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Abstract  A compositional time series is a multivariate time series in which each of the series has values bounded between 
zero and one and the sum of the series equals one at each time point. Data with such characteristics are observed in repeated 
surveys when a survey variable has a multinomial response but interest lies in the proportion of units classified in each of its 
categories. The main approach to analyzing Compositional Time Series data has been based on the application of an initial 
transform to break the unit sum constraint. Box-Cox transformation originally was envisioned as a panacea for 
simultaneously correcting normality, linearity and homoscedasticity. However, one thing is clear; that seldom does this 
transformation fulfill the basic assumptions as originally suggested. This paper aims at reviewing works relating to these 
transformations with some modifications and illustrative example as would be applicable to the analysis of compositional 
time series data.  
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1. Introduction  
Repeated surveys produce time series {𝑦𝑦𝑡𝑡}  comprising 

estimates of the unknown target series {𝜃𝜃𝑡𝑡}. If a survey is 
repeated at times  𝑡𝑡 = 1, … ,𝑇𝑇, then multinomial responses 
at each time 𝑡𝑡, (𝑟𝑟𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠), lead to compositions. A composition 
is a vector of non-negative components summing to a 
constant, usually a unity. Symbolically, a vector 𝑥𝑥 such that: 
𝑥𝑥 = (𝑥𝑥𝑖𝑖 , … , 𝑥𝑥𝐷𝐷)ı;  𝑥𝑥𝑖𝑖 > 0 (𝑇𝑇 = 1, …𝐷𝐷); ∑ 𝑥𝑥𝑖𝑖 = 1𝐷𝐷

𝑖𝑖=1  is a 
composition. A time series of composition is referred to as a 
compositional time series (CTS). 

A compositional time series (CTS) is defined as a 
multivariate time series in which each of the series has values 
bounded between zero and one and the sum of the series 
equals one at each time point. Data with such characteristics 
are observed in repeated surveys when a survey variable has 
a multinomial response but interest lies in the proportion of 
unit classified in each of its categories. Therefore, the survey 
estimates are proportions of a whole subject to a unity-sum 
constraint.  

A repeated survey is a sample survey which is performed 
more than once with essentially the same questionnaire or 
schedule but not necessarily with the same sample units. 
Many repeated surveys are based on a rotating panel design 
in which K panels of sampling units are investigated at each 
survey round (time point) and panels are replaced in a  
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systematic manner, according to the rotating pattern of the 
survey design. In these surveys, elementary design unbiased 
estimates  𝑦𝑦𝑡𝑡

(𝑘𝑘),𝑘𝑘 = 1, …𝐾𝐾, for the population parameters 𝜃𝜃𝑡𝑡 , 
can be obtained from each rotation group. A rotation group is 
a set of sampling units that joins and leaves the sample at the 
same time [1]. 

A repeated survey enables estimation of changes for the 
population as well as cross-sectional estimate. Monitoring 
and detecting important changes will usually be a key reason 
for sampling in time. Common frequencies for repeated 
survey are monthly, quarterly and annual. However more 
frequent sampling may be adopted as in the opinion polls 
leading up to an election and monitoring Television or Radio 
rating [2].  

Some examples of repeated surveys are monthly labour 
force surveys in Australia. Quarterly surveys include the 
labour force survey in U.K and Ireland and many business 
surveys. Annual surveys include the Annual Survey of 
Manufacturers of the U.S. Census Bureau enumerates a fixed 
panel of economic establishments for five survey years. 
Establishments are selected with probabilities proportionate 
to size using Poisson sampling. The June Enumerative 
Survey of the National Agricultural Statistics Service is a 
yearly survey of agricultural activities. The farm costs and 
returns survey, also of the National Agricultural Statistics 
Service, enumerates a stratified simple random sample of 
farms each year.  

In a repeated survey there is not necessarily any overlap of 
the sample for different occasions. A rotating panel surveys 
also uses a sample that is followed over time, but the focus is 
on estimates at aggregate levels. When the emphasis is on 
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estimates for the population an independent sample may be 
used on each occasion, which is often the case when the 
interval between the surveys is quite large. An option is to 
use the same sample at each occasion, with additions so that 
the sample estimates refer to the current population. For 
monthly or quarterly surveys the sample is often designed 
with considerable overlap between successive surveys. The 
sample overlap will reduce the sampling variance of 
estimates of change and reduce costs. Many important 
surveys are conducted repeatedly to give estimates of the 
level or mean for several time periods.  

Repeated surveys can provide estimates for each time 
periods  𝑦𝑦𝑡𝑡 . A major value of repeated surveys is in their 
ability to provide estimates of change. The simplest analysis 
of change is the estimate of one period change  𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1. In 
a monthly survey this corresponds to one month change. For 
a survey conducted annually this corresponds to annual 
change. In general, therefore the change 𝒔𝒔  time periods 
apart can be estimated as the difference at  lag 𝑠𝑠:∆(𝑠𝑠) 𝑦𝑦𝑡𝑡 =
𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−𝑠𝑠. 

The focus is often on 𝑠𝑠 = 1, but for a survey repeated on a 
monthly basis changes for 𝑠𝑠 = 2,3,12 are also commonly 
examined [2]. Having sample overlap at lag 𝑠𝑠 will usually 
lead to a positive correlation between the estimates. Since 

𝑉𝑉𝑉𝑉𝑉𝑉�∆(𝑠𝑠)𝑦𝑦𝑡𝑡� = 𝑉𝑉𝑉𝑉𝑟𝑟(𝑦𝑦𝑡𝑡) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦𝑡𝑡−𝑠𝑠) − 

2�𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦𝑡𝑡)𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦𝑡𝑡−𝑠𝑠)𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝑡𝑡 ,𝑦𝑦𝑡𝑡−𝑠𝑠), 
having sample overlap reduces the variance of ∆(𝑠𝑠)(𝑦𝑦𝑡𝑡) 
compared with having no sample overlap. [3] considered the 
components of change in a repeated survey [4-6] give a 
general review of issues in the design and analysis of 
repeated surveys. [7] cover many of the important issues 
associated with panel surveys. [8-10] review estimation 
issues for repeated surveys.  

The focus of this paper is on compositional data from 
repeated surveys. Data of this kind frequently arise in 
disciplines as disparate as biology, demography, ecology, 
economics, geology and politics. Examples are: the 
percentage of different species of fish recorded in a lake at 
different instants in time, the composition of monthly 
immigration to a city according to the country of origin, the 
daily market share at the end of trading, the breakdown of 
household monthly consumption by type of item in budget 
surveys and the results of opinion polls conducted at 
different times during an election campaign [11]. In this 
paper we give a detailed review of developments in the field 
of the statistical analysis of compositional time series (CTS).  

Historically, the main approach to analyzing CTS data has 
been based on the application of an initial transform to break 
the unit sum constraint, followed by the use of standard time 
series techniques. The inverse transformation is then used on 
the derived results to obtain results pertinent to the original 
sample space. That is, the inverse transformation is applied 
to obtain the equivalent inferential results for the original 
compositional time series (CTS). 

This approach was first discussed by [12] in the context of 
analyzing CTS from repeated sample surveys. In [12-14], the 

authors first proved that such an approach is in variant to the 
choice of the component used as the common divisor in the 
additive log ratio (alr) transformation. Secondly, assuming 
normality for the distribution of 𝑦𝑦𝑡𝑡 , they obtained forecasts 
for the original CTS 𝑥𝑥𝑡𝑡  by calculating the mean of the 
corresponding additive logistic distribution numerically.   

In this paper two methods of analyzing CTS is discussed: 
The direct modeling in the simplex, and transformation of 
the simplex. An attempt is made at reviewing the works 
relating to the transformation of the simplex with some 
modifications.  

2. Compositional Time Series  
Let 

𝜃𝜃𝑡𝑡 = �𝜃𝜃1𝑡𝑡 , … ,𝜃𝜃𝐷𝐷+1,𝑡𝑡�                (1) 
be a vector of population quantities of interest at time 𝑡𝑡, and 
assume that observations are taken at equally spaced time 
intervals 𝑡𝑡 = 1,2, … ,𝑇𝑇. 

Let 

𝑦𝑦𝑡𝑡 = �𝑦𝑦1𝑡𝑡 , … ,𝑦𝑦𝐷𝐷+1,𝑡𝑡�               (2) 
represent a survey-based estimate of 𝜃𝜃𝑡𝑡  based on data 
collected at time 𝑡𝑡. 

Repeated surveys produce time series {𝑦𝑦𝑡𝑡}  comprising 
estimates of the unknown target series {𝜃𝜃𝑡𝑡}. According to [1] 
focusing on the unknown population vector 𝜃𝜃𝑡𝑡 , it is natural to 
imagine that knowledge of 𝜃𝜃1, … ,𝜃𝜃𝑡𝑡−1  conveys useful 
information about 𝜃𝜃𝑡𝑡  but without implying that it is 
perfectly predictable from 𝜃𝜃1, … ,𝜃𝜃𝑡𝑡−1. 

One way of representing this situation is by considering 
𝜃𝜃𝑡𝑡  being a random variable which evolves stochastically in 
time following a certain time series model, as was first 
proposed for univariate survey analysis by [15-17] 

The survey estimates 𝑦𝑦𝑡𝑡  and 𝜃𝜃𝑡𝑡  of (1) and (2) can then be 
expressed as  

𝑦𝑦𝑡𝑡 = 𝜃𝜃𝑡𝑡 + 𝑒𝑒𝑡𝑡                   (3) 
where  {𝜃𝜃𝑡𝑡} , {𝑦𝑦𝑡𝑡}  and {𝑒𝑒𝑡𝑡}  are random processes and 
𝑒𝑒𝑡𝑡 = (𝑒𝑒1𝑡𝑡 , … , 𝑒𝑒𝐷𝐷+1,𝑡𝑡)1  are the sampling errors such that 
𝐸𝐸(𝑒𝑒𝑡𝑡|𝜃𝜃𝑡𝑡) = 0 and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑒𝑒𝑡𝑡|𝜃𝜃𝑡𝑡) = Σt . 

Many variables investigated by statistical agencies have a 
multinomial response and interest lies in the estimation of 
the proportion of units classified in each of the categories. If 
this is the case, the vector of proportion sums to one and 
forms what is known as a composition.  

A composition is a vector of non-negative components 
summing to a constant, usually 1, or put symbolically, a 
vector 𝑥𝑥  such that  𝑥𝑥 = (𝑥𝑥𝑖𝑖 , … , 𝑥𝑥𝐷𝐷)1; 𝑥𝑥𝑖𝑖 > 0 (𝑖𝑖 =
1,…𝐷𝐷;𝑖𝑖=1𝐷𝐷𝑥𝑥𝑖𝑖=1. 

A time series of compositions is referred to as a 
Compositional Time Series (CTS). A Compositional Time 
Series is a sequence of vectors 𝑦𝑦𝑡𝑡 = (𝑦𝑦1𝑡𝑡 , … ,𝑦𝑦𝐷𝐷+1,𝑡𝑡) each 
belonging to the simplex  𝑆𝑆𝐷𝐷 . 

If a survey is repeated at time  𝑡𝑡 = 1, … ,𝑇𝑇 , then 
multinomial response at each time at 𝑟𝑟𝑡𝑡  say constitute 
compositions.  
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�𝑈𝑈𝑡𝑡 : 0 < 𝑈𝑈𝑖𝑖𝑖𝑖 < 1, 𝑖𝑖 = 1, …𝑑𝑑;�𝑈𝑈𝑖𝑖𝑖𝑖 < 1, 𝑡𝑡 = 1, … ,𝑇𝑇
𝑑𝑑

𝑖𝑖=1

� 

which forms a multivariate time series.  
The transformation of the series produces a multivariate 

time series defined on ℝ𝑑𝑑  at each time point 𝑡𝑡 which can be 
analysed using standard methods. In particular [13] 
examined the use of ARMA models on the transformed 
series defined by 𝜙𝜙(𝐵𝐵)𝑉𝑉𝑡𝑡 = 𝜃𝜃(𝐵𝐵)𝜀𝜀𝑡𝑡 . 
where 𝜙𝜙(𝐵𝐵) = Ι𝑑𝑑 + 𝜙𝜙1𝐵𝐵 + ⋯+ 𝜙𝜙𝑝𝑝𝐵𝐵𝑝𝑝  
and 𝜃𝜃(𝐵𝐵) = Ι𝑑𝑑 + 𝜃𝜃1𝐵𝐵 + ⋯+ 𝜃𝜃𝑞𝑞𝐵𝐵𝑞𝑞  

In the multivariate case, the ideas of [18] who give a very 
simple procedure for choosing, estimating and testing such 
models is always followed.  

However, it is always necessary to consider if the choice 
of reference variable in any way influences the analysis. 
Consequently, [12] proves the following results.  

(i) Let 𝑉𝑉𝑡𝑡
(𝑘𝑘) = 𝑧𝑧(𝑘𝑘)𝑉𝑉𝑡𝑡  

        = 𝑧𝑧(𝑘𝑘)�𝑉𝑉𝑡𝑡 − 𝜐𝜐� = 𝑉𝑉𝑡𝑡
(𝑘𝑘) − 𝜐𝜐(𝑘𝑘), 

           (𝑡𝑡 = 0, ±1, … ), (𝑘𝑘 = 1, … ,𝑑𝑑) 
where 𝑧𝑧(𝑘𝑘) is given by  

  𝑧𝑧(𝑘𝑘) = �𝑧𝑧𝑖𝑖𝑖𝑖
(𝑘𝑘)� 

  𝑧𝑧𝑖𝑖𝑖𝑖
(𝑘𝑘) = 1      (𝑖𝑖 = 𝑗𝑗 ≠ 𝑘𝑘; 𝑖𝑖, 𝑗𝑗 = 1, … ,𝑑𝑑) 

      = −1   (𝑗𝑗 = 𝑘𝑘, 𝑖𝑖 = 1, … ,𝑚𝑚) 
           = elsewhere  

and  𝜇𝜇 = 𝐸𝐸(𝑉𝑉𝑡𝑡), then if {𝑉𝑉𝑡𝑡} follows a multivariate ARMA 

(𝑝𝑝, 𝑞𝑞)  process of dimension 𝑚𝑚  then �𝑉𝑉𝑡𝑡
(𝑘𝑘)�  is also 

multivariate ARMA (𝑝𝑝, 𝑞𝑞). The roots of the determinantal 
equations of both the AR and MA components from the two 
models are identical so that the stationarity and invertibility 
conditions remain consistent.  
(ii) Consider the compositional time series �𝑈𝑈𝑡𝑡�  where 
𝑎𝑎𝑑𝑑

(𝑘𝑘)�𝑢𝑢𝑡𝑡�, 
 (𝑘𝑘 = 1, … ,𝑑𝑑 + 1)  follows an ARMA (p, q) process. 

Then each ARMA model (𝑘𝑘 = 1, … ,𝑑𝑑 + 1) represents the 
same model for  𝑢𝑢𝑡𝑡 , except that the elements of 𝑢𝑢𝑡𝑡

𝑓𝑓  and 
associated parameters have been permuted. That is, the 
model for 𝑢𝑢𝑓𝑓 is totally invariant to the choice of reference 
variable.  

The consequences of results (i) and (ii) is that any 
component of 𝑢𝑢𝑡𝑡

𝑓𝑓  may be selected as the reference variable 
without affecting the final results. In what follows, we 
assume that the reference variable is  𝑢𝑢𝑑𝑑+1,𝑡𝑡 . The application 
of compositional data to modelling and forecasting is straight 
forward when the argument of [19] is followed.  

Let the series 𝑈𝑈𝑡𝑡  be transformed to 𝑉𝑉𝑡𝑡 . 
𝑉𝑉𝑡𝑡 = 𝑎𝑎𝑑𝑑�𝑢𝑢𝑡𝑡� 

�𝑉𝑉𝑡𝑡�  is then modeled by the vector ARMA (𝑝𝑝, 𝑞𝑞) , 
forecasts for 𝑉𝑉𝑡𝑡+𝑙𝑙  can be obtained. Let the 𝑙𝑙-step a head 
forecast 𝑉𝑉𝑡𝑡+𝑙𝑙  of 𝑉𝑉𝑡𝑡  be denoted by 𝑉𝑉𝑡𝑡(𝑙𝑙) and its covariance 
matrix  ∑ (𝑙𝑙)𝑡𝑡 , a “naïve” forecast for 𝑢𝑢𝑡𝑡+𝑙𝑙  as: 

𝑣𝑣𝑡𝑡(𝑙𝑙) = 𝑎𝑎𝑑𝑑−1(𝑉𝑉𝑡𝑡(𝑙𝑙)) 
Assuming normality for the distribution of 𝑉𝑉𝑡𝑡  so that 

�𝑉𝑉𝑡𝑡+𝑙𝑙 �𝑉𝑉𝑡𝑡−1
�, … �~𝑁𝑁 �𝑉𝑉𝑡𝑡(𝑙𝑙),Σt(𝑙𝑙)�. The optimum forecast of 

𝑢𝑢𝑡𝑡+𝑙𝑙 ,𝑢𝑢𝑡𝑡(𝑙𝑙) may be obtained numerically by calculating the 
mean of  𝐿𝐿𝑑𝑑 �𝑉𝑉𝑡𝑡(𝑙𝑙),Σt(𝑙𝑙)� or 𝑢𝑢𝑡𝑡(𝑙𝑙) may be approximated. 
Also a confidence region for 𝑈𝑈𝑡𝑡+𝑙𝑙  may be obtained 
following standard multivariate theory, though the 
confidence region will not centered at  𝑢𝑢𝑡𝑡(𝑙𝑙). 

A 100 (1 − 𝛼𝛼)% confidence region for 𝑢𝑢𝑡𝑡+𝑙𝑙  according 
to [13] can be formed from  

�𝑉𝑉𝑡𝑡(𝑙𝑙) − 𝑙𝑙𝑙𝑙 �
𝑈𝑈𝑡𝑡+𝑙𝑙

𝑈𝑈𝑑𝑑+1,𝑡𝑡+𝑙𝑙
�
𝑇𝑇

Σ𝑡𝑡
−1(𝑙𝑙) �𝑉𝑉𝑡𝑡(𝑙𝑙) − 𝑙𝑙𝑙𝑙 �

𝑈𝑈𝑡𝑡±𝑙𝑙

𝑈𝑈𝑑𝑑+𝑚𝑚 ,𝑡𝑡+𝑙𝑙
���

≤ 𝜒𝜒𝛼𝛼 ,𝑑𝑑
2  

where 𝜒𝜒𝛼𝛼 ,𝑑𝑑
2  is the 𝛼𝛼%  point of a 𝜒𝜒(𝑑𝑑)

2  distribution, by 
mapping points from ℝ𝑑𝑑  onto the simplex 𝑆𝑆𝑑𝑑 . 

Also forecasts for either the ratios 𝑈𝑈𝑖𝑖,𝑡𝑡+𝑙𝑙/𝑈𝑈𝑗𝑗 ,𝑡𝑡+𝑙𝑙  or 
generally the log-ratios may be obtained.  

�𝑈𝑈𝑖𝑖�𝑈𝑈𝑗𝑗 �𝑡𝑡(𝑙𝑙) = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑉𝑉𝑖𝑖𝑖𝑖(𝑙𝑙) − 𝑉𝑉𝑗𝑗𝑗𝑗 (𝑙𝑙)

+
1
2
�𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖 (𝑙𝑙) − 2𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖 (𝑙𝑙) + 𝜎𝜎𝑗𝑗𝑗𝑗𝑗𝑗 (𝑙𝑙)�� 

where Σt
(𝑙𝑙) = �𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖 + (𝑙𝑙)� 

3. Analyzing Compositional Time Series  
Two methods of analyzing compositional time series will 

be explored, namely: Direct method and transformation 
method. Under the transformation methods of analysis, we 
shall examine two techniques: Box and Cox transformation 
and the log-ratio transformation. Again, the log ratio 
transformation shall be viewed under: (i) additive log ratio 
(alr) transformation (ii) centered log ratio transformation (clr) 
and (iii) isometric log ratio transformation.  

3.1. Direct Modeling in the Simplex 

Around the same time as the publication of [12] and 
[20-21] introduced a different approach to analyzing CTS, 
which had also been inspired by some of the earlier ideas of 
Aitchison. There and in [22], the authors developed space 
state models which could be used to model CTS data directly 
in the simplex. The distribution of the CTS conditioned on 
the unobserved state was assumed to be Dirichlet. The state 
distribution was assumed to be Dirichlet conjugate. This was 
a new generalization of the Dirichlet distribution proposed 
by them in order to allow for dependence between the 
components.  

A vector of continuous proportions consists of the 
proportions of some total accounted for by its constituent 
components (compositions). We consider the situations 
where time series data are available and where interest 
focuses on the proportions rather than the actual amounts. A 
state space model for time series of compositions 
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conditionally on the unobserved state, the observation are 
assumed to follow the Dirichlet distribution, often 
considered to be the most natural distribution on the simplex. 
The state follows the Dirichlet conjugate distribution. 

Let 𝑦𝑦 = (𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝐷𝐷)1  be a vector of continuous 
proportions, namely a vector with positive components such 
that  𝑦𝑦𝑇𝑇𝑢𝑢 = 1. 

Where 𝑈𝑈 = (1,1, … ,1)1 is a (𝑑𝑑 + 1) - vector of 1s. 
Then 𝑦𝑦  follows the Dirichlet distribution if it has the 

density 

P(𝑦𝑦|𝛼𝛼) = 𝐷𝐷(𝛼𝛼)−1 ∏ 𝑦𝑦𝑖𝑖
𝛼𝛼𝑖𝑖−1𝑑𝑑+1

𝑖𝑖=1          (4) 

In density (4) 𝛼𝛼 = (𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑑𝑑+1)′  where 𝛼𝛼𝑖𝑖 > 0 for 
𝑖𝑖 = 1, … ,𝑑𝑑 + 1 and  

𝐷𝐷(𝛼𝛼) = Γ(𝛼𝛼𝑇𝑇𝑢𝑢)−1 �Γ
𝑑𝑑+1

𝑖𝑖=1

𝛼𝛼𝑖𝑖  

is the Dirichlet function, a (𝑑𝑑 + 1) - dimensional analogue 
of the beta function. We denote this situation by 𝑦𝑦~𝐷𝐷(𝛼𝛼). 

The sample space is the d-dimensional simplex  𝑆𝑆𝑑𝑑 ; 
𝑆𝑆𝑑𝑑 = {𝑦𝑦𝑦𝑦 ℝt

𝐷𝐷:𝑦𝑦𝑇𝑇𝑢𝑢 = 1} 
Expressing (4) in exponential family form, we have:  
Let 𝑉𝑉 =  𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦  
    𝜏𝜏 = 𝑉𝑉𝑇𝑇𝑢𝑢/(𝑑𝑑 + 1) and  
  𝑍𝑍 = 𝑉𝑉 − 𝑢𝑢𝑢𝑢 
Z is the vector of symmetric log ratios (clr) and Z = clr (y) 
Also let 𝜃𝜃 = 𝛼𝛼/𝜆𝜆 

where    𝜆𝜆 = 𝛼𝛼𝑇𝑇𝑢𝑢  so that 𝑦𝑦 − 𝐷𝐷(𝜆𝜆𝜆𝜆) .Then density (4) 
becomes:  

P(𝑍𝑍|𝜃𝜃, 𝜆𝜆) = exp{𝜆𝜆𝑍𝑍𝑇𝑇𝜃𝜃 + 𝜆𝜆𝜆𝜆 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜆𝜆𝜆𝜆)}   (5) 
The sample space is 𝐻𝐻𝑑𝑑 = {𝑍𝑍𝑍𝑍ℝ𝑑𝑑+1:𝑍𝑍𝑇𝑇𝑢𝑢 = 0} and the 

parameters space is (𝜃𝜃, 𝜆𝜆) 𝜖𝜖 𝑆𝑆𝑑𝑑 × ℝ𝑡𝑡 . The purpose of this 
reparameterization according to [22] is to separate the effects 
of location 𝜃𝜃 and spread 𝜆𝜆 as far as possible.  

3.2. Transformation Method 
The sample space of a composition 𝑥𝑥 is referred to as the 

simplex  𝑆𝑆𝑑𝑑 . It has been known since the days of [23] that 
normal statistical methods are not applicable to element of 
the simplex (the compositions). 

The major way, following the ideas of Aitchison of 
resolving these problems has been through transformation.  

3.2.1. Box-Cox Transformation 

[24] introduced the use of the well-known Box-Cox 
transformation as an alternative to the additive log ratio (alr) 
transformation. The Box-Cox transformation has the 
advantage of including the alr transformation as a special 
case. However, the only application of this approach known 
is that presented in [25]. These authors modeled the Box-Cox 
transformed data using dynamic linear models incorporating 
a rich class of distributions for the errors based on scale 
mixtures of multivariate normal distributions. This general 
class of distributions includes as special cases the 
multivariate normal, student-t, logistic and stable 
distributions, among others.  

[25] used the same complex procedure as those proposed 
in [26] to carry out model selection and inference. They 
illustrated their approach using two CTS; the mortality data 
from Los Angeles (analyzed previously by [26] and a CTS 
on vehicle production which had been previously analyzed 
by [21]. 

[27] introduced a family of power transformation such that 
the transformed values are a monotonic function of the 
observations over some admissible range and indexed by  

𝑦𝑦𝑖𝑖
(𝜆𝜆) = � 𝑦𝑦𝑖𝑖

(𝜆𝜆) 𝜆𝜆 ≠ 0
log𝑦𝑦𝑖𝑖 𝜆𝜆 = 0

�             (6) 

for  𝑦𝑦𝑖𝑖 > 0. However, this family has been modified by [28] 
to take account of the discontinuity at 𝜆𝜆 = 0, such that  

𝑦𝑦𝑖𝑖
(𝜆𝜆) = ��𝑦𝑦𝑖𝑖

(𝜆𝜆) − 1�/𝜆𝜆 𝜆𝜆 ≠ 0
log𝑦𝑦𝑖𝑖 𝜆𝜆 = 0

�      (7) 

and that for unknown 𝜆𝜆 

𝑦𝑦(𝜆𝜆) = �𝑦𝑦1
(𝜆𝜆),𝑦𝑦2

(𝜆𝜆),𝑦𝑦𝑛𝑛
(𝜆𝜆)�

′
= Χ𝜃𝜃 + 𝑒𝑒 

where Χ is a matrix of known constants, 𝜃𝜃 is a vector of 
unknown parameters associated with the transformed values 
and 𝑒𝑒~𝑀𝑀𝑀𝑀𝑀𝑀(0,𝜎𝜎2Ιn )  is a vector of random errors. The 
transformation in equation (7) is valid only for 𝑦𝑦𝑖𝑖 > 0 and, 
therefore, modifications have had to be made for negative 
observations. [28] proposed the shifted power transformation 
with the form  

𝑦𝑦𝑖𝑖
(𝜆𝜆) = ��(𝑦𝑦𝑖𝑖 + 𝜆𝜆2)𝜆𝜆1 − 1�/𝜆𝜆1 𝜆𝜆1 ≠ 0

log(𝑦𝑦𝑖𝑖 + 𝜆𝜆2) 𝜆𝜆1 = 0
�     (8) 

where 𝜆𝜆1 is the transformation parameter and 𝜆𝜆2 is chosen 
such that 𝑦𝑦𝑖𝑖 > −𝜆𝜆2. 

[29] introduced the so-called modulus transformation 
which is considered to normalize distributions already 
possessing some measure of approximate symmetry and 
carries the form 

𝑦𝑦𝑖𝑖
(𝜆𝜆) = �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑦𝑦𝑖𝑖)�(|𝑦𝑦𝑖𝑖| + 1)𝜆𝜆 − 1�/𝜆𝜆 𝜆𝜆 ≠ 0

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑦𝑦𝑖𝑖) {𝑙𝑙𝑙𝑙𝑙𝑙 (|𝑦𝑦𝑖𝑖| + 1)} 𝜆𝜆 = 0
�   (9) 

[30] suggested another alternative which can be used with 
negative observations and which is claimed to be effective at 
turning skew unimodal distributions into nearly symmetric 
normal-like distributions and is of the form: 

𝑦𝑦𝑖𝑖
(𝜆𝜆) = �(exp(𝜆𝜆𝑦𝑦𝑖𝑖) − 1)/𝜆𝜆 𝜆𝜆 ≠ 0

𝑦𝑦𝑖𝑖 𝜆𝜆 = 0
�     (10) 

[31] suggested another modification so that distributions 
of 𝑦𝑦𝑖𝑖

(𝜆𝜆)  with unbounded support such as the normal 
distribution can be included. For 𝜆𝜆 > 0, the extension is:  

𝑦𝑦𝑖𝑖
(𝜆𝜆) =  �|𝑦𝑦𝑖𝑖|𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑖𝑖) − 1� 𝜆𝜆⁄        (11) 

It is important to note that the ranged of 𝑦𝑦𝑖𝑖
(𝜆𝜆) in equations 

(6) – (9) is restricted according to whether 𝜆𝜆 is positive or 
negative. This implies that the transformed values do not 
cover the entire range (−∞, +∞)  and, hence, their 
distributions are of bounded support. Consequently, only 
approximate normality is to be expected. 
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It is also remarked that since [28] transformation, other 
modifications of the transformation for special applications 
and circumstances had been made, but for most researchers, 
the original Box-Cox transformation of equation (7) suffices 
and is preferable due to computational simplicity.  

3.2.2. Log Ratio Transformation  

Let 𝒜𝒜DxD  denote the family of all real D x D matrices 
such that AID = A′ID = OD  

Let X ϵ SD  and  A ϵ 𝒜𝒜DxD . We defined the product A⨀X 
as: 

A⨀X = C��𝑥𝑥𝑖𝑖
𝑎𝑎1𝑖𝑖

D

i=1

, … ,�𝑥𝑥𝑖𝑖
𝑎𝑎D 𝑖𝑖

D

i=1

�

′

 

The function X ⟶ A⨀X  is an endomorphism of the 
vector space (SD,⨁,⨀). Moreover, any endomorphism of 
 SD  can be written in this form. The matrix associated to 
identity endomorphism is the well-known centering matrix 
GD = ID − D−1JD  of order D X D.  
(i) Additive Log ratio Transformation (alr) 

The alr transformation of index 𝑖𝑖 (𝑖𝑖 = 1, … ,𝐷𝐷) denoted 
by alr(x) is the one-to-one transformation from SD  to ℝD  
define as: 

X ⟶ y = alr(x) = y 

𝑦𝑦 = �𝑙𝑙𝑙𝑙𝑥𝑥1
𝑥𝑥𝐷𝐷

, 𝑙𝑙𝑙𝑙𝑥𝑥2
𝑥𝑥𝐷𝐷

, … , 𝑙𝑙𝑙𝑙𝑥𝑥𝐷𝐷−1
𝑥𝑥𝐷𝐷

� 

𝑦𝑦 = ln(𝑥𝑥)

⎝

⎜
⎛

1   0 ⋯ 0
0   1 ⋯ 0
⋮    ⋮ ⋯ ⋮
0   1 ⋯ 1

−1 − 1 ⋯ −1⎠

⎟
⎞

 

where 𝑦𝑦𝑦𝑦 ℝD  and 𝑑𝑑 = 𝐷𝐷 − 1  
The inverse denoted 𝑎𝑎𝑎𝑎𝑟𝑟−1(𝑦𝑦) or (gal) is defined as:  

𝑎𝑎𝑎𝑎𝑟𝑟−1(𝑦𝑦) = 𝐶𝐶[𝑒𝑒𝑒𝑒𝑒𝑒([𝑦𝑦; 0])] 
where gal means generalized additive logistic transformation  

gal(y) = �
exp(y1)

∑ (exp(y𝑖𝑖)) + 1D−1
𝑖𝑖=1

, … ,
exp(yD−1)

∑ (exp(y𝑖𝑖) + 1)D−1
𝑖𝑖=1

, 1

− x1 −⋯−xD−1� 

The additive log ratio transformation is asymmetric in the 
parts of the compositions.  
(ii) Centered Log Ratio Transformation (clr) 

The centered (or symmetric) log ratio transformation 
denoted by clr is the function from the compositional space 
SD  to ℝD , defined by:X ⟶ Z = clr(x) = Z 

𝑍𝑍 = �𝑙𝑙𝑙𝑙
𝑥𝑥1

𝑔𝑔(𝑥𝑥)
, … , 𝑙𝑙𝑙𝑙

𝑥𝑥𝐷𝐷
𝑔𝑔(𝑥𝑥)

� 

=
ln(𝑥𝑥)

D
�

𝐷𝐷 − 1 −1 ⋯ −1
−1 𝐷𝐷 − 1 ⋯ −1
⋮ ⋮ ⋮ ⋮
−1 −1 ⋯ 𝐷𝐷 − 1

� 

where 𝑍𝑍𝑍𝑍ℝD  and 𝑔𝑔𝐷𝐷(x)  is the geometric mean 

�∏ xk
D
k=1 �1/D

 of x.  
The inverse denoted by (clr)−1(Z) is defined by  

(clr)−1(Z) = C[exp(Z)] 

=
exp(y1)

∑ exp(y𝑖𝑖)D
𝑖𝑖=1

, … ,
exp(yD)

∑ exp(y𝑖𝑖)D
𝑖𝑖=1

 

This transformation is symmetric in the parts of the 
composition. The transformation maps SD  in the subspace 
𝑉𝑉 = �𝑍𝑍𝑍𝑍ℝD:∑ Z = 0D

𝑖𝑖=1 � of ℝD , which can be seen to be a 
hyperplane through the origin of  ℝD , orthogonal to Ι𝐷𝐷 
(vector of units). This subspace has dimension  𝐷𝐷 − 1 . If 
𝑉𝑉1, … ,𝑉𝑉𝐷𝐷−1 be any orthonormal basis of 𝑉𝑉 and if 𝑉𝑉 be the 
D x (D − 1) matrix [𝑉𝑉1, : … :𝑉𝑉𝐷𝐷−1]. 
(iii) Isometric Log Ratio Transformation (ilr) 

The isometric log ratio transformation denoted by 
𝑖𝑖𝑖𝑖𝑟𝑟𝑣𝑣 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥) ⋅ 𝑉𝑉 = ln(𝑋𝑋) ⋅ 𝑉𝑉. 

For a given matrix V of D rows and (D-1) columns such 
that V ⋅ V′ = ΙD−1  (identity matrix of D − 1 elements) and 
V ⋅ V′ = ΙD + 𝒂𝒂𝒂𝒂  where 𝒂𝒂  may be any value and 1 is a 
matrix full of ones.  

Alternatively, 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥) = (y1, … , yD−1)ϵℝd  where d=D-1 

where 𝑦𝑦𝑘𝑘 = 1
�𝑘𝑘(𝑘𝑘+1)

𝑙𝑙𝑙𝑙 �
∏ χ𝑖𝑖
𝑘𝑘
𝑖𝑖=1

(𝑥𝑥𝑘𝑘+1)𝑘𝑘
� (k = 1, … , D − 1) 

The inverse denoted by (ilr)-1 is defined as: 
𝑖𝑖𝑖𝑖𝑟𝑟𝑣𝑣−1(𝑥𝑥) = ∁[𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥. 𝑣𝑣 ′)] 

  = ��1 + ∑ 𝑓𝑓(𝑖𝑖)𝐷𝐷
𝑖𝑖=0,𝑖𝑖≠1 �−1, … , �1 + ∑ 𝑓𝑓(𝑖𝑖)𝐷𝐷

𝑖𝑖=0,𝑖𝑖≠𝐷𝐷 �−1�, 

where 𝑓𝑓(𝑖𝑖) = � 1
𝑓𝑓(𝑖𝑖−1)

𝑒𝑒𝑒𝑒𝑒𝑒��𝑖𝑖(𝑖𝑖 + 1)yi
��
−1
𝑖𝑖  and 𝑓𝑓(0) = 1 

Let evaluation the log ratio transformations when D=3 and 4. 
For D = 3 ∶  x =  (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3)′  

(i) 𝑎𝑎𝑎𝑎𝑟𝑟𝑖𝑖(𝑥𝑥) = [𝑦𝑦1;𝑦𝑦2] = 𝑙𝑙𝑙𝑙 �𝑥𝑥1
𝑥𝑥3

; 𝑙𝑙𝑙𝑙 𝑥𝑥2
𝑥𝑥3
� 

where 𝑥𝑥 = � exp (𝑦𝑦1);exp (𝑦𝑦2);1
𝑒𝑒𝑒𝑒𝑒𝑒 (𝑦𝑦1)+exp (𝑦𝑦2)+1

� 

(ii) 𝑐𝑐𝑐𝑐𝑟𝑟𝑖𝑖(𝑥𝑥) = Zi = 𝑙𝑙𝑙𝑙 𝑥𝑥i
�𝑥𝑥1𝑥𝑥2𝑥𝑥3

3  

where 𝑥𝑥𝑖𝑖 = exp (𝑍𝑍i )
𝑒𝑒𝑒𝑒𝑒𝑒 (𝑍𝑍1)+exp (𝑍𝑍2)+exp (𝑍𝑍3)

 

=
exp(𝑍𝑍i)

∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑍𝑍i)3
𝑖𝑖=1

 

(iii) 𝑖𝑖𝑖𝑖𝑟𝑟𝑣𝑣(𝑥𝑥) = � 1
√2

 𝑙𝑙𝑙𝑙 𝑥𝑥2
𝑥𝑥3

; 1
√6

 𝑙𝑙𝑙𝑙 𝑥𝑥1
2

𝑥𝑥1𝑥𝑥3
� 

where V = �

0 2
√6

1
√2

−1
√6

−1
√6

−1
√6

� 

Again if D=4, that is, 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4)′  then the 
resulting vectors of the different transformations are the 
following: 

𝑎𝑎𝑎𝑎𝑎𝑎 (𝑥𝑥) = �𝑙𝑙𝑙𝑙 𝑥𝑥1
𝑥𝑥4

,   𝑙𝑙𝑙𝑙𝑥𝑥2
𝑥𝑥4

,   𝑙𝑙𝑙𝑙 𝑥𝑥3
𝑥𝑥4
�
′
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𝑐𝑐𝑐𝑐𝑐𝑐 (𝑥𝑥) = �𝑙𝑙𝑙𝑙 𝑥𝑥1
𝑔𝑔(𝑥𝑥)

,   𝑙𝑙𝑙𝑙 𝑥𝑥2
𝑔𝑔(𝑥𝑥)

,   𝑙𝑙𝑙𝑙 𝑥𝑥3
𝑔𝑔(𝑥𝑥)

, 𝑙𝑙𝑙𝑙 𝑥𝑥4
𝑔𝑔(𝑥𝑥)

�
′
 

𝑖𝑖𝑖𝑖𝑖𝑖 (𝑥𝑥) = � 1
√2
𝑙𝑙𝑙𝑙 𝑥𝑥1

𝑥𝑥2
,   

1
√6

 𝑙𝑙𝑙𝑙𝑥𝑥1𝑥𝑥2
𝑥𝑥3

2 ,   
1
√12

 𝑙𝑙𝑙𝑙𝑥𝑥1𝑥𝑥2𝑥𝑥3
𝑥𝑥4

3 �
′
 

where g(x) is the geometric mean as defined earlier.  
It is very important to emphasize that all these 

transformations - 𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥), 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥), 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥) and its inverses are 
one-to-one linear transformations between the compositional 
vector space (SD,⊕,⊙)  and the real vector space 
(ℝ𝐷𝐷−1, +,∙)(𝑜𝑜𝑜𝑜 𝑉𝑉𝑉𝑉ℝ𝐷𝐷) with the natural structure. Vectors 
𝒖𝒖 = 𝑖𝑖𝑖𝑖𝑟𝑟𝑣𝑣𝒙𝒙,𝒚𝒚 = 𝑎𝑎𝑎𝑎𝑟𝑟𝐷𝐷𝒙𝒙  and 𝒛𝒛 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝒙𝒙  associated with the 
same composition 𝑥𝑥𝑥𝑥SD  are related by the following linear 
relationship expressed in matrix form. 

1. u = (FV)−1y and u = (FV)−1Fz.  
2. 𝑦𝑦 = 𝐹𝐹𝐹𝐹𝐹𝐹 and 𝑦𝑦 = 𝐹𝐹𝐹𝐹 
3. 𝑧𝑧 =  ((𝐹𝐹𝐹𝐹)−1𝐹𝐹)′𝑢𝑢 and   𝑧𝑧 = 𝐹𝐹′𝐻𝐻−1𝑦𝑦  where  H  is 

the  (D − 1) x (D − 1)  matrix 𝐹𝐹𝐹𝐹′ = ΙD−1 + JD−1 , with 
JD−1 = ΙD−1ΙD−1

′ . 

4. Conclusions 
The Box-Cox transformation has been widely used since it 

was first proposed. It has inspired a large amount of research 
on its applicability as well as on the drawbacks arising from 
its usage. However, one thing is clear; that seldom does this 
transformation fulfill the basic assumptions of linearity, 
normality and homoscedasticity simultaneously as originally 
suggested by [28]. A review of alternatives approaches is 
presented with modifications and illustrations useful to the 
analysis of compositional time series data. 
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