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Abstract  Some problems of bases in Banach spaces are considered. With the help of some complete and minimal system, 

a new Banach space is determined for which the given system forms a monotone basis. Some relations between the space of 

coefficients of this system and pl  are established. Banach space generated by the Fourier coefficients of the functions from 

pL  is also considered. The basis properties of the system of exponents in this space are studied. We also consider the 

example of an exponential bases in the weighted space on the real line. 
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1. Introduction 

The study of bases in different linear structures plays an 

important scientific and practical interest in many areas 

mathematics and natural science. There are numerous 

monographs as Singer I.[1;2], Day М.М.[3], Young R.[4], 

Heil Ch.[5], Christensen O.[6;7], Charles K. Chui[8] and 

others, and even review articles ( see e.g.[9]) devoted to them. 

From the point of view of applications recently interest in the 

study of various generalizations of bases (frames and their 

modifications) is increased. More details about related 

problems can be found in[4-8]. In this theory, the special role 

played the Banach space of sequences of scalars, including 

the space of coefficients having a canonical basis.  

In this paper in the term of the Banach space of 

coefficients generated by the non-degenerate system of some 

Banach space is considered. In the case of completeness and 

minimality of this system in above stated space (even if 

doesn’t form a basis), it is shown that it forms a basis for the 

obtained space. Some concrete examples are given. We also 

consider the example of an exponential bases in the weighted 

space on the real line. 

2. Needful Concepts and Facts 

We will use the usual notations: N  will be a set of all 

positive integers; Z  is the set of all integers; R  is the set 

of all real numbers; C  will stand for the field of complex 

numbers; Banach space will be referred to as B -space; 
*X  

will stand for a space conjugated to X ;  ML  is a linear  
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span of the set M ; M  is a closure of the set M  in the 

corresponding topology; 
*X  will stand for a space 

conjugated to X ;  TT RD  a domain of definition (a range 

of values) of the operator T ; nk is the Kronecker symbol; 

 n n N
e


 is canonical system, where  n nk k N

e 


 . We 

will need some concepts and facts from the theory of basis. 

Definition 1. System  n n N
x X


  is called complete 

in X  if  n n N
L x X


   

. 

Definition 2. System  n n N
x X


  is called  

minimal in X  if  k n n k
x L x


 
 

, Nk . 

The following criteria of completeness and minimality are 

available. 

Statement 1. System  n n N
x X


  is complete in X  

if and only if 
* *x X :  * 0nx x  , Nn , implies 

* 0x  . 

Statement 2. System  n n N
x X


  is minimal in X  

if and only if  * *
n

n N
x X


  :  *

n k nkx x  , 

Nkn  , . 

Also recall the definition of a basis. 

Definition 3. System  n n N
x X


  forms a basis  for 

X  if Xx   ! n n N
C


   :

1
n n

n

x x



  . 

Basicity criteria. The following basicity criteria of 

systems in B -spaces is true. 
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Theorem 1. System  n n N
x


 forms a basis for B -space 

X the following conditions are fulfilled: 

1)  n n N
x


 is complete in X ; 

2)  n n N
x


 is minimal in X ; 

3) Projectors    
1

m

m n n
n

P y x


    are uniformly 

bounded , i.e. 0M : 

mP x M x , Xx , 

where   *
n n N

y X


  is an appropriate biorthogonal 

system to  n n N
x


, and   is a norm in X . 

Bases  n n N
x


 are called a monotone basis in B

-space X , if the following inequality holds 

1 1

, ,
m pm

n n n n
n n

x x m p N 


 

    . 

Let X  be some B -space and  n n N
x X


  be 

minimal system with conjugate system  * *
n

n N
x X


 . 

Let K  be some B -space of  sequences of scalars. 

If   * Kn
n N

x x


 , Xx  we will said that the 

system  n n N
x


 has K -property. 

3. Space pX  

Let X  be B -space,  n n N
x x X


 


 be complete 

and minimal with the conjugate system 

 * * *
n

n N
x x X


 


 in it. Assume  

   *: , 1p n p
n N

X x X x x l p


      . 

It is easy to see that pX
~

 is a normed space with a norm 

    
1/

* *

1p

p
p

n np n N l n

x x x x x


 

 
   

 

 p1 , 

 *sup ,n
n

x x x p

   . 

The completion of pX
~

 with respect to the norm 
p

  

will be denoted by pX . We have 

    * * , ,
p

n n ppn N l

x x x x x x X n N


      . 

Hence it directly follows that the functional *
nx  is 

bounded on pX
~

, for Nn  and its  extension by 

continuity  on pX  denote by 
*
nx . Thus,  * *

n
n N

x X


 . 

From  * , ,n k nkx x n k N   , follows that the 

system x


 is minimal in pX . Consider the projectors :nS  

   *

1

,
n

n k k
k

S x x x x n N


 

. 

We have  

    

  

*

1,

* , .

p

p

n kp k n l

k pk N l

S x x x

x x x n N







   

 

Consequently, the family  n n N
S


 is uniformly 

bounded in pX . Completeness of the system x


 in pX  is 

obvious. Then from  the basicity criteria we obtain the 

validity of the following theorem. 

Theorem  2. Let x


 be complete and minimal system in 

B -space X , pX  be B -space with a norm 
p

  

generated by X ,  p1 . Then this system forms a 

monotone basis for pX . 

Indeed, the fact that the system x


 forms a basis for pX , 

is proved. It is easy to see that it holds 

    , ,n n kp p
S x S x n k N   . 

Consequently, the system x


 forms a monotone basis for 

pX .  

Consider the operator ,:0 pXXT   ,0 xxT   

 x L x 


. It is clear that  
0 0

RT TD L x 


. 0T  is 

an invertible operator, since  00 KerT . Let 0T  be 

bounded on  xL


, i.e. :0c  


pp

xxT0  
1/

*

1

p
p

n
n

x x c x




 
 

 
, 

 x L x  .                 (1) 

So,  xL


 is a dense in X , continuing the operator 0T  of  

the continuity from (1) we obtain 

,xcx
p
 Xx .           (2) 



 American Journal of Mathematics and Statistics 2013, 3(6): 421-427 423 

 

 

Similarly, we obtain that if the operator 
1

0


T  is bounded, 

then holds  

p
xcx  , pXx .              (3) 

Inequalities (2) and (3) is called the direct and inverse 

inequalities of Hausdorff-Young type. 

Consider the operator pp lXT : , defined by the 

expression Tx   * ,n
n N

x x


 pXx . Consequently, 

,n nTx e n N   , where  n pn N
e l


  is a 

canonical system. We have  

  * ,
p

p

n pl pn N l

Tx x x x x X


    . 

It is clear that if the system  n n N
e


 is complete in pl , 

then the operator T  provides an isometric isomorphism 

between pX  and pl . Consequently, for   ,1p , the 

spaces pX  and pl  are isomorphic. Assume that the spaces 

pX  and pl  are isomorphic and the inequalities (2), (3) 

hold. Then it is easy to see that the operator 0TTK   

provides an isomorphism between X  and pl , moreover, 

NneKx nn  , . Consequently, in this case the system x


 

forms a basis for X  and its space of coefficients Kx
  

coincides with the space pl . Isomorphism between the 

spaces 1X  and 2X  will be denoted as 21 ~ XX . So, let 

pp lX ~ , i.e.   ,1p  and the inequality (2) holds. 

Hence,     NneKxlXLKXXLI nnpp  ,:;; . 

Then by the results of[10] we obtain that the system 

 n n N
x


 has pl -property. Conversely, if the inequality (3) 

holds, then according to the results of[10], the system x


 is 

pl -system in X . Thus, if the inequality (2) holds, then Kx


pl , if the inequality (3), then conversely, pl Kx
 . As a 

result, we obtain the validity of the following theorem. 

Theorem 3. Let x


 be complete and minimal system in 

B -space X , pX  be B - space generated by X , 

  ,1p . Then  pXX Kx


pl , and 

 XX p pl Kx
 . If pXX  , then it is clear that 

Kx


pl  and x


 forms a basis for X . 

4. Space  rp lL  

Let    pLL pp 1,, , be an ordinary 

Lebesgue space of functions. We denote by  ˆ
n n Z

f f


 , 

the Fourier transform of the function :pLf   

  int1
,

2
nf f t e dt n Z









  . 

Let   :
r

r n nn Z
n

l a a





 
   
 

. Put  rp lL  

 ˆ:p rf L f l  , where   ,1r  is some number and 

accept the norm 
pr;

  in  rp lL : 

1/

;

ˆ ˆ

r

r
r

n p pr p ln

f f f f f




 
    
 

, 

where  
1/ p

p

p
f f t dt





 
  
 

. It is clear that  rp lL  

is the normalized, linear space. We show that it is  Banach 

space too. Let    ˆ
m p r

m N
f L l


  be some fundamental 

sequence: 
  ˆ m

m n
n Z

f f


 ,  m
nf  be Fourier coefficient 

of functions pm Lf  . From the completeness of space rl  

follows that    
: ,

m
n r n nn Z

a l f a m


    . On 

the other hand, from the evaluation of 
;

ˆ
p r p

f f , it 

directly follows that  mffLf mp ,: . It is easy to 

see that  ˆ
n n Z

f a


  and  mffm ,ˆˆ  in  rp lL . 

Take 







 1

11

qp
Lg q  and consider the functional  

 flg      
1

,
2

p rf t g t dt f L l


 

 . 

It is easy to see that   
*

g p rl L l , as a result, 

  *rpq lLL   and the function in qL  we will identify with 

the corresponding functionals. It is clear that, the system 

 int

n Z
E e


  is a system biorthogonal to E

2

1
 in 

 rp lL . 

Consider the completeness of the system E  in  rp lL . 

First, consider the case   ,1p . In this case the system 

E  forms a basis for pL . Take  p rf L l  . Let 0  

be an arbitrary number. It is obvious that :1 Nn    
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1 2n
f T 


  , where  

1
1

int
nn

n n

T t f e


  . On the 

other hand :2 Nn    

2

1/

2

r

r

n
n n

f






 
 

 
 

. Put 

 1 2max ;n n n 
   and assume   int

n
n n

T t f e





  . 

We have 
;

ˆ ˆ
2r

r p pl
f T f T f T  


       

1/r

r

n
n n

f





 
   
 

. 

This immediately implies the completeness of the system 

E  in  rp lL . Consider the projectors  

ikt
n k

k n

P f f e


  . 

We have  


prn fPf

;

r

nk

r

kf

/1


















 nfPf
pn ,0 . 

Consequently, the system E  forms a basis for  rp lL , 

  ,1p . 

Consider the case 1p . It is obvious that  rp lL  is 

continuously embedded in  rlL1 , i.e.  rp lL  rlL1 , 

1p . As a result   *1 rlL   
*

p rL l . Let the 

functional   *1 rlL  cancels out the system E . Since 

  *rp lL  and E  forms a basis for  rp lL , then it is 

clear that 0 . Thus, the following theorem is true.  

Theorem 4. System E  forms a basis for  rp lL  if 

  ,1p ; is complete and minimal in it if 1p , 

  ,1r . 

Separately, we consider the case 1p . Let  2,1r . By 

Statement 1 implies the system E  is complete and minimal 

in  rlL1 . Take  rlLf 1 . Consequently, rlf ˆ . Hence, 

2
ˆ lf  , and 2lf  . Consider the partial sums

NneffS

nk

ikt
kn 



, . 

We have  

1/

;1 1
ˆ

r

r

r
n n n kr

k nl

f S f f S f f S f f




 
       

 
 

  

 nfSfc n ,0
2

, 

where c  is an absolute constant. So the following theorem 

is true.  

Theorem 5. The system of exponents forms a basis for 

 rlL1 , for  2,1r . 

It is absolutely clear that   222 LlL  . 

5. On Exponential Bases in  RLp ,  

5.1. Abstract Case 

Let kX  B -space with a norm  k
 , Nk  . Assume  

 
Nkkxx


 , NkXx kk  , . Let us define linear 

operations of addition and multiplication by scalars 

coordinate-wise. Define  

 

1

1

, 1
pp

k k
k

x x p




 
    
 

. 

We denote the obtained B -space by X . It is absolutely 

clear that the subspace of the elements of the form 

 kn n n N
x X


  is isometrically isomorphic to kX . 

Therefore, accurate to within an isometry, the direct 

expansion 
.

1
k

k

X X



   holds. Assume that the system 

  k
n

n N
x


 forms a basis for NkXk , . Consider the 

system  
,in i n N




, where 
  k

in ik n
k N

x 


 , 

Nni  , . It is obvious that Xin  , Nni  , . Denote 

by 
   *k
n k

n N
y X


 , Nk  , the system biorthogonal to 

  k
n

n N
x


. Before proceeding with further considerations, 

we define the following space. Let ,*
kk Xy  Nk  and 

 
Nkkyy


 . Define the norm as follows. 

1

1

1 1
, 1

qq

k
k

y y
p q





 
   
 

. 

We define the linear operations in a set of such elements 

coordinate-wise. Denote the obtained B -space by Y . Let 

us show that 
*XY  . Take   Yyy

Nkk 
  and define 

 xy    
1

,k k k k N
k

y x x x X





   . 

We have 
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     

 

1 1

1 1

1 1

,

k k k k k
k k

q pq p
k k k

k k

y x y x y x

y x y x x X

 

 

 

 

   

   
      

   

. 

It is clear that y  is a linear continuous functional on X . 

Consequently, 
*y X . Thus, 

*XY  . Consider the 

system  
,in i n N

f


, where 
  k

in ik n
k N

f y


 , 

Nni  , .  It is clear that Yfin  , Nni  , . We have  

      1 1 2 2 1 2 1 2 1 21 2
1

,

, , 1,2

k k
i n i n i k i k i i n nn n

k

k k

f y x

i n N k

    




 

  

. 

Consequently,  
,in i n N

f


 is a system biorthogonal to 

 
,in i n N




. Take  k k N
x x X


    and consider 

partial sums 

 
1 2

1 2 1 2
1 1

, ,
m m

m m in in
i n

S f x m m N
 

    . 

We have  

         
1

1

, , .
k i

in ik k n in
k

f x y x y x i n N




     

Taking into account an expression for the in , we have  

      
     

1 2

1 2

2 1

1 1

1 1

m m
i k

m m n i ik n k N
i n

m m
i k

n i ik n
n i k N

S y x x

y x x






 

  

  

 
   

 
   

 

      
2 1

1 2
11

, ,
m m

k k
n k n

kn

y x x m m N


   . 

Hence 

1 2m mS 
     

1
2

1 1

m
m

k k
n k n

n k

y x x
 

 
 

 
. 

Since, 
  k
n

n N
x


 forms a basis for 

kX , passing to the 

limit as 2m  yields 
21mmS   1

21
,

m

k k
x m


 . 

In fact 

       
1

2

1 2 1
1 1

m
m

m k k
m m k n k n kk

n k

S x y x x x


 

 
   

 
 

     

 

1 2

1

2
1 1

0 ,

p pm m
k k

n k n k
k n k

y x x x m
 

 
    
 
 

  . 

As a result, we obtain  

   

 

1 1

1 2 1 2

1

1 1

21
, .

m m
m m m m k kk k

m
k k

S x S x x x

x x m

 



    

  

 

It is clear that   1

1
0

m
k k

x x


  , 1m . Thus, the 

following theorem is true.  

Theorem 6. Let the system 
  k
n

n N
x


 forms a basis for 

kX , Nk  . Then the system  
,in i n N




 forms a basis for  

X , where in 
  k

ik n
k N

x


, Nni  , . 

5.2.  ,pL R  Realization 

Here we consider the realization of  this approach on the 

example of the weighted Lebesgue space  RLp ,  with the 

norm   

   

1

,

pp

p
R

f f t t dt



 

  
 

, 

where   is some weight function. Let 

  2 ,2 1 ,nI n n n Z    , and    
nn It t   

be a characteristic function on half-interval nI . Suppose 

   
1

, ,
2

ikt
nk ne t t e n k Z


  . 

Let us assume that the weight function  t  satisfies the 

Muckenhoupt condition[11] 

:0 nM    

1
1

1 1
sup

n

q q
p

p
n

I I I I

t dt t dt M
I I

 




  
          

, 

n Z  ,                   (4) 

where I  is a Lebesgue measure of the set  2,0I . 

Then the system of exponents  int

n Z
e


 forms a basis for  

 , ,p kL I k Z    (see, e.g.[12-14]). The system 

biorthogonal to it has the form  1 int1

2 n Z

t e






 
 
 

. 
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Since the conjugate of  ,p kL I  is identified with the 

space  ,q kL I  and the every functional 

  ,p kL I  is related to the element 

 ,q kg L I  through 

         ,,

k

p k
I

f f t g t t dt f L I    . 

Consequently,  
,nk n k Z




 is a system biorthogonal to 

 
,nk n k Z

e


 in  RLp , , where nk  

   11

2

ikt
n t t e 




. Take  ,pf L R  . Denote 

by  
,nk n k Z

f


 the biorthogonal coefficients of the 

function :f       , ,nk nk
R

f f t t t dt n k Z    . 

Consider the partial sums  

   
2 2

1 1

;i i

n k

n k nk nk
n n k k

S t f e t
 

   . 

We have  

       

     

1

1

1

2

1

2
n

ikt
nk n

R

ikt

I

f f t t t e t dt

f t t e t dt

  


 


 

 

 

 

 

 
2

0

1
2 , ,

2

iktf t n e dt n k Z





    . 

Taking  into account the expression for nke  we obtain 

 

   
2 2

1 1

;

2

0

1

2

2

i in k

n k
ik ikt

n
n n k k

S t

t f n e d e






   

 



   

. 

We have  

         

   
 

     
 

1

2

2 1

2

; ;

2 1

;
2 1 2

i i i i

i i

kp p
n k n k

R

k
pp

n k
k k

I f t S t t dt f t t dt

f t t dt f t S t t dt





 

 

 







 

  

  

 

 

. 

Moreover  

     
 2

1

2 1

;
2

i i

k p

n k
k

f t S t t dt









   

     
2

1

;i i

k

k p

n k
k k I

f t S t t dt


  . 

On the other hand  

     ;i i

n

p

n k
I

f t S t t dt 

   
 

2

1

2 1

2

0
2

p
iktn k

nk
k kn

e
f t f t dt












  ,

2,1,  iki . 

As a result  

   
12

,lim
i i

i

n
p

n k
k

I f t t dt





 

 
 

   
 22 1

p

n

f t t dt






 , 

and, consequently 

;lim lim 0
i i

i i

n k
n k

I
 

 . 

Thus, the following theorem is true. 

Theorem 7. System  
,

1

2

ikt
n

n k Z

t e
 

 
 
 

 forms a 

basis for  ,pL R ,  p1 , if the function   

satisfies the Muckenhoupt condition (4). 

From this theorem we immediately obtain 

Corollary 1. System  
,

1

2

ikt
n

n k Z

t e
 

 
 
 

 forms 

an orthonormal basis for  RL2 . 
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