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Abstract  For any partition μ = ( μ1,μ2, … μn ) of a non - negative integer number r there exist a diagram (A) of β - 
numbers for each e where e is a positive integer number greater than or equal to two; which introduced by James in 1978. 
These diagrams (A) play an enormous role in Iwahori-Hecke algebras and q-Schur algebras; as presented by Fayers in 2007. 
Mahmood gave new diagrams by applying the upside- down application on the main diagram (A) in 2013. Another new 
diagrams were presented by the authors by applying the direct rotation application on the main diagram (A) in 2013. In the 
present paper, we introduced some other new diagrams (A1), (A2) and (A3) by employing the "composition of upside- down 
application with direct rotation application of three different degrees namely 90o, 180o and 270o respectively on the main 
diagram (A). We concluded that we can find the successive main diagrams (A1), (A2) and (A3) for the guides b2, b3,. . . and be 
depending on the main diagrams (A1), (A2) and (A3) for b1 and set these facts as rules named Rule (3.1.2), Rule (3.2.2) and 
Rule (3.3.2) respectively.  
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1. Introduction 
Partition theory has a pivotal impact on number theory and 

has in addition an applied impact on representation theory 
which is one of the most important elements of modern 
algebra. This is represented by many studies on this topic, for 
example [1,3,4]. The present paper deals basically with the 
subject of representation theory where Young diagram plays 
an important role in the drafting of the first step of many 
types of algebras. What benefits us here is (lwahori - Hecke 
algebras and q-Schur algebras). James (1978), put the new 
version instead of Young's special diagram of specific 
composition of positive integer numbers which the sum of 
them is a non negative integer number called r. He noticed 
that the new diagram won't work unless the composition is a 
partition which satisfies the condition (µi ≥ µi+1,∀i) and he 
called this, Diagram (A). Then he continued putting a new 
condition when he said there exists e, where e is an integer 
number greater than or equal to 2. It is according to this 
number that we will divide the runners of diagram (A). 
Initially e was taken as a prime integer number, so the results 
were specific. Fayers (2007), abolished the condition on e 
being a prime number. Accordingly, the results were too 
many to give others new scientific capabilities. This subject 
has a connection with representation theory of lwahori- 
Hecke algebras and q-Schur algebras [4]. An excellent 
introduction to the representation theory of Iwahori–Hecke  
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algebras and q-Schur algebras can be found in [3], which 
also contains the definition of integer partition. More detail 
on the latter and β - numbers was given by James (1978). 
Counting the β - numbers for any partition μ of r requires 
the definition of an integer b which was showed later by 
Mohammad (2008), that it must be greater than or equal to 
the number of parts of μ . A. S. Mahmood (2011), 
introduced the definition of main diagram (s) (A) and the 
idea of their intersection. S. M. Mahmood (2011), concluded 
that the conversion of any partition μ of r to diagram (A) of 
β-numbers makes it easy to identify many properties 
inherent in the partition much more than putting it in Young 
diagrams as boxes adjacent to each other. Mahmood (2013), 
gave new diagrams by applying the upside-down application 
on the main diagram (A). Other new diagrams were 
presented by the authors (2013), by applying the direct 
rotation application on the main diagram (A). In the present 
paper, we think of introducing other diagrams by employing 
the composition of the application in [8] with the application 
in [9] on the main diagram (A). The following questions 
were posed: 

1. Can we find the new partition from the old one directly? 
2. Is the movement of the beads in the new main diagrams 

regular or not ? If it is regular, can we design the new main 
diagrams for the guides b2, b3, . . ., and be depending on the 
new main diagram for b1 ? 

3. Is there any relation between the intersection of the 
diagrams in the normal case and the new case ? 

To answer these questions, the paper is organized as 
follows. In section two, we suggest the background and 
notations. In section three, we put forth the new diagrams of 
(upside-down o direct rotation β-numbers. In section four, 
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we summarize the rules for designing the new main 
diagrams for the guides b2,b3,. . ., and be depending on the 
new main diagram for b1. 

2. Background and Notations 
2.1. Diagram (A) of β-Numbers 

Let r be a non-negative integer, A partition μ =
( μ1,μ2, … μn ) of r is a sequence of non - negative integers 
such that  |μ| = ∑  μi = r n

i=1 and μi ≥ μi+1; ∀i≥1; [3]. For 
example, μ = (5, 4, 4, 2, 2, 2,1) is a partition of r =20. 
β-numbers was defined by; see James in [2]: "Fix μ is a 
partition of r, choose an integer b greater than or equal to the 
number of parts of μ and define βi = μi + b − i , 1 ≤ i ≤
b . The set { β1, β2,..., βb } is said to be the set of β -numbers 
for μ." For the above example, if we take b =7, then the set of 
β-numbers is{11, 9, 8,5,4, 3,1}. 

Now, let e be a positive integer number greater than or 
equal to 2, we can represent β - numbers by a diagram called 
diagram (A). 

 
 
 
 
 
 
 
 

 
Where every β will be represented by a bead ( ● ) which 

takes its location in diagram (A). Returning to the above 
example, diagram (A) of β -numbers for e =2 and e =3 is as 
shown below in diagram 1 and 2 respectively: 

 
 
  

 
Diagram 1.                    Diagram 2. 

Note: Throughout this paper, e denotes a fixed integer 
greater than or equal to 2. we mean by diagram (A); diagram 
(A) of β-numbers. 

2.2. The Main Diagrams (A) 

Mahmood in [6] introduced the definition of main 
diagram(s) (A) and the idea of the intersection of these main 
diagrams. in the following subsections, we repeat the 
principals results, as follows: Since the value of b ≥ n; [5], 
then we deal with an infinite numbers of values of b. Here we 
want to mention that for each value of b there is a special 
diagram (A) of β - numbers for it, but there is a repeated part 

of one's diagram with the other values of b where a "Down 
–shifted" or "Up- shifted", occurs when we take the 
following: 

(b1 if b = n), (b2 if b = n+1), . . . and (be if b = n+(e-1)). 
Definition (2.2.1.): [6] The values of b1, b2, . . . and be are 

called the guides of any diagram (A) of β -numbers . 
From the above example where μ = (5, 4, 4, 2, 2, 2,1), r = 

20, if e = 2 then there are two guides, the first is b1 = 7 since n 
= 7 and the second is b2 = 8, the β - numbers are given in 
table 1: 

Table 1.  β- Numbers 
      βi

 

bs
 β1 β2 β3 β4 β5 β6 β7 β8 

b1 = 7 11 9 8 5 4 3 1  
b2 = 8 12 10 9 6 5 4 2 0 

We define any diagram (A) that corresponds any b guides 
as a "main diagram" or "guide diagram". 

Theorem (2.2.2.): [6] There is e of main diagrams for any 
partition μ of r. 

Hence, for our example, we have two main diagrams for 
e=2 as shown in diagram 3:  

e = 2 b1 = 7 b1 = 8 

0   1 
2   3 
4   5 
6   7 
8   9 
10  11 
12  13 

─   ● 
─   ● 
●   ● 
─   ─ 
●   ● 
─   ● 

 

●   ─ 
●   ─ 
●   ● 
●   ─ 
─   ● 
●   ─ 
●   ─ 

Diagram 3. 

And the idea of "Down –shifted" or "Up- shifted", is 
declared in diagram 4 below: 

e = 2 b1 =7 b1+1(e) b1+2(e) 
0   1 
2   3 
4   5 
6   7 
8   9 

10  11 
12  13 
14  15 

─   ● 
─   ● 
●   ● 
─   ─ 
●   ● 
─   ● 

 

●   ● 
─   ● 
─   ● 
●   ● 
─   ─ 
●   ● 
─   ● 

 

●   ● 
●   ● 
─   ● 
─   ● 
●   ● 
─   ─ 
●   ● 
─   ● 

e = 2 b2 = 8 b2+1(e) b2+2(e) 
0   1 
2   3 
4   5 
6   7 
8   9 

10  11 
12  13 
14  15 
16  17 

●   ─ 
●   ─ 
●   ● 
●   ─ 
─   ● 
●   ─ 
●   ─ 

 

●   ● 
●   ─ 
●   ─ 
●   ● 
●   ─ 
─   ● 
●   ─ 
●   ─ 

 

●   ● 
●   ● 
●   ─ 
●   ─ 
●   ● 
●   ─ 
─   ● 
●   ─ 
●   ─ 

Diagram 4.  Illustrates the Idea of "Down- shifted" 

runner e . . . runner2 runner1 
e-1 . . . 1 0 
2e-1 . . . e+1 e 
3e-1 . . . 2e+1 2e 

. . . . 

. . . . 

. . . . 

e = 2 b = 7 
0   1 
2   3 
4   5 
6   7 
8   9 
10  11 

─  ● 
─  ● 
●  ● 
─  ─ 
●  ● 
─  ● 

e = 3 b = 7  
0   1   2 
3   4   5 
6   7   8 

 9  10  11 

─  ●  ─ 
●  ●  ● 
─  ─  ● 
●  ─  ● 

diagram(A) 
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2.3. Some Kinds of Partition  
Any partition μ of r is called w-regular; w ≥ 2, if there 

does not exist i ≥ 1 such that μi = μi+w−1﹥0, and μ is 
called w-restricted if μi − μi+1 < 𝑤𝑤;  ∀i ≥  1, [3]. 

From the above example, where μ = ( 5,4,4,2,2,2,1) 
then μ is 4-regular and 3-restricted. 

2.4. The Intersection of the Main Diagrams 

The idea of the intersection of any main diagrams is 
defined by the following: 

1. Let τ be the number of redundant part of the partition μ 
of r, then we have:  μ = (μ1 ,μ2, … , μn ) = (λ1

τ1 ,  λ2
τ2 , 

… ,  λm
τm ) such that ∑ μi = ∑ λj

τjm
j=1

n
i=1 . 

2. We denote the intersection of main diagrams by 
�⋂ m. d.bs

e
s=1 � . 
3. The intersection result as a numerical value will be 

denoted by #�⋂ m. d.bs
e
s=1 �, and it is equal to ϕ in the case 

of no existence of any bead, or γ in the case that γ common 
beads exist in the main diagrams. 

For our example, the intersection of the two main 
diagrams is as shown in diagram 5: 

b1 = 7 b2 = 8 ⋂ 𝐦𝐦.𝐝𝐝.𝐛𝐛𝐬𝐬
𝟐𝟐
𝐬𝐬=𝟏𝟏   

─   ● 

─   ● 

●   ● 

─   ─ 

●   ● 

─   ● 

●   ─ 

●   ─ 

●   ● 

●   ─ 

─   ● 

●   ─ 

●   ─ 

─   ─ 

─   ─ 

●   ● 

─   ─ 

─   ● 

─   ─ 

─   ─ 

Diagram 5.  

Notice that, #�⋂ m. d.bs
2
s=1 � =3. 

The two principle theorems about the idea of the 
intersection of any main diagrams are: 

Theorem (2.4.1.): [6] For any e ≥ 2, the following holds: 
1- #�⋂  m. d.bs

e
s=1 � = ϕ if τk = 1,∀k where 1 ≤ k ≤ m. 

2- Let Ω be the number of parts of λ  which satisfies the 
condition τk  ≥ e for some k, then: 

 #�⋂ m. d.bs
e
s=1 � =  [ ∑ τt − Ω (e − 1)]Ω

t=1 .  

Theorem (2.4.2.): [6] 
1- Let μ be a partition of r and μ is w-regular, then: 

#��m. d.bs

e

s=1

� = �value if e < w,
ϕ if e ≥ w.

� 

2- Let μ be a partition of r and μ is h-restricted, then: 

#��m. d.bs

e

s=1

� = � value if e < h or (e = h and h < w),
φ  if e > h or (e = h and h ≥ w).

� 

Also, S. M. Mahmood in [7] gave the same subject by 
using a new technique which supported the results of 
Mahmood in [6]. 

Also, S. M. Mahmood in [7] gave the same subject by 
using a new technique which supported the results of 
Mahmood in [6]. 

3. (Upside-Down o Direct Rotation)    
β - Numbers  

In the present paper, we introduce some new diagrams 
depending on the old diagram (A) by employing the 
composition of upside-down application with direct rotation 
application of three different degrees namely 90o, 180o and 
270o respectively. 

As a preliminary step toward the subject, we give the 
following notations: 

1. By direct rotation; we mean: counter clockwise rotation.  
2. All the rotations are about the origin.  
3. Composition is the combination of two or more 

mappings to form a single new mapping. Here, we remind 
with the definition of composition of two mappings:  

Let f : S → T and g: T → U be two mappings. We define 
the composition of f followed by g, denoted by g ο f, to be the 
mapping (g ο f)(x) = g (f (x)), for all x ∈ S. 

Note carefully that in the notation (g ο f ) the mapping on 
the right is applied first. See figure 1. 

 
Figure 1. 

4. The new diagrams created by the composition 
application have another partitions of the origin partition and 
if we use the idea of the intersection, the partition of the 
beads will not be the same (or will not be the sum) in 
 #�⋂ m. d.bs

e
s=1 � in the normal main diagrams. 

To realize these facts, we study the composition 
application for each degree apart on the previous example 
where  µ = (5, 42, 23, 1) for e =2 and e=3 as follows: 

3.1. (Upside-Down o Direct Rotation of degree 90o)     
β - Numbers 

The diagrams introduced by this application is denoted by 
(A1) and are shown in diagram 6. 
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       (U-D o R90) 
 
 
 
 
 
 

Diagram 3.  (A) 

b1 =7 b2 =8 
─  ─  ●  ─  ●  ─ 
●  ●  ●  ─  ●  ● 

●  ●  ●  ●  ─  ●  ● 
─  ─  ●  ─  ●  ─  ─ 

Diagram 6.  (A1) 

Now, if we use the old technique for finding any partition 
of any diagram (A1), the value of the partition will not be 
equal to the origin partition? so, we delete any effect of (-) in 
(A) after the position of β1, and we start with number 1 for 
the first (-) a (left to right) in any row exist in (A), and with 
number 2 for the second (-) and ...,etc, and we stop with last 
(-) before the position β1 in (A) as shown in diagram 7. Now, 
to apply "upside-down o direct rotation of degree 90o" on (A), 
the new version (A1) has the same partition of (A), see 
diagram 8. 
 

 
 

 (U-D o R90) 
 
 
 
 
 
 

Diagram 7.  (A) 

b1 = 7 b2 = 8 

1  2  ●  3  ●  5 
●  ●  ●  4  ●  ● 

●  ●  ●  ●  4  ●  ● 
1  2  ●  3  ●  5  x 

Diagram 8.  (A1) 

Remark (3.1.1.): The main diagram (A1) in case b1 = n, 
plays a main role to design all the main diagrams (A1) for (b2 
= n+1), ... and (be= n+(e-1)), as follows: 

Rule (3.1.2.): Since the main diagram (A1) in the case b1, 
we can find the successive main diagrams (A1) for b2, b3, ... 
and be , as follows: 

1. 1st row in the case b1= n → 2nd row in the case b2 and to 
one (-) in right → 3rd row in the case b3 and to add one (-) in 
right → ⋯ → last row in the case be and to add one (-) in 
right of main diagram (A1). 

2. 2nd row in the case b1 → 3rd row in the case b2 and to add 
one (-) in right → ⋯ → last row in the case be-1 and to add 

one (-) in right → 1st row in the case be and to add one (●) in 
left.  

.                      . . . 

.                      . . . 

.                      . . . 
e. last row in the case b1→ 1st row in the case b2 and to add 

one (●) in left → ⋯ → (e-1) row in the case be and to add one 
(●) in left.  

This rule is clarified in diagram 9. For the above example, 
where μ = (5, 42, 23, 1)  and e = 3. 

 
 
 

 

 

  
 Diagram 2. 

b1 = 7 b2 = 8 b3 = 9 
─  ●  ─  ● 
●  ●  ─  ─ 
─  ●  ●  ● 

●  ─  ●  ●  ● 
─  ●  ─  ●  ─ 
●  ●  ─  ─  ─ 

●  ●  ●  ─  ─ 
●  ─  ●  ●  ● 
─  ●  ─  ●  ─ 

 
Diagram 9. 

Theorem (3.1.3.): All the results in [6] about the main 
diagram (A) is the same of the diagram (A1) but in 
(upside-down o direct rotation of degree 90o ) position.  

One of these results is the intersection of the main 
diagrams. so, the fact mentioned in theorem (3.1.3.) is clear 
in diagram 10 comparing it with diagram 5, for e = 2 and for 
e=3, see the two diagrams 11 and 12: 

b1 = 7 b2 = 8 ⋂ 𝐦𝐦.𝐝𝐝.𝐛𝐛𝐬𝐬
𝟐𝟐
𝐬𝐬=𝟏𝟏   

─  ─  ●  ─  ● ─ 
●  ●  ●  ─  ●  ● 

●  ●  ●  ●  ─  ●  ● 
─  ─  ●  ─  ●  ─  ─ 

─  ─  ●  ─  ─  ─  ─ 
─  ─  ●  ─  ●  ─  ─ 

Diagram 10.  The intersection of the main diagrams (A1) for e=2 

Notice that, #(⋂ m. d.bs
2
s=1 ) = 3, in both cases.  

b1 = 7 b2 = 8 b3 = 9 ⋂ 𝐦𝐦.𝐝𝐝.𝐛𝐛𝐬𝐬
𝟑𝟑
𝐬𝐬=𝟏𝟏   

─ ● ─ ● ─ ● ● ● ─ ─ ─ ─ 
● ● ● ─ ● ● ● ─ ● ─ ─ ● 
─ ─ ● ● ─ ─ ● ● ─ ─ ─ ─ 
● ─ ● ● ● ─ ─ ● ● ─ ─ ─ 
   ● ─ ─ ─ ● ─ ─ ─ ─ 

Diagram 11.  The intersection of the main diagrams (A) for e=3 

b1 = 7 b2 = 8 b3 = 9 ⋂ 𝐦𝐦.𝐝𝐝.𝐛𝐛𝐬𝐬
𝟑𝟑
𝐬𝐬=𝟏𝟏   

 

─ ● ─ ● 
● ● ─ ─ 
─ ● ● ● 

 

● ─ ● ● ● 
─ ● ─ ● ─ 
● ● ─ ─ ─ 

 

● ● ● ─ ─ 
● ─ ● ● ● 
─ ● ─ ● ─ 

 

─ ─ ─ ─ ─ 
─ ─ ─ ─ ─ 
─ ● ─ ─ ─ 

Diagram 12.  The intersection of the main diagrams (A1) for e=3 

Notice that, #(⋂ m. d.bs
3
s=1 ) = 1, in both cases.  

b1 = 7 b2 = 8 
─  ● 
─  ● 
●  ● 
─  ─ 
●  ● 
─  ● 

●  ─ 
●  ─ 
●  ● 
●  ─ 
─  ● 
●  ─ 
●  ─ 

b1 = 7 b2 = 8 
1   ● 
2   ● 
●   ● 
3   4 
●   ● 
5   ● 

●   1 
●   2 
●   ● 
●   3 
4   ● 
●   5 
●   x 

b1 = 7 
─ ● ─ 
● ● ● 
─ ─ ● 
● ─ ● 
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3.2. (Upside-Down o Direct Rotation of degree 180o)    
β - Numbers 

The diagrams introduced by this application is denoted by 
(A2) and are shown in diagram 13. 

 
Diagram 3.  (A)                Diagram 13.  (A2) 

Again, if we use the old technique for finding any partition 
of any diagram (A2), the value of the partition will not be 
equal to the origin partition? so, we delete any effect of (-) in 
(A) after the position of β1, and we start with number 1 for 
the first (-) a (left to right) in any row exist in (A), and with 
number 2 for the second (-) and ..., etc, and we stop with last 
(-) before the position β1 in (A) as shown in diagram 7. Now, 
to apply "upside-down o Direct rotation of degree 180 5 " on 
(A), the new version (A2) has the same partition of (A), see 
diagram 14. 
 

  
  

 

 

 

 

 

 

 
Diagram 7.  (A)             Diagram 14.  (A2) 

Remark(3.2.1.): The main diagram (A2) in case b1 = n, 
plays a main role to design all the main diagrams (A2) for (b2 
= n+1), ... and (be= n+(e-1)), as follows: 

Rule (3.2.2.): Since the main diagram (A2) in the case b1, 
we can find the successive main diagrams (A2) for b2, b3, ... 
and be , as follows: 

1. 1st column in the case b1= n→last column in the case b2 
and to add one (●) in up →(e-1) column in the case b3 and to 
add one (●) in up → ⋯ → 2nd column in the case be and to 
add one (●) in up of main diagram (A2 ). 

2. 2nd column in the case b1 → 1st column in the case b2 and 
to add one (-) in down→last column in the case b3 and to add 
one (●) in up → ⋯ → 3rd column in the case be and to add one 
(●) in up. 

.                     . . . 

.                     . . . 

.                     . . . 
e. last column in the case b1→ (e-1) column in the case b2 

and to add one (-) in down→ ⋯ → 1st column in the case be 
and to add one (-) in down.  

To check this rule For our example, where µ =
(5, 42, 23, 1) and e = 3, see diagram 15 below: 

 
 
 
 
 
 

Diagram 2. 

b1 = 7 b2 = 8 b3 = 9 
─ ● ─ ● ─ ● ─ ● ● 
● ● ● ● ● ─ ● ─ ● 
● ─ ─ ─ ─ ● ─ ● ● 
● ─ ● ─ ● ● ● ● ─ 

   ─ ─ ● ─ ● ─ 

 

Diagram 15. 

Theorem (3.2.3.): All the results in [6] about the main 
diagram (A) is the same of the diagram (A2) but in 
(upside-down o direct rotation of degree 180o ) position. 

Now, as we said before, the intersection of the main 
diagrams is one of these results, hence see diagram 16 and 
compare it with diagram 5 for e=2 and for e=3, see diagram 
17and compare it with diagram 11 above:  

b1 = 7 b2 = 8 ⋂ 𝐦𝐦.𝐝𝐝.𝐛𝐛𝐬𝐬
𝟐𝟐
𝐬𝐬=𝟏𝟏   

●  ─ 
●  ─ 
●  ● 
─  ─ 
●  ● 
●  ─ 

─  ● 
─  ● 
●  ● 
─  ● 
●  ─ 
─  ● 
─  ● 

─  ─ 
─  ─ 
●  ● 
─  ─ 
●  ─ 
─  ─ 
─  ─ 

Diagram 16.  The intersection of the main diagrams (A2) for e=2 

Again, #(⋂ m. d.bs
2
s=1 ) = 3, in both cases. 

b1 = 7 b2 = 8 b3 = 9 ⋂ 𝐦𝐦.𝐝𝐝.𝐛𝐛𝐬𝐬
𝟑𝟑
𝐬𝐬=𝟏𝟏   

 

─ ● ─ 
● ● ● 
● ─ ─ 
● ─ ● 

 

● ─ ● 
● ● ─ 
─ ─ ● 
─ ● ● 
─ ─ ● 

 

─ ● ● 
● ─ ● 
─ ● ● 
● ● ─ 
─ ● ─ 

 

─ ─ ─ 
● ─ ─ 
─ ─ ─ 
─ ─ ─ 
─ ─ ─ 

Diagram 17.  The intersection of the main diagrams (A2) for e=3 

Also, #(⋂ m. d.bs
3
s=1 ) = 1, in both cases. 

3.3. (Upside-Down o Direct Rotation of Degree 270o)    
β - Numbers 

The diagrams introduced by this application is denoted by 
(A3) and are shown in diagram 18. 

 

b1 =7 b2 = 8 
 ─  ● 
 ─  ● 
 ●  ● 
 ─  ─ 
 ●  ● 
 ─  ● 

●  ─ 
●  ─ 
●  ●  
●  ─ 
─  ● 
 ●  ─ 
 ●  ─ 

b1 =7 b2 = 8 
 ●  ─ 
 ●  ─ 
 ●  ● 
 ─  ─ 
 ●  ● 
 ●  ─ 

─  ● 
─  ● 
●  ●  
─  ● 
●  ─ 
 ─  ● 
 ─  ● 

b1 =7 b2 = 8 
 1  ● 
 2  ● 
 ●  ● 
 3  4 
 ●  ● 
 5  ● 

●  1 
●  2 
●  ●  
●  3 
4  ● 
 ●  5 
 ●  x 

b1 =7 b2 = 8 
 ●  1 
 ●  2 
 ●  ● 
 4  3 
 ●  ● 
 ●  5 

1  ● 
2  ● 
●  ●  
3  ● 
●  4 
 5  ● 
 x  ● 

b1 = 7 
─ ● ─ 
● ● ● 
─ ─ ● 
● ─ ● 
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(U-D o R270) 

 

 

 

 

Diagram 3.  (A) 

b1 =7 b2 =8 

●  ●  ─  ●  ●  ●  
─  ●  ─  ●  ─  ─ 

─  ─  ●  ─  ●  ─  ─  
●  ●  ─  ●  ●  ●  ● 

Diagram 18.  (A3) 

Again, if we use the old technique for finding any partition 
of any diagram (A3), the value of the partition will not be 
equal to the origin partition? so, we delete any effect of (-) in 
(A) after the position of β1, and we start with number 1 for 
the first (-) a (left to right) in any row exist in (A), and with 
number 2 for the second (-) and ...,etc, and we stop with last 
(-) before the position β1 in (A) as shown in diagram 7. Now, 
to apply "upside-down o Direct rotation of degree 270 5 " on 
(A), the new version (A3) has the same partition of (A), see 
diagram 19. 

 
(U-D o R270) 

  
 
 
 
 
 

Diagram 7.  (A) 

b1 =7 b2 =8 
●  ●  4  ●  ●  ●  
5  ●  3  ●  2  1 

X  5  ●  3  ●  2  1  
●  ●  4  ●  ●  ●  ● 

Diagram 19.  (A3) 

Remark (3.3.1.): The main diagram (A3) in case b1 = n, 
plays a main role to design all the main diagrams (A3) for (b2 
= n+1), ... and (be= n+(e-1)), as follows: 

Rule (3.3.2): Since the main diagram (A3) in the case b1, 
we can find the successive main diagrams (A3) for b2, b3, ... 
and be , as follows: 

1. 1st row in the case b1= n→ last row in the case b2 and to 
add one (●) in right→ (e-1) row in the case b3 and to add one 
(●) in right→ ⋯ →2nd row in the case be and to add one (●) in 
right of main diagram (A3). 

2. 2nd row in the case b1 → 1st row in the case b2 and to add 
one (-) in left →last row in the cas b3 and to add one (●) in 
right → ⋯ →3rd row in the case be and to add one (●) in right. 

.                     . . . 

.                     . . . 

.                     . . . 
e) last row in the case b1→ (e-1) row in the case b2 and to 

add one (-) in left → ⋯ → 1st row in the case be and to add 
one (-) in left.  

To materialize rule (3.3.2) For the our example for e = 3, 
see diagram 20:  

 
 
 
 
 
 

Diagram 2. 

b1 = 7 b2 = 8 b3 = 9 

 

● ● ● ─ 
─ ─ ● ● 
● ─ ● ─ 

 

─ ─ ─ ● ● 
─ ● ─ ● ─ 
● ● ● ─ ● 

 

─ ● ─ ● ─ 
● ● ● ─ ● 
─ ─ ● ● ● 

 
Diagram 20. 

Theorem (3.3.3.): All the results in [6] about the main 
diagram (A) is the same of the diagram (A3) but in 
(upside-down o direct rotation of degree 270o ) position.  

To perceive theorem (3.3.3.) for this type of rotation, on 
our example, observe diagrams 21 and compare it with 
diagram 5 for e=2 and diagram 22 to be compared with 
diagram 11 for e=3: 

b1 = 7 b2 = 8 ⋂ 𝐦𝐦.𝐝𝐝.𝐛𝐛𝐬𝐬
𝟐𝟐
𝐬𝐬=𝟏𝟏   

● ● ─ ● ● ●  
─ ● ─ ● ─ ─ 

─ ─ ● ─ ● ─ ─ 
● ● ─ ● ● ● ● 

 ─  ─  ●  ─  ● ─  ─ 
 ─  ─  ─  ─  ● ─  ─ 

Diagram 21.  The intersection of the main diagrams (A3) for e=2 

Notice that, #(⋂ m. d.bs
2
s=1 ) = 3, in both cases. 

b1 = 7 b2 = 8 b3 = 9 ⋂ 𝐦𝐦.𝐝𝐝.𝐛𝐛𝐬𝐬
𝟑𝟑
𝐬𝐬=𝟏𝟏   

 

● ● ● ─ 
─ ─ ● ● 
● ─ ● ─ 

 

─ ─ ─ ● ● 
─ ● ─ ● ─ 
● ● ● ─ ● 

 

─ ● ─ ● ─ 
● ● ● ─ ● 
─ ─ ● ● ● 

 

─ ─ ─ ● ─ 
─ ─ ─ ─ ─ 
─ ─ ─ ─ ─ 

Diagram 22.  The intersection of the main diagrams (A3) for e=3 

Also, #(⋂ m. d.bs
3
s=1 ) = 1 , in both cases. 

4. Conclusions 
1. A procedure is suggested for the diagrams (A1), (A2) 

and (A3) of β - numbers which they represent the 
composition of upside - down application with the direct 
rotation application of degrees 90o, 180o, and 270o 
respectively, on diagram (A) of β-numbers to have the same 
partition of diagram (A) of β-numbers. 

2. Furthermore, for each composition, a rule for designing 

b1 = 7 b2 = 8 
─ ● 
─ ● 
● ● 
─ ─ 
● ● 
─ ● 

● ─ 
● ─ 
● ● 
● ─ 
─ ● 
● ─ 
● ─ 

b1 = 7 b2 = 8 
1  ● 
2  ● 
●  ● 
3  4 
●  ● 
5  ● 

●  1 
●  2 
●  ● 
●  3 
4  ● 
●  5 
●  x 

b1 = 7 
─ ● ─ 
● ● ● 
─ ─ ● 
● ─ ● 
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all the main diagrams of the composition for b2, b3, . . . , and 
be is set depending on the main diagram of the composition 
for b1. 

3. We find out that the intersection of the main diagrams of 
each composition is the same of the main diagram (A) but in 
the composition position. 

4. And finally: 
a) (Upside-Down o Direct Rotation of degree 90o ) 

β - Numbers = (Direct Rotation of degree 270o o 
Upside-Down) β - Numbers 

b) (Upside-Down o Direct Rotation of degree 180o) 
β - Numbers = (Direct Rotation of degree 180o o 
Upside-Down) β - Numbers 

c) (Upside-Down o Direct Rotation of degree 270o) 
β - Numbers = (Direct Rotation of degree 90o o 
Upside-Down) β - Numbers 
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