ℎ

𝐻𝐻

ℎ=1

�
𝑁𝑁ℎ − 1
𝑁𝑁ℎ

� 𝑆𝑆ℎ2𝜌𝜌 

𝑉𝑉�𝑃𝑃�𝑌𝑌�𝑑𝑑 ,𝑤𝑤� = �𝑁𝑁ℎ2
𝐻𝐻

ℎ=1

�
𝑁𝑁ℎ − 1
𝑁𝑁ℎ𝑛𝑛ℎ

� 𝑆𝑆ℎ2𝜌𝜌 −�𝑁𝑁ℎ

𝐻𝐻

ℎ=1

�
𝑁𝑁ℎ − 1
𝑁𝑁ℎ

� 𝑆𝑆ℎ2𝜌𝜌 

𝑉𝑉�𝑃𝑃�𝑌𝑌�𝑑𝑑 ,𝑤𝑤� = 1
𝑛𝑛ℎ
�∑ 𝑁𝑁ℎ2𝑆𝑆ℎ2𝜌𝜌𝐻𝐻

ℎ=1 − ∑ 𝑁𝑁ℎ𝑆𝑆ℎ2𝜌𝜌𝐻𝐻
ℎ=1 � − ∑ 𝑁𝑁ℎ𝐻𝐻

ℎ=1 �𝑁𝑁ℎ−1
𝑁𝑁ℎ

� 𝑆𝑆ℎ2𝜌𝜌             (17) 

2.4. Optimal Sample Allocation 
We shall now deduce the optimum 𝑛𝑛 (𝑛𝑛ℎ ,𝑜𝑜𝑜𝑜𝑜𝑜 ), that minimize the variances of the proposed calibration estimators for a 

specified cost, or that minimize the cost for a specified variance. 
Let us consider the simple linear sampling cost function of the form: 

𝐶𝐶 = 𝑐𝑐0 + ∑ 𝑐𝑐ℎ𝑛𝑛ℎ𝐻𝐻
ℎ=1                                    (18) 

where  𝑐𝑐0 is the overhead cost and 𝑐𝑐ℎ  is the cost per unit of obtaining the necessary information in ℎ-th stratum. We shall 
consider the following allocation methods in this article, namely: 
(i) Optimum allocation 

Using the cost function of (18), 𝐶𝐶 = 𝑐𝑐0 + ∑ 𝑐𝑐ℎ𝑛𝑛ℎ𝐻𝐻
ℎ=1 , we have corresponding lagrangian as follows: 

𝐺𝐺2 = 1
𝑛𝑛ℎ
�∑ 𝑁𝑁ℎ2𝑆𝑆ℎ2𝜌𝜌𝐻𝐻

ℎ=1 − ∑ 𝑁𝑁ℎ𝑆𝑆ℎ2𝜌𝜌𝐻𝐻
ℎ=1 � − ∑ 𝑁𝑁ℎ𝐻𝐻

ℎ=1 �𝑁𝑁ℎ−1
𝑁𝑁ℎ

� 𝑆𝑆ℎ2𝜌𝜌 + 𝜆𝜆�∑ 𝑐𝑐ℎ𝑛𝑛ℎ𝐻𝐻
ℎ=1 + 𝑐𝑐0 − 𝐶𝐶�   (19) 

The partial derivatives of (19) with respect to 𝑛𝑛ℎ  and 𝜆𝜆 are respectively: 
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𝜕𝜕𝐺𝐺2

𝜕𝜕𝑛𝑛ℎ
= −

�𝑁𝑁ℎ2𝑆𝑆ℎ2𝜌𝜌 − 𝑁𝑁ℎ𝑆𝑆ℎ2𝜌𝜌�
𝑛𝑛ℎ2

+ 𝜆𝜆𝑐𝑐ℎ  

𝜆𝜆𝑐𝑐ℎ𝑛𝑛ℎ2 = 𝑁𝑁ℎ𝑆𝑆ℎ2𝜌𝜌(𝑁𝑁ℎ − 1) 

𝑛𝑛ℎ =
�𝑁𝑁ℎ𝑆𝑆ℎ

2𝜌𝜌(𝑁𝑁ℎ−1)

�𝜆𝜆𝑐𝑐ℎ
                                        (20) 

𝜕𝜕𝐺𝐺2

𝜕𝜕𝜕𝜕
= �𝑐𝑐ℎ𝑛𝑛ℎ

𝐻𝐻

ℎ=1

+ 𝑐𝑐0 − 𝐶𝐶 

𝐶𝐶 − 𝑐𝑐0 = ∑ 𝑐𝑐ℎ𝑛𝑛ℎ𝐻𝐻
ℎ=1                                           (21) 

substituting (20) into (21) and solving for 𝜆𝜆, we obtain 

√𝜆𝜆 =
∑ 𝑐𝑐ℎ𝑆𝑆ℎ�𝑁𝑁ℎ(𝑁𝑁ℎ − 1)𝜌𝜌𝐻𝐻
ℎ=1

(𝐶𝐶 − 𝑐𝑐0)�𝑐𝑐ℎ
 

Finally to obtain a solution for 𝑛𝑛ℎ , we substitute for √𝜆𝜆 into (20) as follows: 

𝑛𝑛ℎ ,𝑜𝑜𝑜𝑜𝑜𝑜 = (𝐶𝐶−𝑐𝑐0)𝑆𝑆ℎ�𝑁𝑁ℎ (𝑁𝑁ℎ−1) �𝑐𝑐ℎ�
∑ 𝑐𝑐ℎ𝑆𝑆ℎ�𝑁𝑁ℎ (𝑁𝑁ℎ−1)𝐻𝐻
ℎ=1 �𝑐𝑐ℎ�

                                (22) 

(ii) Neyman allocation 
If the cost per unit is the same across strata (that is, 𝑐𝑐ℎ = 𝑐𝑐,ℎ = 1,2, … ,𝐻𝐻) then; 

𝑛𝑛ℎ ,𝑜𝑜𝑜𝑜𝑜𝑜 = (𝐶𝐶−𝑐𝑐0)𝑆𝑆ℎ�𝑁𝑁ℎ (𝑁𝑁ℎ−1)
𝑐𝑐 ∑ 𝑆𝑆ℎ�𝑁𝑁ℎ (𝑁𝑁ℎ−1)𝐻𝐻

ℎ=1
                                     (23) 

(iii) Optimal power allocation 
Let the loss function according to [16] be 

𝐿𝐿2 = ��
1
𝑛𝑛ℎ

��𝑁𝑁ℎ2𝑆𝑆ℎ2𝜌𝜌
𝐻𝐻

ℎ=1

−�𝑁𝑁ℎ𝑆𝑆ℎ2𝜌𝜌
𝐻𝐻

ℎ=1

� −�𝑁𝑁ℎ𝑆𝑆ℎ2𝜌𝜌
𝐻𝐻

ℎ=1

�
𝑁𝑁ℎ − 1
𝑁𝑁ℎ

�� �
𝑁𝑁ℎ
𝑝𝑝

𝑌𝑌�ℎ
�

2𝐻𝐻

ℎ=1

 

and the corresponding lagrangian is 

𝐺𝐺𝐿𝐿 = ∑ � 1
𝑛𝑛ℎ
�∑ 𝑁𝑁ℎ2𝑆𝑆ℎ2𝜌𝜌𝐻𝐻

ℎ=1 − ∑ 𝑁𝑁ℎ𝑆𝑆ℎ2𝜌𝜌𝐻𝐻
ℎ=1 � − ∑ 𝑁𝑁ℎ𝑆𝑆ℎ2𝜌𝜌𝐻𝐻

ℎ=1 �𝑁𝑁ℎ−1
𝑁𝑁ℎ

�� �𝑁𝑁ℎ
𝑝𝑝

𝑌𝑌�ℎ
�

2
+ 𝜆𝜆�∑ 𝑐𝑐ℎ𝑛𝑛ℎ𝐻𝐻

ℎ=1 + 𝑐𝑐0 − 𝐶𝐶�𝐻𝐻
ℎ=1      (24) 

 

The partial derivatives of (24) with respect to 𝑛𝑛ℎand 𝜆𝜆 
are respectively: 

𝜕𝜕𝐺𝐺𝐿𝐿
𝜕𝜕𝑛𝑛ℎ

= −
�𝑁𝑁ℎ2𝑆𝑆ℎ2𝜌𝜌 − 𝑁𝑁ℎ𝑆𝑆ℎ2𝜌𝜌�

𝑛𝑛ℎ2
�
𝑁𝑁ℎ
𝑝𝑝

𝑌𝑌�ℎ
�

2

+ 𝜆𝜆𝑐𝑐ℎ  

𝜆𝜆𝑐𝑐ℎ𝑛𝑛ℎ2𝑌𝑌�ℎ2 = 𝑁𝑁ℎ𝑆𝑆ℎ2𝜌𝜌(𝑁𝑁ℎ − 1)�𝑁𝑁ℎ
𝑝𝑝�2

 

𝑛𝑛ℎ = 𝑆𝑆ℎ𝑁𝑁ℎ
𝑝𝑝�𝑁𝑁ℎ (𝑁𝑁ℎ−1)𝜌𝜌
𝑌𝑌�ℎ�𝜆𝜆𝑐𝑐ℎ

                 (25) 

𝜕𝜕𝐺𝐺𝐿𝐿
𝜕𝜕𝜕𝜕

= �𝑐𝑐ℎ𝑛𝑛ℎ

𝐻𝐻

ℎ=1

+ 𝑐𝑐0 − 𝐶𝐶 

𝐶𝐶 − 𝑐𝑐0 = ∑ 𝑐𝑐ℎ𝑛𝑛ℎ𝐻𝐻
ℎ=1                      (26) 

substituting (25) into (26) and solving for  𝜆𝜆 we obtain 

√𝜆𝜆 =
∑ 𝑐𝑐ℎ𝑆𝑆ℎ𝑁𝑁ℎ

𝑝𝑝�𝑁𝑁ℎ(𝑁𝑁ℎ − 1)𝜌𝜌𝐻𝐻
ℎ=1

(𝐶𝐶 − 𝑐𝑐0)𝑌𝑌�ℎ�𝑐𝑐ℎ
 

Finally to obtain a solution for 𝑛𝑛ℎ , we substitute for √𝜆𝜆 
into (25) to obtain: 

𝑛𝑛ℎ ,𝑜𝑜𝑜𝑜𝑜𝑜 =
(𝐶𝐶−𝑐𝑐0)𝑆𝑆ℎ𝑁𝑁ℎ

𝑝𝑝�𝑁𝑁ℎ (𝑁𝑁ℎ−1) �𝑐𝑐ℎ�
∑ 𝑐𝑐ℎ𝑆𝑆ℎ𝑁𝑁ℎ

𝑝𝑝�𝑁𝑁ℎ (𝑁𝑁ℎ−1)𝐻𝐻
ℎ=1 �𝑐𝑐ℎ�

     (27) 

 (iv) Neyman power allocation 
If the cost per unit is the same across strata, then; 

𝑛𝑛ℎ ,𝑜𝑜𝑜𝑜𝑜𝑜 =
(𝐶𝐶−𝑐𝑐0)𝑆𝑆ℎ𝑁𝑁ℎ

𝑝𝑝�𝑁𝑁ℎ (𝑁𝑁ℎ−1)

𝑐𝑐 ∑ 𝑆𝑆ℎ𝑁𝑁ℎ
𝑝𝑝�𝑁𝑁ℎ (𝑁𝑁ℎ−1)𝐻𝐻

ℎ=1
      (28) 

(v) Square root allocation 
If the value of the power of the allocation is set to one-half 

(i.e. 0.5) then 
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𝑛𝑛ℎ ,𝑜𝑜𝑜𝑜𝑜𝑜 =
(𝐶𝐶−𝑐𝑐0)𝑆𝑆ℎ𝑁𝑁ℎ�(𝑁𝑁ℎ−1) �𝑐𝑐ℎ�
∑ 𝑐𝑐ℎ𝑆𝑆ℎ𝑁𝑁ℎ�(𝑁𝑁ℎ−1)𝐻𝐻
ℎ=1 �𝑐𝑐ℎ�

      (29) 

(vi) Neyman square root allocation 
If the cost per unit is the same across strata, and the value 

of the power of allocation is set to one-half, then, we obtain  

𝑛𝑛ℎ ,𝑜𝑜𝑜𝑜𝑜𝑜 = (𝐶𝐶−𝑐𝑐0)𝑆𝑆ℎ𝑁𝑁ℎ�(𝑁𝑁ℎ−1)
𝑐𝑐 ∑ 𝑆𝑆ℎ𝑁𝑁ℎ�(𝑁𝑁ℎ−1)𝐻𝐻

ℎ=1
           (30) 

3. Data Analysis and Discussion 
3.1. Background and Analytical Set-up 

The data used is obtained from the 2005 socio-economic 
household survey of Akwa Ibom State conducted by the 
ministry of economic development, Uyo, Akwa Ibom State, 
Nigeria [17]. 

The study variable, 𝑦𝑦 , represents the household 
expenditure on food and auxiliary variable, 𝑥𝑥, represents the 
household income. The statistic of interest is the total cost of 
food for household and its corresponding estimator for male 
and female heads of household. 

The population of household heads was stratified into two 
strata that constitute the domains; as the male household 
heads and the female household heads respectively. For the 
population of individual household heads, we want a 
separate estimates for male and female household heads 
defined as two domains of the population. The number of the 
male household heads and female household heads in the 
survey are known. We used the calibration estimator for the 
domain total 𝑌𝑌�𝑑𝑑 ,𝑤𝑤 ,𝑑𝑑 = 1,2 and the following formulation is 
specified: The number of male household heads,𝑁𝑁1  and 
female household heads, 𝑁𝑁2  are known and the auxiliary 
vector has two possible values; namely, 𝒙𝒙𝑘𝑘 = (1,0)𝑇𝑇 for all 
male household heads and 𝒙𝒙𝑘𝑘 = (0,1)𝑇𝑇  for all female 
household heads. The population total of the auxiliary vector 
𝒙𝒙𝑘𝑘  is (𝑁𝑁1,𝑁𝑁2)𝑇𝑇 which is also known and 𝑞𝑞𝑘𝑘 = 1 for all 𝑘𝑘. 

An assisting model of the form 𝑦𝑦ℎ = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥ℎ + 𝑒𝑒ℎ  was 
designed for the calibration estimators, where ℎ  is the 
number of strata (domains) and 𝑒𝑒ℎ  are independently 
generated by the standard normal distribution. 

3.2. The Sampling Design Variance Estimation 
To obtain an optimum value of 𝑛𝑛ℎ  that minimizes the 

design variance 𝑉𝑉𝑃𝑃�𝑌𝑌�𝑑𝑑 ,𝑤𝑤�, a population was generated with 
the following parameters: 𝐶𝐶 = 500, 𝑐𝑐0 = 100, 𝑐𝑐 = 0.4, 𝑐𝑐1 =
0.5, 𝑐𝑐2 = 0.3, 𝑆𝑆1

2 = 0.3262, 𝑆𝑆1 = 0.5711,𝜌𝜌 = 0.7670,  
𝑁𝑁1 = 7,396;𝑁𝑁2 = 1,553;𝑁𝑁 = 8,949; 𝑆𝑆2

2 = 0.4326, 𝑆𝑆2 =
0.6577. 

Table 1.  Optimum value of 𝑛𝑛ℎ  

Stratum OA NA OPA NPA SRA NSRA 

1 674 805 770 952 737 900 

2 210 195 50 48 105 100 

Total 884 1,000 820 1,000 842 1,000 

Table 2.  Optimum variance 

Allocation 
Method Stratum 1 Stratum 2 Total 

Optimum 
Allocation 18,452.5381 3,293.2926 21,745.8307 

Neyman 
Allocation 15,148.6151 3,586.2351 18,734.8502 

Optimum Power 
Allocation 15,921.2883 15,479.701 31,400.9895 

Neyman Power 
Allocation 12,523.7988 16,146.145 28,669.9442 

Square Root 
Allocation 16,717.0263 7,101.5452 23,818.5715 

Neyman Square 
Root Allocation 13,354.2962 7,482.3705 20,836.6667 

Table 1 shows the summary of values of 𝑛𝑛ℎ  for the six 
allocation criteria. The variance for the calibration estimator 
using the optimum values of 𝑛𝑛ℎ  from the six different 
allocation criteria are presented in table 2. 

The variance estimator from the stratified random 
sampling design is: 

𝑉𝑉𝑃𝑃�𝑌𝑌�𝑑𝑑 ,𝑤𝑤� = � (𝑁𝑁ℎ − 1)𝜌𝜌(𝑁𝑁ℎ − 𝑛𝑛ℎ)
𝐻𝐻

ℎ=1

𝑆𝑆ℎ2

𝑛𝑛ℎ
 

where ℎ = 1,2  and 𝜌𝜌𝑥𝑥𝑥𝑥 = 0.7670  and 𝑆𝑆ℎ2  is the stratum 
variance of the residuals 𝑒𝑒𝑑𝑑𝑑𝑑  where 𝑒𝑒𝑑𝑑𝑑𝑑 = 𝑦𝑦𝑑𝑑𝑑𝑑 − 𝒙𝒙𝑘𝑘𝑇𝑇𝛽̂𝛽𝑑𝑑 . 

The optimum value of 𝑛𝑛ℎ  for the Neyman allocation gave 
the minimum variance sought. The results of the design 
variance estimation are presented in table 3. 

Table 3.  Variance estimation 

Stratum 𝑁𝑁ℎ  𝑛𝑛ℎ  
𝑁𝑁ℎ

− 𝑛𝑛ℎ  
(𝑁𝑁ℎ − 1)𝜌𝜌 𝑆𝑆ℎ2 

(𝑁𝑁ℎ − 1)𝜌𝜌

× (𝑁𝑁ℎ

− 𝑛𝑛ℎ)
𝑆𝑆ℎ2

𝑛𝑛ℎ
 

1. 7,396 805 6,591 5,671.9650 0.3262 15,148.6151 

2. 1,553 195 1,358 1,190.3840 0.4326 3,586.2351 

Total 8,949     18,734.8502 

3.3. Comparison with Global Estimator 
To compare the performance of each estimator we use the 

following criteria; bias (B), relative bias (RB), mean square 
error (MSE), average length of confidence interval (AL) and 
the coverage probability (CP) of  𝑌𝑌�𝑑𝑑 ,𝑤𝑤 . Let 𝑌𝑌�𝑑𝑑 ,𝑤𝑤

(𝑚𝑚)  be the 
estimate of 𝑌𝑌�𝑑𝑑 ,𝑤𝑤  in the 𝑚𝑚 -th simulation run; 𝑚𝑚 =
1,2, … ,𝑀𝑀(= 2,500) we define 

i. 𝐵𝐵�𝑌𝑌�𝑑𝑑 ,𝑤𝑤� = 𝑌𝑌��𝑑𝑑 ,𝑤𝑤 − 𝑌𝑌�𝑑𝑑 ,𝑤𝑤
(𝑚𝑚) where 𝑌𝑌��𝑑𝑑 ,𝑤𝑤 = 1

𝑀𝑀𝑑𝑑
∑ 𝑌𝑌�𝑑𝑑 ,𝑤𝑤

(𝑚𝑚)𝑀𝑀𝑑𝑑
𝑚𝑚=1  

ii. 𝑅𝑅𝑅𝑅�𝑌𝑌�𝑑𝑑 ,𝑤𝑤� = 1
𝑀𝑀
∑ �

𝑌𝑌�𝑑𝑑 ,𝑤𝑤
(𝑚𝑚 )−𝑌𝑌��𝑑𝑑 ,𝑤𝑤

𝑌𝑌��𝑑𝑑 ,𝑤𝑤
�𝑀𝑀

𝑚𝑚=1  

iii. 𝑀𝑀𝑀𝑀𝑀𝑀�𝑌𝑌�𝑑𝑑 ,𝑤𝑤� = 1
𝑀𝑀
∑ �𝑌𝑌�𝑑𝑑 ,𝑤𝑤

(𝑚𝑚) − 𝑌𝑌��𝑑𝑑 ,𝑤𝑤�
2

𝑀𝑀
𝑚𝑚=1  
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iv. 𝐴𝐴𝐴𝐴�𝑌𝑌�𝑑𝑑 ,𝑤𝑤� = 1
𝑀𝑀
∑ �𝑌𝑌�𝑈𝑈,𝑑𝑑 ,𝑤𝑤

(𝑚𝑚) − 𝑌𝑌�𝐿𝐿,𝑑𝑑 ,𝑤𝑤
(𝑚𝑚) �𝑀𝑀

𝑚𝑚=1  

where 𝑌𝑌�𝑈𝑈,𝑑𝑑 ,𝑤𝑤
(𝑚𝑚)  and 𝑌𝑌�𝐿𝐿,𝑑𝑑 ,𝑤𝑤

(𝑚𝑚)  are the upper and lower confidence 
limit of the corresponding confidence interval. 

v. 𝐴𝐴𝐴𝐴�𝑌𝑌�𝑑𝑑 ,𝑤𝑤� = 1
𝑀𝑀
∑ �𝑌𝑌�𝐿𝐿,𝑑𝑑 ,𝑤𝑤

(𝑚𝑚) < 𝑌𝑌�𝑑𝑑 ,𝑤𝑤 < 𝑌𝑌�𝑈𝑈,𝑑𝑑 ,𝑤𝑤
(𝑚𝑚) �𝑀𝑀

𝑚𝑚=1  

Coverage probability of 95% confidence interval is the 
ratio of the number of times the true domain total is included 
in the interval to the total number of runs or the number of 
replicates.  

For each estimator of  𝑌𝑌�𝑑𝑑 ,𝑤𝑤 , a 95% confidence interval 
�𝑌𝑌�𝐿𝐿,𝑑𝑑 ,𝑤𝑤 ,𝑌𝑌�𝑈𝑈,𝑑𝑑 ,𝑤𝑤� is constructed, where 

𝑌𝑌�𝐿𝐿,𝑑𝑑 ,𝑤𝑤 = 𝑌𝑌�𝑑𝑑 ,𝑤𝑤
(𝑚𝑚) − 𝐼𝐼. 96�𝑉𝑉�𝑌𝑌�𝑑𝑑 ,𝑤𝑤

(𝑚𝑚)�  and 𝑌𝑌�𝑈𝑈,𝑑𝑑 ,𝑤𝑤 = 𝑌𝑌�𝑑𝑑 ,𝑤𝑤
(𝑚𝑚) +

𝐼𝐼. 96�𝑉𝑉�𝑌𝑌�𝑑𝑑 ,𝑤𝑤
(𝑚𝑚)� 

where 𝑌𝑌�𝐿𝐿,𝑑𝑑 ,𝑤𝑤  is the lower confidence limit , 𝑌𝑌�𝑈𝑈,𝑑𝑑 ,𝑤𝑤  is the 
upper confidence limit and 𝑉𝑉�𝑌𝑌�𝑑𝑑 ,𝑤𝑤

(𝑚𝑚)� = 1
𝑀𝑀𝑑𝑑−1

∑ �𝑌𝑌�𝑑𝑑 ,𝑤𝑤
(𝑚𝑚) −𝑀𝑀𝑑𝑑

𝑚𝑚=1

𝑌𝑌𝑑𝑑,𝑤𝑤2. 

The analytical study was conducted using the R-statistical 
package. There were 𝑀𝑀 = 2,500 runs in total. For the 𝑚𝑚-th 
run (𝑚𝑚 = 1,2, … ,𝑀𝑀), a Bernoulli sample is drawn where 
each unit is selected into the sample independently, with 
inclusion probability 𝜋𝜋𝑘𝑘 = 𝑁𝑁ℎ 𝑛𝑛ℎ⁄  where  ℎ = 1,2 . 
Following the results of analysis for optimum stratum 
sample sizes, we fixed 𝑛𝑛1 = 805  and  𝑛𝑛2 = 195  and the 
corresponding calibration estimators of the domain totals 
were computed. For simplicity, the tuning parameter 𝑞𝑞𝑘𝑘  was 
set to unity (𝑞𝑞𝑘𝑘 = 1). 

For each estimator of  𝑌𝑌�𝑑𝑑 ,𝑤𝑤 , a 95% confidence interval 
�𝑌𝑌�𝐿𝐿,𝑑𝑑 ,𝑤𝑤 ,𝑌𝑌�𝑈𝑈,𝑑𝑑 ,𝑤𝑤�  is constructed, where 𝑌𝑌�𝐿𝐿,𝑑𝑑 ,𝑤𝑤  is the lower 
confidence limit, and 𝑌𝑌�𝑈𝑈,𝑑𝑑 ,𝑤𝑤  is the upper confidence 
limit.The results of the analysis are given in table 4. 

Table 4.  Comparison of estimators from analytical study 

Estimator B RB MSE AL CP 

𝑌𝑌�𝑑𝑑 ,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  0.0096 0.0632 5896 1283.50 0.982 

𝑌𝑌�𝑑𝑑 ,𝑤𝑤  0.0074 0.0132 2587 823.23 0.768 

3.4. Discussion 
An assisting model of the form 𝑦𝑦ℎ𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥ℎ + 𝑒𝑒ℎ  

where ℎ  is the number of strata (domains) and 
 𝑒𝑒ℎ~𝑁𝑁�0,𝜎𝜎𝑒𝑒ℎ

2 � . The results of the residual diagnostics 
showed the 𝑅𝑅2 value as 0.588 indicating that the model is 
significant and that the calibration estimators are unbiased 
with respect to the sampling design. The correlation between 
the study variable 𝑦𝑦  and the auxiliary variable  𝑥𝑥  is 
𝜌𝜌𝑥𝑥𝑥𝑥 = 0.7670  is strong and sufficient implying that the 
calibration estimators would provide better estimates of the 
domain totals.  

The Neyman allocation criterion provides the optimum 
stratum sample sizes 𝑛𝑛1,𝑜𝑜𝑜𝑜𝑜𝑜 = 805 and 𝑛𝑛2,𝑜𝑜𝑜𝑜𝑜𝑜 = 195  that 
minimized the variance of the calibration estimators as 

reflected in table 2.  
The design strata estimates are 15,148.6151 and 

3,586.2351 for stratum 1 and stratum 2 respectively. 
Similarly, the variance estimate is 18,734.8502. Following 
from the above estimates, we deduced that the design strata 
estimates are minimized when the elements of the inclusion 
probability are not equal but are in the same stratum under 
calibration approach to domain estimation. We also deduced 
that design strata estimates sum up to the finite population 
estimates.  

Analysis for the comparison of performance of estimators 
showed that the biases of 0.74 percent and 0.96 percent 
respectively for the calibration estimator and the 
GREG-estimator are negligible. But the bias of the 
GREG-estimator though negligible is the most biased among 
the estimators considered.  

The relative bias for the calibration estimator is relatively 
smaller than that of the GREG-estimator. The variance for 
the GREG-estimator is significantly larger than the variance 
of the calibration estimators, as is indicated by their 
respective mean square errors in table 4. The average length 
of the confidence interval for the calibration estimator is 
significantly smaller than that of the GREG-estimator. The 
coverage probability of the calibration estimator is also 
smaller than that of the GREG-estimator. These results 
showed that there is greater variation in the estimates made 
by the GREG-estimator than the calibration estimator.  

In general, the calibration estimator is more efficient than 
the GREG-estimator and the variance reduction is about 50 
percent which is consistent with theory as is reflected by the 
high population correlation between the study variable  𝑦𝑦 
and the auxiliary variable 𝑥𝑥. 

4. Concluding Remarks 
In calibration estimation the common practice is to 

generate artificial population(s) for simulation study and 
assign samples to the said population(s) by proxy. We have 
demonstrated the use of analytical approaches to allocate 
optimal samples to subpopulations by conducting real data 
analysis. We recommend analytical approaches for 
allocation of optimal samples to population(s) or 
subpopulation(s) through real data analysis as this guarantee 
the applicability of the proposed estimator(s) to real life 
situation(s). That is, focus should be on assessing the 
applicability of the proposed estimator(s) to real life 
situation(s) through real data analysis rather than on 
assessing the performance of the proposed estimator(s) 
against a given estimator(s) through simulation study. 
Though both cases, could be investigated as it is 
demonstrated in this article. 

5. Conclusions 
Calibration estimation for finite population by [7] is 
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extended to domain estimation in the context of stratified 
random sampling design. We proposed calibration estimator 
based on the stratified random sampling design in the 
presence of nonresponse. The calibration assumption of 
reliant on implicit linear relationship between the study 
variable, 𝑦𝑦 and the auxiliary variable 𝒙𝒙 is retained for the 
domain estimation. 

The problem of optimal allocation of sample sizes for 
domain estimation has received less attention than merited in 
the statistical sample survey theory literature. This article 
equally addressed this problem especially when it is feasible 
to select sample in every domain and we used the stratified 
random sampling design (STRS) where domains constitute 
strata in the sampling design to obtain optimal stratum 
sample sizes. Six optimal allocation criteria were considered, 
namely; optimum allocation, Neyman allocation, optimal 
power allocation, Neyman power allocation, square root 
allocation and Neyman square root allocation. Analysis 
showed that among this class of optimal allocation criteria, 
the Neyman allocation provided the optimal stratum sample 
sizes that minimized the variance of our proposed calibration 
estimator.  

The efficacy of our proposed calibration estimator was 
tested through a real data analysis. Five performance criteria, 
namely; bias (B), relative bias (RB), mean square error 
(MSE), average length of confidence interval (AL) and 
coverage probability (CP) were used to compare the relative 
performances of our proposed calibration estimator against 
the traditional GREG-estimator. Results of the analytical 
study using real data showed that our proposed calibration 
estimator is substantially superior to the traditional 
GREG-estimator with relatively small bias, mean square 
error and average length of confidence interval. 
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