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Abstract

In this paper, we consider the commonly used growth models and explicitly shown that each is asolution of the

rate-state ordinary differential equation f (t) = rf(t) which describes biological growths.We construct growth

function f(t) and relative growth function r, for the models:

Generalized logistic, Particular case of generalized logistic,

Richards, Von Bertalanffy, Brody, Classical logistic, Gompertz, Weibull, Generalized Weibull, Monomolecular and
Mitscherlich. Detailed derivations are presented considering non-mathematicians working in the fields of Biological sciences

and non-availability of these derivations in literature.
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1. Introduction

Measuring biological growth has been important in many
fields. Many researchers have contributed in developing
relevant models: Brody[1] for Brody function; Bertalanffy[2]
for Von Bertalanffy function, Richards[3], France &
Thornley[4] for Richards function; Winsor[5] for Gompertz
function; Nelder[6], Brown et al[7], Robertson[8] for
Logistic function; Eberhardt & Breiwick[9], Fekedulegn et
al[10], Ayala et al[11l] and Nelder[6] for Generalized
Logistic, Rawlings & Cure[12] and Rawlings et al[13] for
Weibull function; Spillman & Lang[14] and Brody[1] for
Monomolecular function.

The growth models have been widely used in many
biological growth problems including: in animal sciences
(France et al[15]; Brown et al[7]; Brody[1]; Robertson[8];
Winsor[5]; Ersoy et al[16]) and in forestry (Lie and
Zhang[17]; Zeide[18]).

The generalized logistic function has been studied by
some researchers (Eberhardt and Breiwick[9]; Fekedulegn et
al[10]; Ayala et al[11]; Nelder,[6]). Eberhardt and
Breiwick[9] applied the models to growth of birds and
mammal populations.

The mathematical representation of the relative growth is
described by the ordinary differential equation (ODE) or
rate-state equation:

af @

o S nf® D
where f(t) is representing growth functionand r, is relative
rate function at time t. This ordinary differential equation
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has many solutions among which some are studied here. The
purpose of this paper is to explicitly show that the commonly
used growth models are solutions of the rate-state equation
by constructing f(t) and r;.

In the current paper, detailed derivations of f(t) and 7,
are presented considering non mathematicians working in
the fields of Biological sciences and non availability of these
derivations in the literature. All the growth functions
discussed here are displayed in Table 1 together with
respective relative growth rate functions, expression for B
and integral constant.

2. Derivations of Growth and Relative
Growth Rate Functions

In this section we consider various growth functions and
construct for them the respective r, and f(t). The growth
curves considered in this paper are: Generalized logistic,
Particular case of the generalized logistic, Richards, Von
Bertalanffy, Brody, Classical logistic, Gompertz, Weibull,
Generalized Weibull, Monomolecular and Mitscherlich
functions.

2.1. Generalized Logistic Function

The Generalized Logistic function as given in (Wikipedia)

is expressed in its original notations as Y(t) = A +
K—A . .
—— which we now re-express in the same

[1+Qe—Blt-M]w
notations used in this paper as "
F© =4, + (4 —A4)[1-Be =] 2)
by replacing in the equationY (t) = f(t), A = 4,, K =
1
A B=k M=p o=|->]and [-0] = 1- (2=2)".

m A-Ap
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Detailed derivations of f(t) and 1, for generalized A function called Particular Case of Logistic function is
logistic function are given here under. P

- defined (Wikipedia) as Y(t) = {——— which
Derivation of r, [1+Qe-a €—t)[@

Consider, FO) =4, + (A —A4,) [1-Be*&m]™  we now re-express with same notations used in this paper as
i —k(t—p)

- A=t Yo | . f@® = A[1-Be "] (4)
where B = [1 (A—AL) ] which can be rewritten as by replacing in the functions and other quantities using
(f(t)_AL)l/m 1 BekG-0) o [ . _(f(t)—AL)l/m] _ YD =f®, x :1,4, k=aw, ty=p , w= _i and

A-Ay A-4p L
, Ay \m . .
Be k(=1 Also, on differentiating f(t), we get £ @) = [-Q] = [1 - (7") ] Note that the Generalized Logistic

_ — Be—kt-w " [ _ge—kt-m)] (= _ _
m (A4 = A)[1 = Be W] . [=Bet ](1 k) function with A, =0, mk +a =0 reduces to the
(O— 1_; _ - - . . - )

=mk (A—4,) (fAt AAL) [1 _ (fit)AAL) ]: Particular case of Logistic function. In the Iatlter case, the

-4 —AL Ay\m .
1 parameter B takes the form B = 1—(7") . Detailed

A-A m
mk [f(t) — 4] [(f—(t)_:) - 1] derivations of the growth function f(t) and therelative
growth rate functionr, are given here under.

1
= mk [(}(A_—AL)’" - 1} [f(t)—_AL] f(@®). On comparison of Derivation of 7,

(-4, )
this (&) with £ © = 7 £(),we get Consider f(0) = A [1— Be* 0] where B = [1_
n = mk [(ﬁ); - 1] )C(;)(—;)AL] (3)  AuA1m. It can be rewritten as f(2)A1/m=1—Fe— k(t—u)or
It is the Generalized Logistic relative growth rate function. ~ €quivalently 1 — (fift))l/m =Be ¥(t=) . Also, on
Derivation of f(t) differentiating @ we

get f@® =mal1- Be—k(f—m]m_l[—}ae—k(f—”)][—k]
0 o = miea (1) [ - ()] = e [:2)7 -1 0

r, f(©). Then, we get

R iR | = EACE

| A, L] O - Oncomparisonofthis f () with £ () = r f(),we get
f@® =mk <—_> -1|l|——| f® 1
() -4, Ji6) AN
: L n=mk |(5)" -1 ©)
=mk (i)m —1{[f® - 4,] It is the relative growth rate function of Particular case of
f@) - A, b the generalized Logistic.

=mk {(A — A )% —[f® _AL]%} [F() — Derivation of f(t) 1

A—1m Put 7, = mk [(%); - 1] inf (t) = 7, f(t). Then, we
1 1
—=)[f@®) — A, In"" , L
( m) 1f - T(df(®) = —kdt get f (t) = mk [(}%) — 1]f(t)
A@-Aa)m—[f© — A Im 1 1
1 1 (=) ol
= log{t — 4w — [£(©) - 4,1} Um0

— b df@®) = —kdt
1
= —kt + log [(A—AL)EBek”]

=

A — [F O
1 1
= log{d - [fm]z}

1 1 1
> @-A)m—[f@®) —Alm =B -4 )meltek 1
= —kt + log [Am B ek"]

S L@ — A7 = (4 — 47 — B4 — A, e~k

1 1 1 1

1 L L L _ L

= (A -A)m[1-Bekt-m] = Am — [f(O) ]m = Bx;lme"“el’“ k=> [F@©]m

m AT = _k(t—
= f®) -4, =@U-A)[1-Be ] 5 £ = An — BAme (t=r)
=4,- U-A)[1-Be Ew]" = Am[1— B e 1) ]
m A .
It is Generalized Logistic growth function. The integral = f(®) = A[1—-Be*t=M ] It is thegrowth function

of Particular case of Generalized

constant in this case is [ A— A, )m B ek |. e _ o .
°9 [( W) ¢ ] Logistic. The integral constant in thiscase is given by

1
2.2. Particular Case of Logistic Function log [Am B e ]
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2.3. Richards Function

The Richards function is defined as in the usual notations
(Richards, 1959) as

f@) = A(Q — Be~kt)m (6)

1
where B =1- (Z—O)’". The Richards function f(t)can be
directly derived fromthe ODE or rate-state equation (1) with
1/m
relative rate function 7, =mk [ - 1].
f ()
Derivation of 1,

f(t) =A(0 —Bek)m
f(t))

Consider which can be

rewritten as — Be~*] or equivalently we can

write [1 - (f(A—)) ] = Be~kt. Also on differentiating £ (t),

we get f@® =mAQ —Be *)" " 1Bke =
mABk e™* (1 — B e kt)m-1,
On substituting all these
simplifying, we get
mABk e~ (1
B e—rxtm

= mBke ™ =1,(1-B e ")

in f@ =7nf® and

—B e—kt)m—l — T;:A (1 _

1 1
- = mk <Am—lfﬁ(t)> "
()

This is the required Richards expression for the relative
growth rate function.

Derivation of f(t)

1 1
Put r, = mk (Am_l—fm(t)> in £ () =r, f©). Then, we
fm ()
get

df (®) — mk <Am—fm(t)> f(t)

a £ ()
i1 L1
Am — fm () ) fm (t)

(—m)f (o)

df () = —kdt = log[arn — fr(®)] =

T
AT f_(t)

—kt + log(Am B)
1 1 1
= Am—fm(t) = Am B e
1 1
AmBe ™" = Amn(1— Be™*)

= f() =A (1 —B e *)™ This is the required Richards
expression for the growth function.

1
Interpretation of B: Here log(A;B) is the integral

constant. Put f(t) = A, fort = 0, since 4, is the initial
weight of an organis m. Hence we get,

N Oy

307

2.4. Von Bertalanffy Function

The Von Bertalanffy function is defined (Bertalanffy,
1957) as
f(t) = A1l —Be )3 (8)

where B =1 — (—) The Von Bertalanffy function is a

special case of Richards function with m = 3. The Von
Bertalanffy function can be derived from ODE (1) given
relative rate function.

Derivation of 7,
Consider f(@® = A — B e*)3 which can be rewritten

L (19 -1

1

[1— (&)3] = Be k. Also, on differentiating f(t), we

Be ] or equivalently rewritten as

A
get £ () =34 (1 — Be*)%(Bke ") = 34Bk (e™")
(1 — B e~¥)2_On substituting all the above in f (¢) =
1, f(t) and simplifying, we get
34Bk (e7*)(1 — B e~ *)?
3Bk e¥ =1,(1 —B e™*)

=rnA1-Be™)} =

1
)3
3Bk .okt Bekt 1‘( ) )
= = 1-Be-kt 3k (1—13 e’kt) =3k I =
(G
A
1
3k (‘“]—mt)> Hence
f3@)
1
n=%(ﬁ¥&§ (9)
f3@)

This 7, is the required Von Bertalanffy expression for the
relative growth rate function.

Derivation of f(t)
1 1

Put 7, =3k (@) in f (&) =7, f(t). Then, we get
300
1 1

”’fd f) = 3k <A§‘1f§“)> F(t) = 3k
f3(t)

[( 1550

A3 f3(t)

(45-F£0) o
]df(t) —k dt = log [A%-f%(t)] -

—kt + log(A% B)

1 1
= f3(t)—A3Be oo f3() = A3 —
A3B ekt = A3(1—Be_"t)

= f(@t) =A0 —Be*)3 This is the required Von
Bertalanffy expression for the growth fulnction.

Interpretation of B: Here log(AEB) is the integral

constant. Put £(t) = A, when t = 0, since 4, is the initial
weight of an organism. Thus, we get
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4=A0-BY” = (%)=1-B = B=1-

1 1 1
(A_O)E _ A3-A¢3
= ==
4 A3
2.5. Brody Function
Brody is defined (Brody, 1945) as
f(@®) = A1 — Be™*) (10)
where B =1 — %. It is a special case ofRichards function

with m = 1. It can also be derived from ODE (1) with given
rate function.

Derivation of 1,

Considerf(t) = A (1 — B e™*) which can be rewritten
s [f;ft)] = [1— B e7*] or equivalently we can write it as
[1 - %] = [B e *]. Also, on differentiating f(t), we
get f (t) = ABk exp(—kt). On substituting all these in

f@®=nrft and  simplifying,  we  get
—kt
[ABk exp(—kt)l =17, A1 —Be™) = r, = 1B_kBee_kt =
BeH -9 A—f(®)
k (1—38_“) == k [ (f(t)) - k [ ] That |S
n=k [f% —1 (11)

This is the required Gompertz expression for the relative
growth rate function.

Derivation of f(t)
Put 7, = k(w) in  f(@® =rf(). Then, we get

f@®
a @ _ A-f(®)
= (m )f(t) klA-fo)] = — — df(e) =
kdt = A(_fli) df(t) = —kdt = loglA— f ()] = —kt +
logAB
= A—f({) =ABe™ = f(t) = A— ABe™™ = A(1 -

Be~*). This is the required Gompertz expression for the
growth function.

Interpretation of B: Here log(AB) is the integral
constant. Put f(¢t) = A, whent = 0, since 4, is the initial
weight of an organism. Thus, we get A, = A(1—B) or

equivalently B = [1—A°] . AO] . Thus, B can be
interpreted as the net amount of growth, resulted during the
whole life period, per one unit of final (fruit) quantity.
2.6. Classical Logistic Function
The classical Logistic function[6] is defined as
f = 1+Be Kt

where B = (Ai —1). The Logistic function is a special
0

(12)

case of (i) Richards function (5) with m = —1 (ii) Particular
case of logistic function (4) with p=0, m = —1 (ii)
Generalized logistic function (3) with u =0, 4, = 0,m =
—1,a = k. The Logistic function can be derived from the
ODE (1). Detailed derivations are given below.

Derivation of r,

Solutions of Rate-state Equation Describing Biological Growths

Consider, f(t) —[ ] which can be rewritten as

1+B ekt
[1+Be®]=— or Be™kt =2 _1 Also,
f@® JiO)
differentiating f(t) , we get f (t) = [L"_kt)z] On
substituting all these in f () =1 f(t) and after
ABk ekt

simplification we get [———=

- ( +Be~ )
(1 Be kf) 1 ekt
Bk ekt

— k( Be ) =k (f%ﬁ —
1+Bekt T T \ipgekt) T | () | T
f®)

no=k[1-LY] (13)

This is the required Logistic expression for the relative
growth rate function.

Derivation of f(t)

Putting 7, = k(A i(t)) in f(@®=nft) we get
df(t) A—f(t)
2= [k (9 f] or
df(t) = [~k dt]. Using partial fractions, it

= T, =

k [A_j&]. That is,

equivalently

o]

reduces to
(G2 1 A-f (1)
—_—— df (t) = —kdt = log|—/—| =
A—f(8) f(t)] f() [ f@®
—#t+logh
Af® _ okt
f(®

L _1=BeM = - =1+Be ™ Thisis
ro o .
the required Logistic expression for the growth function.
Interpretation of B: Here logB is the integral constant.
Put f(t) = A, whent = 0, since 4, is the initial weight of

an organism. Thus, we get A4, = (1&) or B = (A;—:O).

Therefore, B is interpreted as the ‘Net amount of growth’,
resulted during the life period per one unit of initial (seed)
quantity.

2.7. Gompertz Function

The Gompertz function (Winsor, 1932) is defined as
f(t) = Ae Bexw (—kt) (14)
where B = log( ) It can be shown thatGo mpertz function

a special case of (i) Richards function with m — oo (ii)
Particular case of logistic function with m —» —oo and
(ili)Generalized logistic function with =0, A, = 0,m —
—oo , a — oo, The Gompertz function can be derived from
the ODE (1) with given rate function. Detailed derivations
are given below.

Derivation of r,

Considerf (t) = Ae Be® k) B = Jog (Ai) and can be
0

rewritten as
[&] =g Bew(-kt) _y A _ Bep (-kt) _ 10g( 4 )
P £(0) f(®

[Bexp(—kt)]. Also, on differentiating f(t), we get
f' () = Bkexp (—kt) e”B® (=k)_On substituting all these
in f@) =rnf(t) and after simplification we get
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[Bk exp (—kt) e Bexp (—kt)] — [rt e~ Bexp (—kt)] .

r't =
[ Bk exp (—kt)] = [k(B exp(~kt))] = [klog (f( ))] Thus
=k log (f(t)) (15)

This is the requnred Gompertz expression for the relative
growth rate function.

Derivation of f(t)
Put 7, =k log (i) in f@ = n f(t). Then, we get

af (©
" Ko (f()) f® = df ®© = kdt

(— A—) daf (©
2
) w) T
F©/ 9I\f©

= log|log (f( )) = —kt +logB = log(

FO o g(m))

f(t))
Bexp(—kt) = (%) = e B (k) — (1) =

A e~ Be® (5kt) This is the required Gompertz expression for
the growth function.

Interpretation of B: Here logB is the integral constant.
Put f(t) = 4, when t = 0,since 4, is the initial weight of
an organism Thus, we get A, =A e 8 or equivalently

= log ( ) Thus, B can be interpreted as the logarithm of

the total amount of growth, resulted during the whole life
period, per one unit of initial (seed) quantity.

2.8. Weibull Function
The Weibull growth model[13] is given as
t;u v
f@&)=1- (5 (16)
and this function can be derived from the ODE (1) with

rate function. Detailed derivations of this function f(t)
and relative growth rate r, are given below.

Derivation of r,
. EnY .
Consider f(t) = [1 —e \s ] and can be rewritten

as [1— (O] = [e-<%)

we

get f@®=-
[(E) (=4) ) ] = {E(%") i —f(t)]} =

{EV (t;—") o [1;%)] f(t)}. On comparing this with £ (t) =

. f(t) weget, 1 = g(tg;")_1 [%] Thus

v—1
= (5)( B ) [f(t) 1]
This is the required relative growth rate function for

Weibull.
Derivation of f(t)

]. Also, on differentiating f(t),

[e—(%”)v<—v>(%")H(§)] _

a7
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Put n:f(t‘“)v L0 (ff)”] in £'() =7, f(¢). Then,

we get d’;it) = g;(tg—”)v ' [1}({(;)]]”@ or equivalently it
can e written as
0 2Ny o 2O ()
dt s\ s 1-f(®) s\ &
20— [£(5) e = toglt— £@)] =
(=) s 1o =) 5 g =1

t;/l v
e_( s ) . This is the Weibull growth function.Note that here
the integral constant is taken to be zero.

2.9. Generalized Weibull Function

The Weibull function is generalized and named here
asGeneralized Weibull function and is defined as

f® =4|1-B ()

(18)

A . . . R
where B =1 —7“, with the same notations used in this

paper.Note that the Weibull a special case of Generalized
Weibull function with A=1,B =1,k =1. Generalized

Weibull function can be derived from the ODE (1) with
given rate function. Detailed derivations are given below.

Derivation of r,

f;ll V-

Consider f(t) = A[l - Be’k( s ) ] which can be
f;ﬂ v

rewritten as 1 —f;t) Be_k( s ) Also, on

differentiating f(¢) with respect to t, we get @) =
A [oe 6 e (52)) (9 -
(E)(E) -5 =) -1l
On comparison of this with £'(£) = r, f(t) we get
v (t—u)' "L
n=(E) e (19

This is the required relative growth rate function for
Weibull.

Derivation of f(t)

o= ()(5)

get

Lo= )G [s-1lro ="

[A - f(t)]
- L= 0 ()
—k (tg;ﬂ)vﬂog(AB)A—f(t) ABe” k()
= fO=4- ABe_k(t% — A[1— Be—k(t_T”)v] |

This is the Generalized Weibull growth function. Note that
here the integral constant is taken to be log(AB).

f(t) 1] inf @) =r f(t) to

dt=loglA— )] =
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Table 1. List of Growth Functions withtheir Respective RelativeGrowth Rate Functions, Expressions for Parameter B and Integral Constants

Integral
Model name Relative growth rate function r, Growth function f(t) Expression for B
constant
1
. =mk [(ﬁ)m - 1], f=A4,+4-4). B= log[(A
Generalized ' [1-Bekem]"
Logigtic ¢ A, — A)\m R
[ AL] <0 1- A-4 —AL)mBe ]
=L m —
f@® L
1 m
i A \m () =A|1—Be k=) - 1
Particular Caseof | . _ . (_) 1 f [ | B=1- A" log (Aﬁ Bek”)
Logigic f(® m<0 "
A = 1
H A _ — _ —kt ym Ag\m 1
Richards 2 —mkl(f(t)) 1] f=A(1—-Be™) B=1_(Z0) log(AmB)
A 3 1
— B L _ _ —kt)3 Ao\3 ( 1 )
Von Bertalanffy | 12 =3k [(f(t)) 1] f=AQ—-Be™) B=1— (ZO) log | A3B
A A
= __1) =A(1-Be™ =1-=" AB
Brody c =k (f(t) f=A4( e ) B=1-— log(AB)
Logigic T, —k(A_f(t)) o= B B=£—1 log B
6= A 1+Be* Ao
A A
Gompertz 1, = klog (/Tf)) f(t) =A e Bew k) B =log (A_o) log B
Generalized _ E’(t ‘#) - [i_ ] - _peHEY _ g
Weibull n=5{—5" 0] 1 f=A[1-Be ™75 B=1- T Zero
. v(it—u virg t—u\V
Weibull = 3<T) [m— 1] fO=1- e—(5—) B=1 Zero
A A
Monomolecular | 7 =k (—— 1) f)=A(1—-Be™) B=1-= log(A— Ap)
f(® A
A B = e~ke
Mitscherlich n=k (—— 1) f)=A(@1—-Be™) log(AB)
f(6) o is a constant

2.10. Monomolecular and Mitscherlich Functions

The Monomolecular growth function is defined[15], in its
original  notations, as w=w; — (w; —wp)e ¥ =

wr [1 - (1 —m)e‘“] where w is the growth function at
wf

time ¢, wy is the final (mature) value, w = wy, Att =0
istheinitialvalueand A is the growth rate. This function can
be expressed as Brody function f(t) = A (1 — Be %) by
considering the parametric transformation w = £ (t), wp =
A wy=4,, B=1 —%, A=k . Derivations of f(t)
and r, follow same as equations (10) and (11).

Mitscherlich growth function[20] is defined, in its original
notations, as y = a [1 — e #*®| where y is the growth
function, a is the final (mature) growth, o is a constant and
B is rate of growth. The Mitscherlich function can be
expressed as Brody f(t) = A (1 — Be %) by considering
the parametric transformation as y =f(t), a =4, f =

k, B = e It can be derived from the ODE (1) that the
i —p(=x = (2

rate function as r, = [)’( » ) or n —k(f(t) 1). Not

that the integral constant here reduces to log (AB) = —B§ +

log a. Similarly, derivations of £(¢) and ,follow same as

equations (10) and (11).

3. Conclusions

In this paper, the commonly used biological growth
models are considered and explicitly shown that each is a
solution of the rate-state ordinary differential equation
f'(t) = r.f(t). The formula for r, and f(t) are constructed
as solutions of the rate-state equation describing the growth
models for each of the functions: generalized logistic, the
particular case of the generalized logistic, Richards, von
Bertalanffy, Brody, classical logistic, Gompertz, Weibull,
generalized Weibull, monomolecular and Mitscherlich.
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Detailed  derivations are  presented  considering
non-mathematicians in applied fields such as Biological
sciences. All the growth functions discussed are displayed in
Table 1 together with respective relative growth rate
functions, expression for parameter B and integral constant.
We note that there is a restriction on the acceptable values of
B in each of the models. Further, the rate-state equation is
capable of generating still more general and useful solutions.
We will explore the possibility of constructing such models,
relationships among the models and their inflection points.
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